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Abstract.
Background: Weighted co-expression network analysis (WGCNA) is a powerful systems biology method to describe the
correlation of gene expression based on the microarray database, which can be used to facilitate the discovery of therapeutic
targets or candidate biomarkers in diseases.
Objective: To explore the key genes in the development of Alzheimer’s disease (AD) by using WGCNA.
Methods: The whole gene expression data GSE1297 from AD and control human hippocampus was obtained from the GEO
database in NCBI. Co-expressed genes were clustered into different modules. Modules of interest were identified through
calculating the correlation coefficient between the module and phenotypic traits. GO and pathway enrichment analyses were
conducted, and the central players (key hub genes) within the modules of interest were identified through network analysis.
The expression of the identified key genes was confirmed in AD transgenic mice through using qRT-PCR.
Results: Two modules were found to be associated with AD clinical severity, which functioning mainly in mineral absorption,
NF-κB signaling, and cGMP-PKG signaling pathways. Through analysis of the two modules, we found that metallothionein
(MT), Notch2, MSX1, ADD3, and RAB31 were highly correlated with AD phenotype. Increase in expression of these genes
was confirmed in aged AD transgenic mice.
Conclusion: WGCNA analysis can be used to analyze and predict the key genes in AD. MT1, MT2, MSX1, NOTCH2, ADD3,
and RAB31 are identified to be the most relevant genes, which may be potential targets for AD therapy.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common
type of dementia in aging population. It is patho-
logically characterized by intraneuronal formation
of neurofibrillary tangles (NFTs), extracellular
deposition of senile plaques, and early loss of
synapses [1]. Until now, the pathogenesis of AD
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remains largely unknown. Several hypotheses, such
as tau pathology, amyloidosis, neuroinflammation,
oxidative stress, and cholinergic neurodegeneration
theories were established to explain the mechanisms;
however, no therapy based on current theories can
effectively prevent the occurrence of AD. Therefore,
identification of the molecular basis of the disease
is urgently required for the discovery of novel
pharmacological target.

Weighted gene co-expression network analysis
(WGCNA) is a popular systems biology method
used to describe the correlation of gene expres-
sion based on the microarray database [2]. WGCNA
can be used for finding gene clusters with highly
correlated expression (modules), for summarizing
these co-expressed gene clusters by identification
of the module eigengene or hub genes, for relat-
ing the modules to phenotypes to get the most
phenotypic trait-related module and for calculating
module membership measures. Further correlation
network analysis can identify the key and central
players within modules, thus facilitate the discovery
of therapeutic targets or candidate biomarkers.

In the present study, we performed WGCNA
using gene expression data from publicly accessi-
ble microarray data obtained from AD and control
human hippocampus. We identified 19 co-expression
modules. Through calculating the correlation coeffi-
cient between the module and each phenotype, we
obtained two modules of interest. We conducted GO
and pathway enrichment analysis and further identify
the central players within the two modules through
network analysis. At last, the expression of the iden-
tified genes was confirmed in AD transgenic mice. We
concluded that MT1, MT2, MSX1, NOTCH2, ADD3,
and RAB31 are the most relevant genes, which may
be potential targets for AD therapy.

MATERIALS AND METHODS

Data acquisition and preprocessing

The data used in this paper was obtained from the
GEO database in NCBI (Gene Expression Omnibus,
http://www.ncbi.nlm.gov/geo), and the data entry
number is GSE1297. The data come from the work
of Blalock EM [3]. The platform was [HG-U133A]
Affymetrix Human Genome Array. Hippocampal
gene expression of nine control and 22 AD human
subjects of varying severity including seven incip-
ient, eight moderate, and seven severe cases were
analyzed. To facilitate the follow-up analysis, these

four levels of data distribution were assigned to group
1, 2, 3, and 4.

Data analysis procedures were illustrated in Fig. 1.
The normalized data was downloaded [3] and the
expression matrix was obtained, and data filtering
was performed. The filtering criteria were as follows:
the median expression was less than 1/5 of the average
expression, and at least one expression is greater than
30,000. After the first filtering, the standard deviation
of the remaining gene expression was calculated to
obtain a list with decreasing standard deviations, the
first 5,000 genes with large standard deviations were
obtained, and the probe without corresponding anno-
tation information were removed. There were 22,284
genes in the dataset; after the data preprocessing, we
kept 4,880 genes for further analysis.

Construction of weighted gene co-expression
network and identification of significant modules

Data was processed using R-Studio 3.4.0 software.
To ensure that the results of network construction are
reliable, abnormal samples were removed. The Pear-
son correlation coefficient was calculated to assess
the similarity of the gene expression profiles, and
then the correlation coefficients between genes were
weighted by a power function to obtain a scale-free
network. A gene module is a cluster of densely inter-
connected genes in terms of co-expression. WGCNA
uses hierarchical clustering to identify gene mod-
ules and color to indicate modules. Dynamic tree
cut method was used to identify different modules,
during module selection, the adjacency matrix (a
measure of topology similarity) was converted to a
topology overlay matrix (TOM) and modules were
detected by cluster analysis.

Correlation analysis of gene modules with
clinical phenotype

The clinical data of GSE1297 included the severity
of the disease, NFT value, Braak stage, Mini-Mental
State Examination (MMSE) score, sex, age, and post-
mortem interval (PMI) values. To detect associations
of modules to phenotype, first, the clinical data and
gene expression data were correlated using the match
function. Secondly, the associations of the module
eigengene (ME, the first principal component of the
module and represents the overall expression level
of the module) to the clinical phenotype were cal-
culated by Pearson’s correlation analysis. Modules
showing significant association to phenotype were

http://www.ncbi.nlm.gov/geo
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Fig. 1. Flow chart of data preparation, analysis, and discussion in this study.

obtained. At last, to further confirm the modules with
significant correlation to phenotype, the correlation
coefficient between the module membership (gene
expression level) with gene significance (GS, for
assessing the association of genes with phenotypes)
was calculated using the labeleHeatmap function, and
the p values were obtained.

GO and pathway enrichment analyses,
identification of Hub genes and protein-protein
interaction (PPI) analysis

Functional enrichment of Gene Ontology (GO)
and KEGG pathways analyses were performed using
GSAT (http://www.webgestalt.org/option.php). p-
value < 0.05 was considered to be significant
enrichment. The genes in one module were analyzed
using cytoHubba in Cytoscape [4] for identifica-
tion of hub genes. The identified hub genes were
further confirmed and analyzed using genemania
(http://genemania.org/) [5] to establish the network
through PPI analysis.

Total RNA isolation and qRT-PCR

APP/PS1 transgenic mice and age-matched wild
type C57Bl/6 mice were from Jackson Lab. Mice
were housed individually under standard conditions
of temperature and humidity, and a 12 h light/dark
cycle (lights on at 08:00), with free access to food
and water before use. Adequate measures were taken
to minimize pain or discomfort during surgeries. All
animal experiments were approved by the Animal
Care and Use Committee of Huazhong University of
Science and Technology, and performed in compli-
ance with the National Institutes of Health Guide for
the Care and Use of Laboratory Animals.

For RNA isolation, mice at 6 months or 14
months were deeply anesthetized and sacrificed.
The brain was quickly removed on ice and hip-
pocampal tissue was homogenized in Trizol reagents.
Total RNA was isolated according to the manufac-
turer’s instructions (Invitrogen, Carlsbad, CA, USA)
and reverse transcribed to produce cDNA using
TaqMan reverse transcription reagents kit. Quantita-
tive real-time polymerase chain reaction (qRT-PCR)

http://www.webgestalt.org/option.php
http://genemania.org/
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Table 1
PCR primers for quantitative real-time PCR

Gene Primer sequence (5’→*3’)

ADD3 F: TCGACCATGCAGTTTGACGA R:CACTCTGCGGTGACTGAGTT
MT1 F:CTCCTGCAAGAAGAGCTGCT R:CACAGCACGTGCACTTGTC
MT2 F:CTCCGATGGATCCTGCTCCT R:GGATGTAACCTGCCCAAGCT
NOTCH2 F:CTCCGATGCCACATCCTCTC R:GGATGTAACCTGCCCAAGCT
RAB31 F:CGGGAGCTCAAAGTGTGTCT R:CTGCAGCAGATCCTCGGTAG
EHD1 F:GTCCTTGAGTGGTTCGCAGA R:TAGACTCTGACCACCTCGGG
VCAN F:GTTCCACATCACTGCTCCCA R:TAGACCTCCTCCACACTGGG
MSX1 F:AGTTCCGCCAGAAGCAGTAC R:GGACCGCCAAGAGGAAAAGA
HEY2 F:AGCTGCTTTCCACCATCTCC R:ACAGTGGCCGAAAGAGACAG
EHD3 F:TCCAGCCACTGAAGAGCAAG R:ATACATAGGCTTGTCCCGCG

Table 2
Module and the number of genes in each module

Black 217 Blue 936 Brown 426 Cyan 150 Green 255 Greenyellow 87 Gray 137
Grey60 32 Lightcyan 39 Lightgreen 35 Magenta 140 Turquoise1626 Midnightblue 149 Yellow281
Purple 109 Red 230 Pink 199 Salmon 50 Tan 54

Fig. 2. Network analysis of gene expression in AD identifies dis-
tinct modules of co-expression data.

was performed using the SYBR Premix Ex TaqTM
(TaKaRa, Japan) in a Step One Plus real-time PCR
system (Applied Biosystems, USA). Gene expression
was quantified according to the 2–��Ct method.
Primer sets for selected genes were designed by

TSING KE biological technology (Wuhan, China)
and their sequences are available in Table 1.

RESULTS

Data filtering and preprocessing

In the GEO database GSE1297, 22,284 genes were
detected. These genes were screened according to
the screening criteria described in Method, and 4,880
genes were obtained. Then the 31 groups of samples
were read by R software, clustered, and one outlier
sample (GSM21207) with significantly high aver-
age expression level was removed (Supplementary
Fig. 1A). Finally, 30 sets of data were obtained and
matched to clinical data (Supplementary Fig. 1B).

Gene co-expression network construction
and module identification

WGCNA was performed to identify gene co-
expression networks associated with AD clinical
pathological factors. The scale independence and
mean connectivity analysis showed that when the
weighted value equals to 6, the average degree of
connectivity was close to 0, and scale independence
was greater than 0.8, so the weighted value was
set to 6. Through the calculation of the correlation
coefficient between genes, the genes were classified
according to the expression pattern theoretically, and
the patterned genes are classified into one module.
Nineteen co-expressed modules, ranged in size from
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32 to 1,626 genes (assigning each module a color for
reference), were identified (Table 2, Fig. 2).

Finding module of interest and functional
annotation

To identify modules most significantly associated
with clinical features, the Pearson’s correlation coef-
ficient between the module and each phenotype was
calculated. The highest association in the module-
trait relationship was found between salmon module
and clinical features such as MMSE score (r = –0.57,
p = 0.001), group (r = 0.54, p = 0.002) and NFT value
(r = 0.47, p = 0.009; Fig. 3A). The second-highest
association in the module-phenotype relationship
was found between lightgreen module and clini-
cal features such as group (r = 0.53, p = 0.002) and
MMSE (r = –0.5, p = 0.005; Fig. 3A). Thus, salmon
and lightgreen modules were selected as module
of interest in subsequent analyses. To confirm the
correlation between module of interest and clini-
cal features, labeleHeatmap function was used to
calculate the correlation values of module member-
ship with gene significance (MMSE and NFT) in the
salmon module. The results showed significant corre-
lation of module membership with gene significance
in MMSE (cor = 0.47, p = 0.0058) and NFT (cor = 0.5,
p = 0.00014) in salmon module (Fig. 3).

Next, genes in salmon module and lightgreen mod-
ule were subjected to GO functional and KEGG
pathway enrichment analyses. Biological processes
of both modules were found to focus on pro-
tein binding and ion binding (Fig. 4); In KEGG
pathway analysis, cGMP-PKG signaling pathway
was the most significant pathway in salmon mod-
ule (p = 0.010725; Table 3); mineral absorption
(p = 1.23 × 10−14) and NF-κB signaling pathway
(p = 0.033744; Table 4) were found to be the signifi-
cant pathways in lightgreen module.

Identifying hub genes and network analysis

Fifty genes were clustered in the salmon mod-
ule; thirty-five genes were clustered in the lightgreen
module. CytoHubba in Cytoscape was used to iden-
tify hub genes in the two modules. The identified
hub genes were further confirmed and analyzed by
using genemania. To ascertain the significance of
genes and analyze the network in the correspond-
ing modules, the PPI maps were constructed (Fig. 5).
Network of genes in salmon module was comprised
of 31 hub genes, including the top 10 hub genes,

NBPF10, ADD3, NOTCH2, SPARC, NEBL, ZBTB20,
GJA1, TRIL, CTNND2, and PTTG1IP, with the inter-
acted genes of 2, 17, 8, 15, 5, 4, 20, 20, 7, and
14, respectively (Fig. 5A); Network of genes in
lightgreen module was comprised of 29 hub genes,
including the top 10 hub genes, SLC47A1, MT1G,
MT1X, MT1E, MT2A, MT1B, MT1A, MT1H, MSX1,
and EHD1, with the interacted genes of 2, 12, 12, 12,
14, 11, 11, 12, 9, and 6, respectively (Fig. 5B).

Validation of the hub genes in AD transgenic
mice

To obtain further evidence for the significance of
the key genes in the module of interest, we measured
the expression of the top hub genes in AD transgenic
mouse hippocampus through qRT-PCR. The results
showed that in aged 14–month-old APP/PS-1 trans-
genic mice, expression levels of MT1, MT2, ADD3,
RAB31, and MSX1 were increased; upregulation of
NOTCH2 was observed in 6-month-old transgenic
mice; VCAN and EHD1 showed a trend of increase in
expression in14–month-old AD mice (Fig. 6). HEY2
and EHD3, on the contrary, showed no change in
expression level in AD mice (Supplementary Fig-
ure 2). Overall, most of the qRT-PCR results in AD
transgenic mice were consistent with the results of
the microarray analysis.

DISCUSSION

In this study, we used the weighted network anal-
ysis to analyze the whole genome expression data
obtained from the hippocampus of AD patients.
We choose dataset GSE1297 for analysis for the
complete information of gene expression data and
detailed clinical data in this database. In addition,
GSE1297 includes samples from AD patients of vary-
ing severity including incipient, moderate and severe
cases; such type of data from multiple group samples
based on the disease severity is a good candidate for
WGCNA analysis.

Through gene co-expression network construction,
we identified 19 co-expressed modules. Genes in
each module showed highly-related expression, indi-
cating potential interaction or consistent effects of
these gene-coded proteins in same pathways dur-
ing the disease development. Through calculating the
Pearson’s correlation coefficient between the mod-
ule and most disease-related clinical features such as
MMSE score and NFT value, we obtained two mod-
ules (salmon and lightgreen) of interest. Further GO
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Fig. 3. Target modules screening and analysis. A) Pearson correlation coefficient between the module eigengene and sample feature vector,
numbers in brackets indicate the corresponding p values. B, C) Correlation between module membership (MM) and gene significance (GS)
for MMSE (B) and NFT (C) of all genes in salmon module. Cor represents absolute correlation coefficient between GS and MM.

functional and KEGG pathway enrichment analyses
indicated that mineral absorption, NF-κB signaling
pathway and cGMP-PKG signaling pathway as the
most significant pathways in the two modules. In

addition, we obtained hub genes which exhibited high
gene significance and high intramodular connectivity
in the module of interest. Through further confir-
mation in AD transgenic mice, NOTCH2, ADD3,
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A

B

Fig. 4. GO functional analysis. GO enrichment analysis of salmon module (A) and lightgreen module (B). Y-axis shows the number of genes
and x-axis shows the terms of GO pathway.

Table 3
KEGG pathway analysis of salmon module

geneset description C O P Value

hsa04022 cGMP-PKG signaling pathway - Homo sapiens (human) 168 3 0.010725
hsa05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) - Homo sapiens (human) 74 2 0.017684
hsa04540 Gap junction - Homo sapiens (human) 88 2 0.024487
hsa04970 Salivary secretion - Homo sapiens (human) 90 2 0 025534
hsa04974 Protein digestion and absorption - Homo sapiens (human) 90 2 0.025534
hsa04713 Circadian entrainment - Homo sapiens (human) 96 2 0.028785
hsa04010 MARK signaling pathway - Homo sapiens (human) 255 3 0.03234
hsa04725 Cholinergic synapse - Homo sapiens (human) 111 2 0.037592
hsa04724 Glutamatergic synapse - Homo sapiens (human) 114 2 0.039465
hsa04919 Thyroid hormone signaling pathway - Homo sapiens (human) 118 2 0.042017

metallothionein (MT) family, RAB31, and MSX1 were
identified to be the key genes related to AD NFT
severity and MMSE scores.

Analysis of hub genes showed that MT family
might play an important role in AD pathogenesis.

This was in accordance with the pathway enrich-
ment analyses in which mineral absorption was a
significant pathway. MT family members such as
MT1, MT2, and MT3 were suspected relating to
AD disease development for long time. Numerous
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Table 4
KEGG pathway analysis of lightgreen module

geneset description C O P Value

hsa04978 Mineral absorption - Homo sapiens (human) 52 9 1.23E-14
hsa04064 NF-kappa B signaling pathway - Homo sapiens (human) 95 2 0.033744
hsa00565 Ether lipid metabolism - Homo sapiens (human) 45 1 0.12943879
hsa05030 Cocaine addiction - Homo sapiens (human) 49 1 0.14013605
hsa04720 Long-term potentiation - Homo sapiens (human) 67 1 0.18674032
hsa05031 Amphetamine addiction - Homo sapiens (human) 68 1 0.18925744

A B

Fig. 5. PPI network construction. The PPI network of salmon (A) and lightgreen module (B). Different colors in each node represent different
functions as indicated. Function of genes in dark node was not revealed through the analysis.

studies reported increased MT1 and MT2 expression
especially in the reactive astrocyte and microglia
surrounding the plaques, as well as the increased
oxidative stress elicited by the amyloid [6–8]. In ani-
mal models, same changes were observed [8, 9].
Upregulation of MT-I and MT-II in reactive glias
together with clear signs of inflammation and
oxidative stress around the plaques indicated that
MT-I and MT-II may be involved in the regulation
of astrocytosis and microgliosis in neuroinflamma-
tion. The exact roles of these two MTs in regulating
astrocytes and glias need further exploration. Data of
MT3 expression in AD was controversial. Decreased
or unaltered MT-III was reported in AD patients
or animal models [10, 11], indicating big variations
among different cases or in different disease stages.

This may explain that the gene significance of MT3
was lower than that of MT1 and MT2 in network
analysis. MSX1 is another identified key gene in
the lightgreen module. Msx1 is a transcription fac-
tor that is involved in the brain development [12].
Function studies implicate the role of Msx1 in the
proliferation and differentiation of oligodendrocytes
or astrocytes in the hippocampus and fimbria [13–15].
Co-expression of MSX1 with MT1 and MT2 in the
network indicates that Msx1 may be also a candidate
protein in regulating astrocytosis in AD brain. Identi-
fied functions of these hub genes in lightgreen module
are consistent with the KEGG pathway analysis result
in which mineral absorption and NF-κB signaling
pathway are the major pathways. Through the net-
work analysis of lightgreen module, we suspect that
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Fig. 6. Validation of the key genes in AD transgenic mice. Total RNAs were isolated from hippocampal tissues of APP/PS-1 transgenic
mice and wild type control mice for qRT-PCR analysis of the expression of key genes identified in WGCNA. A-H) Expression of MT1,
MT2, NOTCH2, ADD3, RAB31, EHD1, VCAN, and MSX1 in 6-month-old and 14-month-old mice; n = 3 per group. *p < 0.05, **p < 0.01,
***p < 0.001 versus Con. Data are mean ± SEM.
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astrogliosis is an important event in AD development,
while the role of MT1, MT2, and MSX1 in this event
is worthy of further exploration.

In our study, Notch2 was identified as another
important regulator in AD. Notch pathway plays a
key role in neurodevelopment. It is also expressed
and active in the adult brain, with conserved and
novel roles in regulating adult neural stem cells, as
well as in the regulation of migration, morphology,
synaptic plasticity, and survival of immature and
mature neurons [16, 17]. In AD brains, Notch1
was found to interact with PS-1 and APP [17, 18],
with 2-fold increased expression in hippocampus in
comparison to that in control human hippocampus
[17]. Notch2 was also showed to interact with APP
[19]; however, its relationship with AD pathology
remained largely unclarified. The precise role and
mechanism of Notch2 in AD development needs
further exploration. We suspect that the aberrant
cell cycle re-entry of neurons in both early- and
late-onset AD [20] may be the upstream event
leading to Notch signal activation, the latter, further
participates in neurodegeneration.

In the network analysis, ADD3, another key hub
gene, was found to be in connection with Notch2.
Normally, genes in the same connection have the
similar function, or participate in the same event.
Adducin (ADD) is membrane-associated cytoskele-
ton protein family with recognized function of
regulating the spectrin-actin interaction in neurons
and other type cells [21–23]. A connection of ADD3
with proliferation signal Notch may be explained
by reassembly of cytoskeleton proteins during mito-
sis, even though neurons fail to complete the cell
cycle and undergo degeneration instead. One notable
fact is that impaired cytoskeleton assembly, synaptic
plasticity, motor ability, and learning/memory were
observed in ADD-deficient cells or animals [24–26].
Adducin also controls synaptic elaboration and elim-
ination [27]. These data indicate that Adducin plays
an important role in synapse stability and dynam-
ics. Whether and how Adducin is involved in AD
pathogenesis has not been investigated. The reported
disease correlation of ADD3 is related to biliary atre-
sia [28–30] and hypertension [31, 32]. Thus, ADD3
may be an interesting target in understanding the
mechanism for synaptic degeneration and memory
loss in AD patients.

At last, RAB31 was characterized to be a hub
gene with NOTCH2 and ADD3 in the same module.
Rab31 (also known as Rab22b) is a member of the
Rab5 subfamily [33]. Rab31 localizes largely to the

trans-Golgi network and functions in the endocytic
or exocytic trafficking of the epidermal growth factor
receptor (EGFR) and mannose 6-phosphate receptors
in epithelial cells [34, 35]. Reported function of
Rab31 in the brain is controversial. Rodriguez-Gabin
et al. found expression of Rab31 in oligodendrocytes
and its role in the transport of certain proteins from
trans Golgi to myelin [36, 37]; while Ng et al. found
that this protein to be exceptionally enriched in
nestin and RC2-positive radial glia of the embryonic
mouse brain, and to be specifically expressed in
GFAP-positive mature astrocytes, but is not in
oligodendrocytes or neurons in the adult brain [38].
Recent studies showed that Rab31 enhanced the
differentiation of NPCs to astrocytes [39]. Function
of Rab31 to promote cell proliferation and inhibit
apoptosis in cancer cells was also reported [40].
Taken together, Rab31 more possibly participates in
proliferation and differentiation of adult neural stem
cells, thus exerts the familiar function as Notch2 in
cell cycle re-entry of neurons. It also may participate
in astrogliosis in AD pathogenesis.

In a summary, through weighted gene co-
expression network analysis (WGCNA) on microar-
ray data from human hippocampal tissues, we
uncover MT1, MT2, NOTCH2, ADD3, MSX1, and
RAB31 as key hub genes in AD. Through the similar
network-based approach, Zhang et al. has identi-
fied 89 modules related to neuropathology traits and
reported series of key regulators in AD brain using
microarray data from three brain regions (prefrontal
cortex, visual cortex and cerebellum) [41]. Some key
genes in this study were the same as those illus-
trated in our analysis, such as MT1, AQP4, GJA1,
and SLC gene family. Consistently, immune response,
zinc homeostasis, and cell cycle events were shown
to be functional categories enriched in AD. Further
functional exploration on these identified genes and
studies of AD brain transcriptome diversity at the sin-
gle cell level are needed to promote the understanding
of AD mechanisms.

ACKNOWLEDGMENTS

This work was supported by the National Nat-
ural Science Foundation of China (No: 81471304,
31771189), Natural Science Foundation of Hubei
Province, China (No: 2017CFA065), and Integrated
Innovative Team for Major Human Diseases Program
of Tongji Medical College, HUST.



J.-W. Liang et al. / Application of WGCNA to Find Key Genes in AD 1363

Authors’ disclosures available online (https://
www.j-alz.com/manuscript-disclosures/18-0400r2).

SUPPLEMENTARY MATERIAL

The supplementary material is available in the
electronic version of this article: http://dx.doi.org/
10.3233/JAD-180400.

REFERENCES

[1] Gouras GK, Tsai J, Naslund J, Vincent B, Edgar M, Checler
F, Greenfield JP, Haroutunian V, Buxbaum JD, Xu H,
Greengard P, Relkin NR (2000) Intraneuronal Abeta42
accumulation in human brain. Am J Pathol 156, 15-20.

[2] Langfelder P, Horvath S (2008) WGCNA: An R package for
weighted correlation network analysis. BMC Bioinformatics
9, 559.

[3] Blalock E, Geddes J, Chen K, Porter N, Markesbery W,
Landfield P (2004) Incipient Alzheimer’s disease: Microar-
ray correlation analyses reveal major transcriptional and
tumor suppressor responses. Proc Natl Acad Sci USA 101,
2173-2178.

[4] Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY (2014)
cytoHubba: Identifying hub objects and sub-networks from
complex interactome. BMC Syst Biol 8(Suppl 4), S11.

[5] Montojo J, Zuberi K, Rodriguez H, Bader GD, Morris Q
(2014) GeneMANIA: Fast gene network construction and
function prediction for Cytoscape. F1000Res 3, 153.

[6] Zambenedetti P, Giordano R, Zatta P (1998) Met-
allothioneins are highly expressed in astrocytes and
microcapillaries in Alzheimer’s disease. J Chem Neuroanat
15, 21-26.

[7] Adlard PA, West AK, Vickers JC (1998) Increased density
of metallothionein I/II-immunopositive cortical glial cells
in the early stages of Alzheimer’s disease. Neurobiol Dis 5,
349-356.

[8] Hidalgo J, Penkowa M, Espejo C, Martinez-Caceres EM,
Carrasco J, Quintana A, Molinero A, Florit S, Giralt M,
Ortega-Aznar A (2006) Expression of metallothionein-
I, -II, and -III in Alzheimer disease and animal models
of neuroinflammation. Exp Biol Med (Maywood) 231,
1450-1458.

[9] Carrasco J, Adlard P, Cotman C, Quintana A, Penkowa M,
Xu F, Van Nostrand WE, Hidalgo J (2006) Metallothionein-
I and -III expression in animal models of Alzheimer disease.
Neuroscience 143, 911-922.

[10] Palmiter RD, Findley SD, Whitmore TE, Durnam DM
(1992) MT-III, a brain-specific member of the metalloth-
ionein gene family. Proc Natl Acad Sci U S A 89, 6333-6337.

[11] Yu WH, Lukiw WJ, Bergeron C, Niznik HB, Fraser PE
(2001) Metallothionein III is reduced in Alzheimer’s dis-
ease. Brain Res 894, 37-45.

[12] Bach A, Lallemand Y, Nicola MA, Ramos C, Mathis L,
Maufras M, Robert B (2003) Msx1 is required for dorsal
diencephalon patterning. Development 130, 4025-4036.

[13] Ramos C, Martinez A, Robert B, Soriano E (2004) Msx1
expression in the adult mouse brain: Characterization of
populations of beta-galactosidase-positive cells in the hip-
pocampus and fimbria. Neuroscience 127, 893-900.

[14] Roybon L, Hjalt T, Christophersen NS, Li JY, Brundin P
(2008) Effects on differentiation of embryonic ventral mid-
brain progenitors by Lmx1a, Msx1, Ngn2, and Pitx3. J
Neurosci 28, 3644-3656.

[15] Ramos C, Fernandez-Llebrez P, Bach A, Robert B, Soriano
E (2004) Msx1 disruption leads to diencephalon defects and
hydrocephalus. Dev Dyn 230, 446-460.

[16] Ables JL, Breunig JJ, Eisch AJ, Rakic P (2011) Not(ch) just
development: Notch signalling in the adult brain. Nat Rev
Neurosci 12, 269-283.

[17] Berezovska O, Xia MQ, Hyman BT (1998) Notch is
expressed in adult brain, is coexpressed with presenilin-
1, and is altered in Alzheimer disease. J Neuropathol Exp
Neurol 57, 738-745.

[18] Oh SY, Ellenstein A, Chen CD, Hinman JD, Berg EA,
Costello CE, Yamin R, Neve RL, Abraham CR (2005)
Amyloid precursor protein interacts with notch receptors.
J Neurosci Res 82, 32-42.

[19] Chen CD, Oh SY, Hinman JD, Abraham CR (2006)
Visualization of APP dimerization and APP-Notch2
heterodimerization in living cells using bimolecular fluo-
rescence complementation. J Neurochem 97, 30-43.

[20] Atwood CS, Bowen RL (2015) A unified hypothesis of
early- and late-onset Alzheimer’s 4s. J Alzheimers Dis 47,
33-47.

[21] Xu K, Zhong G, Zhuang X (2013) Actin, spectrin, and
associated proteins form a periodic cytoskeletal structure
in axons. Science 339, 452-456.

[22] Wang S, Yang J, Tsai A, Kuca T, Sanny J, Lee J, Dong K,
Harden N, Krieger C (2011) Drosophila adducin regulates
Dlg phosphorylation and targeting of Dlg to the synapse and
epithelial membrane. Dev Biol 357, 392-403.

[23] Wilson PG (2005) Centrosome inheritance in the male germ
line of Drosophila requires hu-li tai-shao function. Cell Biol
Int 29, 360-369.

[24] Porro F, Rosato-Siri M, Leone E, Costessi L, Iaconcig A,
Tongiorgi E, Muro AF (2010) beta-adducin (Add2) KO mice
show synaptic plasticity, motor coordination and behav-
ioral deficits accompanied by changes in the expression and
phosphorylation levels of the alpha- and gamma-adducin
subunits. Genes Brain Behav 9, 84-96.

[25] Zhao KN, Masci PP, Lavin MF (2011) Disruption of
spectrin-like cytoskeleton in differentiating keratinocytes
by PKCdelta activation is associated with phosphorylated
adducin. PLoS One 6, e28267.

[26] Kruer MC, Jepperson T, Dutta S, Steiner RD, Cottenie E,
Sanford L, Merkens M, Russman BS, Blasco PA, Fan G,
Pollock J, Green S, Woltjer RL, Mooney C, Kretzschmar
D, Paisan-Ruiz C, Houlden H (2013) Mutations in gamma
adducin are associated with inherited cerebral palsy. Ann
Neurol 74, 805-814.

[27] Pielage J, Bulat V, Zuchero JB, Fetter RD, Davis GW (2011)
Hts/Adducin controls synaptic elaboration and elimination.
Neuron 69, 1114-1131.

[28] Zeng S, Sun P, Chen Z, Mao J, Wang J, Wang B, Liu L (2014)
Association between single nucleotide polymorphisms in
the ADD3 gene and susceptibility to biliary atresia. PLoS
One 9, e107977.

[29] Tang V, Cofer ZC, Cui S, Sapp V, Loomes KM, Matthews RP
(2016) Loss of a candidate biliary atresia susceptibility gene,
add3a, causes biliary developmental defects in zebrafish. J
Pediatr Gastroenterol Nutr 63, 524-530.

[30] Ye Y, Li Z, Feng Q, Chen Z, Wu Z, Wang J, Ye X, Zhang
D, Liu L, Gao W, Zhang L, Wang B (2017) Downregulation

https://www.j-alz.com/manuscript-disclosures/18-0400r2
https://www.j-alz.com/manuscript-disclosures/18-0400r2
http://dx.doi.org/10.3233/JAD-180400
http://dx.doi.org/10.3233/JAD-180400


1364 J.-W. Liang et al. / Application of WGCNA to Find Key Genes in AD

of microRNA-145 may contribute to liver fibrosis in biliary
atresia by targeting ADD3. PLoS One 12, e0180896.

[31] Lanzani C, Citterio L, Jankaricova M, Sciarrone MT, Bar-
lassina C, Fattori S, Messaggio E, Serio CD, Zagato L, Cusi
D, Hamlyn JM, Stella A, Bianchi G, Manunta P (2005) Role
of the adducin family genes in human essential hyperten-
sion. J Hypertens 23, 543-549.

[32] Fan F, Pabbidi MR, Ge Y, Li L, Wang S, Mims PN,
Roman RJ (2017) Knockdown of Add3 impairs the
myogenic response of renal afferent arterioles and mid-
dle cerebral arteries. Am J Physiol Renal Physiol 312,
F971-F981.

[33] Diekmann Y, Seixas E, Gouw M, Tavares-Cadete F, Seabra
MC, Pereira-Leal JB (2011) Thousands of rab GTPases for
the cell biologist. PLoS Comput Biol 7, e1002217.

[34] Chua CE, Tang BL (2014) Engagement of the small GTPase
Rab31 protein and its effector, early endosome antigen 1,
is important for trafficking of the ligand-bound epidermal
growth factor receptor from the early to the late endosome.
J Biol Chem 289, 12375-12389.

[35] Ng EL, Ng JJ, Liang F, Tang BL (2009) Rab22B is expressed
in the CNS astroglia lineage and plays a role in epider-
mal growth factor receptor trafficking in A431 cells. J Cell
Physiol 221, 716-728.

[36] Rodriguez-Gabin AG, Cammer M, Almazan G, Charron
M, Larocca JN (2001) Role of rRAB22b, an oligodendro-
cyte protein, in regulation of transport of vesicles from trans
Golgi to endocytic compartments. J Neurosci Res 66, 1149-
1160.

[37] Rodriguez-Gabin AG, Ortiz E, Demoliner K, Si Q, Almazan
G, Larocca JN (2010) Interaction of Rab31 and OCRL-1
in oligodendrocytes: Its role in transport of mannose 6-
phosphate receptors. J Neurosci Res 88, 589-604.

[38] Ng EL, Ng JJ, Liang F, Tang BL (2009) Rab22B is expressed
in the CNS astroglia lineage and plays a role in epidermal
growth factor receptor trafficking in A431 cells. J Cell Phys-
iol 221, 716-728.

[39] Chua CE, Goh EL, Tang BL (2014) Rab31 is expressed in
neural progenitor cells and plays a role in their differentia-
tion. FEBS Lett 588, 3186-3194.

[40] Pan Y, Zhang Y, Chen L, Liu Y, Feng Y, Yan J (2016) The
critical role of Rab31 in cell proliferation and apoptosis in
cancer progression. Mol Neurobiol 53, 4431-4437.

[41] Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J,
Podtelezhnikov AA, Zhang C, Xie T, Tran L, Dobrin R,
Fluder E, Clurman B, Melquist S, Narayanan M, Suver C,
Shah H, Mahajan M, Gillis T, Mysore J, MacDonald ME,
Lamb JR, Bennett DA, Molony C, Stone DJ, Gudnason
V, Myers AJ, Schadt EE, Neumann H, Zhu J, Emilsson V
(2013) Integrated systems approach identifies genetic nodes
and networks in late-onset Alzheimer’s disease. Cell 153,
707-720.


