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ABSTRACT
Objective The classification of complex or rare patterns
in clinical and genomic data requires the availability of
a large, labeled patient set. While methods that operate
on large, centralized data sources have been extensively
used, little attention has been paid to understanding
whether models such as binary logistic regression (LR)
can be developed in a distributed manner, allowing
researchers to share models without necessarily sharing
patient data.
Material and methods Instead of bringing data to
a central repository for computation, we bring
computation to the data. The Grid Binary LOgistic
REgression (GLORE) model integrates decomposable
partial elements or non-privacy sensitive prediction
values to obtain model coefficients, the variance-
covariance matrix, the goodness-of-fit test statistic, and
the area under the receiver operating characteristic
(ROC) curve.
Results We conducted experiments on both simulated
and clinically relevant data, and compared the
computational costs of GLORE with those of a traditional
LR model estimated using the combined data. We
showed that our results are the same as those of LR to
a 10�15 precision. In addition, GLORE is computationally
efficient.
Limitation In GLORE, the calculation of coefficient
gradients must be synchronized at different sites, which
involves some effort to ensure the integrity of
communication. Ensuring that the predictors have the
same format and meaning across the data sets is
necessary.
Conclusion The results suggest that GLORE performs as
well as LR and allows data to remain protected at their
original sites.

INTRODUCTION
In biomedical, translational, and clinical research, it
is important to share data to obtain sample sizes
that are meaningful and potentially accelerate
discoveries.1 This is necessary to expedite pattern
recognition related to relatively rare events or
conditions, such as complications from invasive
procedures, adverse events associated with new
medications, association of disease with a rare gene
variant, and many others. Although electronic data
networks have been established for this purpose, in
the form of disease registries, clinical data ware-
houses for quality improvement and cohort
discovery related to clinical trial recruitment, etc,
many of these initiatives are based on federated
models in which the actual data never leave the
institution of origin, for example, as in the model

used at the Clinical Evaluative Sciences in Ontario
(ICES), Manitoba Centre for Health Policy
(MCHP).2 However, the statistics and predictive
models that can be developed in these distributed
networks have been very limited, often consisting
of simple counts (which still need to be
somewhat obfuscated to preserve the privacy of
individuals).3 4 Many clinical pattern recognition
tasks5e8 are highly complex, involving multiple
factors. To support human decision making in
complex situations, numerous prediction
models9e16 have been developed and applied in
a clinical context. Recently, various systems were
developed for assisting with tasks as diverse as
automatically discovering drug treatment patterns
in electronic health records,17 improving patient
safety via automated laboratory-based adverse
event grading,18 predicting the outcome of renal
transplantation,19 guiding the treatment of hyper-
cholesterolemia,11 making prognoses for patients
undergoing surgical procedures,20 21 and estimating
the success of assisted reproduction techniques.22

Multiple risk calculators for cardiovascular disease
prediction are based on the Framingham study.13

Among the most popular prediction models, the
logistic regression (LR)23 model is widely adopted
in biomedical research, such as the Model for End-
stage Liver Disease (MELD)24 and many other
clinical applications,25e27 owing largely to its
simplicity and the interpretability of the estimated
parameters. In an LR model, the independent vari-
ables constitute a vector X of several variables that
help classify a case into positive or negative as
represented by the dependent binary variable Y. In
order to do this, the LR model estimates coefficients
for each of the dependent variables. For example,
the classification of temperature (independent
variable X) into ‘fever ’ (dependent variable Y) may
be done by an LR model and sufficient examples,
such that the model ‘discovers’ that temperatures
above 388C (100.48F) are associated with ‘fever ’.
The LR is based on a simple sigmoid function (see
figure 1) and is backed by information theory,28

which provides a theoretical justification for its
power.
The classic LR model, however, has limitations in

operating on federated data sets, or distributed
data, since the training phase (ie, learning of
parameters) involves looking at all the data, which
are usually located at a central repository. Data that
are distributed across institutions have to be
combined for the classic LR algorithm to work.
Although sharing and dissemination can largely
improve the power of the analysis,29 it is often not
possible to combine distributed data due to
concerns related to the privacy of individuals30 31 or
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the privacy of institutions.32e34 Such a scenario brings new
challenges to the classic learning problem of the LR model.
Although we, among others, have shown that certain machine
learning models like boosting35 and support vector machines36

can be trained in a distributed fashion37e40 and produce accurate
models, extending this advantage to LR requires a specialized
strategy. A recent work to compute LR with Map-reduce41 is
most relevant to our work, but its focus lies in parallelization for
computational speed rather than for privacy-preserving data
analysis. Furthermore, it does not elaborate on how to provide
evaluation indices for these models (eg, Hosmer-Lemeshow
goodness-of-fit test or areas under the receiver operating char-
acteristic (ROC) curve (AUCs)) in a distributed fashion.
Researchers often refine their models for inclusion or exclusion
of some predictors, variable transformations, and other pre-
processing steps. Without evaluation strategies that can be
privacy-preserving, the value of performing LR in a distributed
fashion is very limited. Previous work by other authors in

privacy-preserving distributed linear regression was based on
vertical partitions of data: multiple data owners each had
different attributes for the same observation.42 Our previous
work in distributed support vector machines is also related to
vertical partitions.40 In this manuscript, we propose a new
algorithm, Grid Binary LOgistic REgression (GLORE), to fit a LR
model in a distributed fashion using information from locally
hosted databases containing different observations that share
the same attributes (ie, horizontal partitions of datadstackable
sets of patient records), without sharing the sensitive original
patient data from these databases, as shown in figure 2. This is
not a trivial task: distributed linear regression is much easier to
implement than distributed logistic regression, since there is
a closed form solution for the former but not for the latter.
Specifically, GLORE estimates the coefficients of an ordinary

LR model by integrating decomposable intermediary results (and
not the actual patient data) to calculate model parameters and
test statistics. The resulting model is calculated in a privacy-
preserving manner and performs as well as classic LR. In the
Methodology section, we will discuss details for estimating
model coefficients, estimating the variance-covariance matrix of
coefficients, performing a goodness-of-fit test, and calculating
the AUC in a distributed fashion. Commonly reported statistics
for LR, including CIs, Z test statistics and their p values, and
ORs can be obtained by using these estimated coefficients and
their variance-covariance matrix.

METHODOLOGY
The LR model is an instance of a generalized linear model with
a logit (ie, f ðzÞ ¼ log

z
1� z

) link function (illustrated in figure 1).

log
PðY ¼ jXÞ

1� PðY ¼ 1jXÞ ¼ XB

where ðY ¼ 1jXÞ ¼ pðX;bÞ ¼ 1
1þ e�Xb

, and PðY ¼ 0jXÞ ¼
1�pðX;bÞ ¼ 1

1þ eXb
denote probabilities of an event Y to be 1

(ie, ‘fever ’) or 0 (ie, absence of ‘fever ’), conditioned on observa-
tion of a feature vector X (eg, 1018F), respectively. The parameter

Figure 1 Illustration of a logistic regression model using one-
dimensional data (for example, X¼body temperature. pðX; bÞ is
a sigmoid function relating temperature and the probability that
a particular record contained the word ‘fever’. Dots on the upper and
lower horizontal lines correspond to positive (‘fever’) and negative
(absence of ‘fever’) observations, respectively. Beta is the estimated
parameter.

Figure 2 Pipeline for the Grid Binary
LOgistic REgression (GLORE) model.
Data sets hosted in different institutions
(ie, A, B, and C) are processed locally
through the same virtual engine (ie,
GLORE code) to compute non-sensitive
intermediary results, which are
exchanged and combined to obtain the
final global model parameters at the
central site. A similar distributed
process is executed for evaluation of
the model.
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vector b corresponds to the set of weights or coefficients that
need to be estimated and that will be multiplied by the values
for the features X (ie, Xb) to make predictions.

Estimating model coefficients
In order to explain how GLORE works, it is important to remind
readers how traditional LR works. To estimate the final value for
the parameter vector b, an LR model iteratively maximizes the
likelihood of obtaining X given an initial b. At each iteration, the
algorithm produces b

ðkþ1Þ, which is based on the previous b
ðkÞ.

The initial b can start with all coefficients set to zero, eg, the

estimated probability of PðY ¼ 1jXÞ ¼ pðX; bÞ ¼ 1
1þ e�Xb

is

based on observations of a binary response Y and a feature vector
X (ie, a set of predictors) from each of the data sites. To compute
the maximum likelihood of getting the observed data, the LR
estimation algorithm first finds the derivative of the log likeli-
hood function, then applies the Newton-Raphson method43 to
find its maximum, that is, the value of b for which the derivative
function equals zero. For details of the log likelihood function,
please refer to section 1 of the online supplementary appendix.
We also explain how the Newton-Raphson method works in
section 4 of the online supplementary appendix.

In each Newton-Raphson iteration for the LR parameter
estimation problem, the first and second derivatives of log like-
lihood function are both decomposable, that is, they can be
calculated separately for a subset of observations, and then
combined, with the same result as if they were calculated on the
complete set. Hence, a GLORE update can be finished by
combining intermediary results from across all local sites. Please
refer to the online appendix (sections 1 and 2) for technical
details on model coefficient estimation.

Because intermediary results from individual sites do not lose
any information, GLORE guarantees accurate estimation of
parameters through summation. Note that the information
exchanged consists of partially aggregated intermediary results
rather than the raw data, hence they are more privacy-preserving
than would be the case if we transmitted all patient data to
a central site.

Furthermore, since the calculations can be done in parallel,
each step takes only as long as the maximum time for the sites
(ie, the slowest site will determine how long each step takes).
The time to transmit the intermediary results is usually negli-
gible, as only one vector of coefficient adjustments needs to be
sent. After setting the same initial values, at each iteration,
GLORE uses the summation of partial intermediary results from
multiple sites to update the coefficients and sends them back to
the sites for another iteration.

A central engine is efficient in terms of computation, but the
process could occur via peer-to-peer transmittal of intermediary
results. Assuming that there are m features (ie, variables) available
over multiple sites, at each iteration, intermediary results of a (m
+1)3(m+1) matrix (ie, the variance-covariance matrix of coeffi-
cients) and a (m+1)-dimensional vector (ie, the gradients for
coefficient adjustment) from each site must be transmitted to the
central engine or to all other sites, depending on the design
choice. The GLORE framework with a central computing node
can reduce the probability of network delays when compared to
the GLORE framework based on a peer-to-peer architecture.

Estimating the variance-covariance matrix
Besides model coefficients, variance-covariance matrix estima-
tion is also important, as it is necessary for the computation of
the CIs of individual predictions.9 Like the model coefficient

estimation, it can be done by integrating decomposable partial
elements. Please refer to the online supplementary appendix
(section 2) for technical details.

Estimating goodness-of-fit test statistics
The Hosmer and Lemeshow (H-L) test23 44 45 is commonly used
to check model fit for LR. This section discusses how to perform
an H-L test to check for GLORE’s fit, without sharing patient
data. The null and alternative hypotheses of the H-L test are
that (1) ‘the model provides an adequate fit,’ and (2) ‘the model
does not fit the data,’ respectively. That is, when the p values for
this test are below 0.05, we can reject the hypothesis that the
model fits the data well, meaning that the model is not well
calibrated. To calculate the H-L statistic, we have to sort cases by
their predictions and create groups from which we establish
a proxy for the ‘true probability ’ (ie, the fraction of positive
cases in the group). Let us denote Oj as the number of positive
observations in the jth group and Ej as the sum of predictions in
the jth group, respectively. The parameter nj refers to the
number of records in the jth group. In the box ‘Algorithm 1’
below, we introduce a procedure to obtain the H-L test statistic
for GLORE (ie, the C version of this test, that is based on
percentiles to determine the groups, which is more robust than
the H version of the test that is based on fixed thresholds to
determine the groups46) without sharing patient data (ie, indi-
vidual patient features or individual patient outcomes). In the
following algorithm, class labels are not shared with all other
sites or the central engine. Instead, only the total number of
labeled records with outcome ‘1’ per group from a site needs to
be transmitted to the central engine.

Estimating the area under the ROC curve (AUC)
The AUC47 is widely used to evaluate the discrimination
performance of predictive models. To calculate the AUC, it is
necessary to estimate the total number of pairs for which
positive observations (ie, ‘one’-labeled records) rank higher than
negative observations (ie, ‘zero’-labeled records). The box ‘Algo-
rithm 2’ below shows the details of how AUCs are estimated
without sharing individual patient features or patient outcomes.
Besides transmissions between the central engine and all sites,

Algorithm 1 Computing the H-L statistic for GLORE (C
version)

Step 1. Each site transmits probability estimates, that is, pðxi; b̂Þ
’s for their observations to the central engine.
Step 2. The central engine sorts all pðxi; b̂Þ ’s and evenly groups
the sorted pðxi; b̂Þ ’s into deciles*, and computes the estimated
probability for each decile as the sum of predictions in that decile.
Step 3. The central engine sends the indices of predictions in
each decile to their original sites.
Step 4. Each site finds the number of records labeled ‘1’ in each
decile among its own records based on the indices from the
central engine, and transmits this number to the central engine.
Step 5. The central engine combines the numbers of records
labeled ‘1’ from all sites to obtain the total number of records
labeled ‘1’ in each category, and, together with the results from
step 2, computes the H-L statistic.

*Deciles are commonly used in the H-L C test, but other types of
percentiles can be used depending on the size of the data set.
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this algorithm requires peer-to-peer communication to keep
patient outcomes protected.
In figure 3 we use a simple artificial example with only two

sites (A and B) to explain how algorithm 2 works. pA and OA

indicate predicted probabilities and class labels from site A, and
pB and OB are predicted probabilities and class labels from site B.
Note that in procedures 1 and 5, only predicted probabilities (ie,
no class labels) are sent to the other site, as in our previous
strategy for H-L tests. The AUC, which is equivalent to the c-
index,48 can be calculated in three steps: (1) count all one-labeled
records that have predictions that are larger than the predictions
across all zero-labeled records; (2) count all one-labeled records
that have predictions that are equal to the predictions across all
zero-labeled records; and (3) sum the counts of step (1) and half
the counts of step (2) and divide this number by the total number
of pairs formed by zero-labeled and one-labeled records.47

Sometimes, we might also want to display an entire ROC
curve instead of calculating a single AUC score. In this case, using
as threshold each prediction pðxi; bÞ, a full contingency table (ie,
true positive, false positive, true negative, and false negative) can be
calculated for each threshold. The ROC curve results from the
points (1�specificity, sensitivity) that are calculated from each of
these contingency tables. Please refer to Zou et al49 and a review
article by Lasko et al50 for details on ROC curves. In GLORE, one
site needs to send all predictions and their corresponding
contingency tables to the central engine. The central engine then
needs to merge the information to compute the sensitivity and
specificity at all thresholds. It is worth noting that, although this

Algorithm 2 Computing the AUC using GLORE

Step 1. Each site transmits probability estimates, that is, pðxi; b̂Þ
’s of their observations to all other sites.
Step 2. Each site finds the ranking* of each predicted probability
transmitted from all other sites among the zero-labeled records in
this site, and sends the rankings of these probabilities back to
their original sites.
Step 3. Each site calculates the rank sum for each of its one-
labeled records using the ranks sent back from all other sites.
Step 4. Each site finds the ranking* of each of its one-labeled
records among the zero-labeled records in this site.
Step 5. Each site computes the sums of the ranks regarding its
own one-labeled records using the intermediary results from
steps 3 and 4.
Step 6. Each site sends rank sums from step 5 and counts of their
own one-labeled and zero labeled records to the central engine.
Step 7. The central engine computes the AUC as the summation
of all rank sums from step 6 divided by the product of the total
one-labeled and zero-labeled records.

*Ranking is the sum of the number of zero-labeled records with
smaller predictions and half the number of zero-labeled records
with equal predictions.

Figure 3 Calculating the area under
the curve (AUC) using GLORE. (A)
Exchange numbers of one-labeled and
zero-labeled records between site A and
site B. (B) Compute rank sums for
records in A. 1: Calculate the rank of
each probability in A among zero-
labeled records in B. 2: Calculate the
rank of each one-labeled probability in A
among zero-labeled records in A. 3: Find
the one-labeled records from step 1 (ie,
bounded in red boxes). 4: Combine
ranks for one-labeled records from
procedures 2 and 3 to get the rank
sums for A. (c) Compute rank sums for
records in site B. 5: Calculate the rank
of each probability in B among zero-
labeled records in A. 6: Calculate the
rank of each one-labeled probability in B
among zero-labeled records in B. 7: Find
the one-labeled records from step 5 (ie,
bounded in red boxes). 8: Combine
ranks for one-labeled records from
procedures 6 and 7 to get rank sums for
A.
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procedure is straightforward, it may lead to more privacy leak
than algorithm 1, since class labels (ie, patient outcomes) asso-
ciated with predicted probabilities can be recovered by the central
or peer site, depending on the strategy selected.

Remark
We verified in both simulated and clinical data experiments that
the proposed GLORE will produce the same estimated coeffi-
cients, that is, with precision 0 (10�15), together with accurate
variance-covariance matrix estimation, goodness-of-fit statistics,
and AUC, when compared to the classic LR trained in
a centralized manner. It is also worth noting that, although the
GLORE coefficient estimation process needs to transmit inter-
mediary results in each Newton-Raphson iteration, usually
a small number (<15) of iterations is necessary to achieve high
precision such as O(10�6). After the parameter estimation is
done, only a one-time data transmission is needed for estimating
the variance-covariance matrix, computing the model fit
statistic, and computing the AUC.

Experiments
We used the statistic computing language R to conduct our
experiments with simulated data in which the true generating
model is known, and also on clinical data to validate GLORE.

Simulation study
In a simulation study, we compared two-site GLORE (assuming
data are evenly partitioned between two sites) and ordinary LR

(combining all data for computation). We used a total sample
size of 1000 (500 for each site) and nine features (ie, variables).
First, we simulated all features from a standard normal distri-
bution, then simulated the response from a binomial distribu-
tion assuming that the log odds of the response being 1 was
a linear function of features (ie, all coefficients were set to 1). We
conducted the study on 100 runs to compare coefficient esti-
mation difference between GLORE and LR for the same simu-
lated data. This simple study shows that the number of
Newton-Raphson iterations to convergence is always six when
10�6 precision is set for the iteration stop criterion.
Table 1 shows the mean absolute difference between two-site

GLORE and LR estimations for all 10 coefficients (nine features
plus one intercept) at each iteration, where the mean is calculated
for 100 runs. There are no substantial differences between esti-
mations from GLORE and LR for all coefficients at all iterations.
We also pick one of the 100 runs to graphically present the
convergence paths of the estimations for three coefficients (inter-
cept, X1, and X2) in figures 3 and 4, showing that there is
no difference between two convergence paths for these three
coefficients.

Experiments using a clinical data set
Our clinical data set is related to myocardial infarction at
Edinburgh, UK,51 which has one binary outcome, 48 features
and 1253 records, and was used to illustrate GLORE with
two sites. Records are evenly partitioned (627 vs 626) between
the two sites. We picked nine non-redundant features in this
data set using methods described in Kennedy et al51 for GLORE
fitting. We also used another data set,49 which contains two
cancer biomarkers (CA-19 and CA-125). This data set has 141
records, one binary outcome denoting the presence or absence
of cancer, and two features denoting the two cancer markers.
The 141 records were split into 71 and 70 for two sites. Tables 2
and 3 show coefficient estimates and their standard
errors, Z test statistics and p values for the Edinburgh data and
for the CA-19 and CA-125 cancer marker data, respectively.
Using algorithm 1, the H-L test statistic equals 8.036 with
a p value 0.430 for the Edinburgh data, and the H-L test statistic
equals 3.510 with a p value 0.898 for the CA-19 and CA-125
data, which are no different from the results obtained from
traditional centralized LR models. Seven and 12 Newton-
Raphson iterations were needed for convergence with 10�6

precision for the Edinburgh data and the CA-19/CA-125 data,
respectively. In addition, using algorithm 2, we found that the
AUCs were 0.965 and 0.891 for the Edinburgh data and for the
CA-19 and CA-125 data, respectively, which are no different
from the results obtained from traditional centralized LR
models.

Figure 4 The convergence paths of the two-site GLORE estimations for
intercept, X1, and X2. The estimation difference between GLORE and
classic LR is smaller than 10�15 for all iterations, as shown in table 1.

Table 1 Mean absolute difference between two-site GLORE and LR estimations

Iteration 1st 2nd 3rd 4th 5th 6th

Intercept 7.33E�17 3.05E�16 2.09E�16 1.11E�16 8.55E�17 8.88E�17

X1 4.42E�16 3.34E�16 2.52E�16 1.02E�16 8.77E�17 8.88E�17

X2 5.30E�16 3.15E�16 2.35E�16 1.02E�16 8.44E�17 8.66E�17

X3 4.46E�16 2.60E�16 2.28E�16 1.21E�16 7.99E�17 9.21E�17

X4 3.87E�16 3.12E�16 2.29E�16 1.19E�16 7.55E�17 8.10E�17

X5 4.88E�16 3.19E�16 2.11E�16 1.18E�16 8.66E�17 8.55E�17

X6 4.62E�16 3.09E�16 2.45E�16 1.30E�16 8.10E�17 7.55E�17

X7 4.25E�16 2.96E�16 2.45E�16 1.29E�16 9.21E�17 8.88E�17

X8 4.61E�16 3.06E�16 2.43E�16 1.24E�16 6.44E�17 7.77E�17

X9 4.45E�16 3.26E�16 2.48E�16 1.17E�16 7.77E�17 8.55E�17
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DISCUSSION
Our study shows that the proposed GLORE framework can use
intermediary results that do not contain patient data from
multiple local sites to build an accurate prediction model
without increasing the computation cost. This is important in
situations in which data cannot leave a particular institution,
but the institution still wants to contribute to the development
of a predictive model. For the study of rare diseases and many
other situations in which polling data from multiple sources has
the potential to improve the power of statistical analyses and
generalizability of predictive models, developing techniques that
allow shared analyses without necessarily allowing collaborating
parties to see each other ’s data is very important. Many authors
have reported on federated queries across distributed clinical
data warehouses,52 53 and how the results of some of these
queries need to be transformed to protect the privacy of the
individuals in these data sets.3 Sharing intermediary results
calculated at each site is less prone to privacy compromise,
although further studies of the privacy risk involved with the
use of this strategy are certainly warranted.

In any model-building task, significant pre-processing of data
needs to be performed. GLORE should follow the same general
guidelines as those recommended for ordinary LR. For example,
redundant predictors should be removed; categorical predictors
need to be converted to a set of dummy variables based on the
number of categorical values (this can be done by statistical
software or manually). Furthermore, pre-processing operations
done at all sites need to ensure that the resulting data are
comparable across the sites.

The data need to be harmonized (at the syntactic and
semantic levels) before GLORE can be successfully applied. Data
harmonization can be challenging even within a single institu-
tion. Creating new data models to suit the purposes of
a particular application may be tempting, but researchers should
consider the mapping of concepts to an information model and
standardized terminology to make the model extensible and the
effort in data harmonization reusable. The rate of missing values
in a particular site has to stay below an agreed level, and data
imputation techniques need to be jointly discussed. Researchers
should agree on a minimal set of variables that can be easily

mapped and are expected to have sufficient predictive ability or
usefulness in adjusting for confounders (as per automated
multivariate feature selection procedures and/or expert opinion).
It is advisable that the investigators exchange descriptive
statistics and test out their environments using artificial data.
Expert opinion should be sought as to whether it makes sense to
combine data if the data from different institutions were
collected under different circumstances and employed different
assumptions. A trivial case, for example, occurs when one
institution had a binary variable named ‘out-of-control diabetes,’
and another has actual continuous HbA1C values: it is impor-
tant to determine how ‘out-of-control’ was determined before
trying to turn the continuous value for HbA1C into a binary
variable. It may not make sense to combine the data if the
determination of ‘out-of-control’ was not clear. The security
settings need to be agreed upon. Firewalls, authentication
protocols, and other security aspects need to be extensively
tested before implementation. The robustness of network
connections and intermediary result transmission needs to be
tested for real-time computation, or an asynchronous process
needs to be established.
The combination of data from different sites is often desirable

in surveillance systems, in which low signals need to be detected
from noisy data with the help of a large number of samples. The
proposed system is applicable when the institutions are collab-
orating in such systems but cannot share individual level data.
As noted above, the method is not applicable when it is not
possible to harmonize the data across institutions, when the
data have too many missing values, when the descriptive
statistics suggest strong site-specific patterns that cannot be
adjusted for, or when the security and network infrastructures
do not allow for reliable real-time computation (although an
asynchronous version of the proposed infrastructure could be
used in this case).

LIMITATIONS
We have not compared the added value of models derived from
the combination of data from different sites with models derived
from a single site. The combination will only add value if the
data from the additional site are representative of the population
on which the model will be applied. Additionally, there are
communication costs at each iteration, and unreliable connec-
tions may lead to interrupted analyses that can only be resumed
when connections are restored. Furthermore, the privacy
preserving qualities of GLORE have not been fully investigated
in a rigorous framework such as differential privacy.54 It is
possible that, for very small data sets at a particular institution,
privacy can be compromised by releasing partial elements or
prediction values obtained at those institutions. This problem
would be more exacerbated in the distributed calculation of the
H-L test, and even worse for ROC curve plotting, as discussed
before.

CONCLUSION
We showed that a LR model performed in a distributed fashion
provides the same results as a conventional LR model performed
centrally. This has implications in terms of preservation of
individual privacy and may facilitate construction of predictive
models across institutions that have limited ability to actually
share patient data. GLORE is not a panacea for multiple
obstacles that exist for researchers to collaborate, but provides
a reliable solution for the problem of having too few cases to
construct and evaluate a predictive model at a single institution.

Table 3 Coefficient estimation for CA-19 and CA-125 data using 2-site
GLORE

Estimation Standard error Z value Pr(>|z|)

Intercept �1.4645 0.3881 �3.7739 1.61E�04

CA19 0.0274 0.0085 3.2063 1.34E�03

CA125 0.0163 0.0077 2.1008 3.57E�02

Table 2 Coefficient estimation for the Edinburgh data using two-site
GLORE

Estimation Standard error Z value Pr(>|z|)

Intercept �4.3485 0.2968 �14.6508 0.00E+00

Pain in left arm 0.1816 0.2680 0.6777 4.98E�01

Pain in right arm 0.1764 0.3061 0.5763 5.64E�01

Nausea 0.1323 0.3862 0.3426 7.32E�01

Hypoperfusion 2.2511 0.6590 3.4160 6.36E�04

ST elevation 5.5556 0.4404 12.6150 0.00E+00

New Q waves 4.1453 0.6747 6.1435 8.07E�10

ST depression 3.4173 0.2815 12.1392 0.00E+00

T wave inversion 1.2030 0.2635 4.5649 5.00E�06

Sweating 0.2721 0.2510 1.0837 2.79E�01
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