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Wound healing is a complex and dynamic process that progresses through the distinct 
phases of hemostasis, inflammation, proliferation, and remodeling. Both inflammation 
and re-epithelialization, in which skin γδ T  cells are heavily involved, are required for 
efficient skin wound healing. Dendritic epidermal T cells (DETCs), which reside in murine 
epidermis, are activated to secrete epidermal cell growth factors, such as IGF-1 and 
KGF-1/2, to promote re-epithelialization after skin injury. Epidermal IL-15 is not only 
required for DETC homeostasis in the intact epidermis but it also facilitates the activa-
tion and IGF-1 production of DETC after skin injury. Further, the epidermal expression 
of IL-15 and IGF-1 constitutes a feedback regulatory loop to promote wound repair. 
Dermis-resident Vγ4 T cells infiltrate into the epidermis at the wound edges through the 
CCR6-CCL20 pathway after skin injury and provide a major source of IL-17A, which 
enhances the production of IL-1β and IL-23 in the epidermis to form a positive feedback 
loop for the initiation and amplification of local inflammation at the early stages of wound 
healing. IL-1β and IL-23 suppress the production of IGF-1 by DETCs and, therefore, 
impede wound healing. A functional loop may exist among Vγ4 T cells, epidermal cells, 
and DETCs to regulate wound repair.
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SKiN γδ T CeLLS ARe HeAviLY iNvOLveD iN THe wOUND 
HeALiNG PROCeSS

Wound healing is a complicated repair process to recover the integrity of skin. This process is orches-
trated by four overlapping phases, which are clotting, inflammation, re-epithelialization, and remold-
ing (1). Murine γδ T cells as important components of skin immunity engage in inflammation and 
re-epithelialization in wound repair (2–4). Several subsets of γδ T cells with distinct functions exist in 
skin tissue: dendritic epidermal T cells (DETCs), which uniformly express an invariant Vγ5Vδ1 TCR 
(according to Heilig and Tonegawa’s nomenclature) and exclusively reside in the murine epidermis 
(>90%), primarily provide IGF-1 and KGF-1/2 in the epidermis to enhance re-epithelialization and 
thereby promote skin wound repair. Vγ4 T cells, a dominant subset of murine peripheral and dermal 
γδ T cells (approximately 50%), provide an early major source of IL-17A to initiate and amplify local 
inflammation after skin damage (5, 6). Interestingly, although inflammation is required for efficient 
skin wound healing, excessive inflammation has a negative impact on skin wound repair. In line with 
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this notion, IL-17A, a potent pro-inflammation factor, exhibits 
dual roles in skin wound closure (7–9). It has been reported that 
dermal Vγ4 T  cells infiltrate the epidermis and interact with 
epidermal cells to form an IL-17A-IL-1/23 positive feedback 
loop for amplifying local inflammation. Li et al. recently revealed 
that Vγ4 T cells suppress IGF-1 production by DETCs through 
the IL-17A-IL-1/23 loop and thus delay skin wound healing (10). 
This suggests that a potential functional link exists between Vγ4 
T cells, epidermal cells, and DETCs in the wound-healing process. 
This review focuses on the functional diversity of skin-resident γδ 
T cell subsets in wound repair.

THe DeveLOPMeNT OF vγ5 T CeLLS iN 
THe THYMUS

Vγ5 T cells are the first generated γδ T cells on embryonic day 
(ED) 13 in the early fetal thymus, but they are no longer produced 
after ED 18 (11, 12). Their γ and δ chains are identically rearranged 
to Vγ5-Jγ1Cγ1 and Vδ1-Dδ2-Jδ2Cδ, respectively, with invariant 
canonical junctional sequences (13). IL-7 signaling is required 
for the rearrangement of TCRγ but not TCRαβ (14). IL-7 and 
IL-7 receptors are responsible for the recombination of the TCRγ 
locus by regulating locus accessibility to the V(D)J recombinase 
(15). Positive selection is necessary for the maturation of Vγ5 
T cells in the fetal thymus, which depends on the engagement 
of TCR and some ligands expressed by thymic stromal cells 
(16). Skint-1 is essential for the positive selection of Vγ5 T cells 
in the murine fetal thymus (17). CD122 (the β chain of IL-2/
IL-15 receptor, IL-2/IL-15Rβ) and the skin-homing receptors are 
induced on Vγ5 T cells after positive selection in the fetal thymus, 
and are crucial for Vγ5 T cells to migrate into the epidermis (16). 
Vγ5 T  cells gain a “memory-like” pre-activation phenotype of 
CD44+CD122+CD25− before exiting the thymus (11).

THe MiGRATiON AND ReSiDeNCY OF vγ5 
T CeLLS iN THe ePiDeRMiS

During ED 15.5–16.5, Vγ5 T cells egress from the thymus and 
move to the epidermal layer of skin (18). The expression of CCR6 
is reduced, whereas the expression of sphingosine-1-phosphate 
receptor 1 (S1P1) is increased on mature Vγ5 T  cells, both of 
which allow mature Vγ5 T cells to exit but retrain immature cells 
in the thymus (16). Furthermore, the expressions of skin-homing 
molecules CCR10, CCR4, E, and P selectin ligands, and integrin 
αE are also markedly increased on the surface of Vγ5 T cells to 
help them migrate and reside in the epidermis (16, 19, 20). CCR9, 
CCR7, and CD62L have low expression on Vγ5 T cells, indicating 
that Vγ5 T cells are not able to migrate into secondary lymphoid 
organs (21).

Vγ5 T  cells exclusively reside in the murine epidermis and 
comprise over 90% of murine epidermal T  lymphocytes (22). 
Since the characteristic feature of epidermal Vγ5 T cells is their 
highly dynamic dendritic morphology, they are named DETCs. 
DETCs are anchored in the upper epidermis, and most dendrites 
are immobilized and apical toward keratinocyte tight junc-
tions, while the remaining dendrites are projected to the basal 

epidermis and extend and contract in a highly mobile state (23). 
Keratinocytes predominantly express E-cadherin and DETCs 
express E-cadherin receptor integrin αEβ7, especially at the ends 
of apical dendrites, which assist in anchoring the dendrites of 
DETCs in the epidermis (23).

HOMeOSTASiS OF DeTCs iN THe 
ePiDeRMiS

Dendritic epidermal T cells slowly expand under a steady state 
to maintain skin homeostasis (23). Vγ5 TCR and Skint-1 sign-
aling are required for DETC homeostasis in the epidermis (17). 
Several secreted factors also contribute to the maintenance of 
DETCs. For example, CD122 expressed on DETCs is essential 
for their proliferation and survival in both fetal thymus and 
skin (24). IL-15Rα (CD215) is highly expressed on the surface 
of DETCs (11). IL-15 helps the survival and proliferation of 
DETCs upon TCR engagement (25). Furthermore, IL-15 can 
interact with CD122 of DETCs to maintain their localization 
and homeostasis in the epidermis (25). Importantly, DETCs 
secrete a small amount of IGF-1 in a steady state to sustain 
survival and prevent apoptosis of keratinocytes to maintain 
epidermis homeostasis (4). Liu et  al. and Bai et  al. recently 
reported that DETC-derived IGF-1 is positively correlated with 
keratinocyte-derived IL-15, which is partially controlled by the 
mTOR signaling pathway (26, 27). In addition, epidermal IGF-1 
and IL-15 cooperate to promote the homeostasis of DETCs in 
diabetic animals (28). CD122 and CD69 are regarded as activa-
tion markers on DETCs (23). Vγ5 TCR signals preserve the 
expression of CD69 and CD122, which help DETCs stay in a 
state of pre-activation (23).

γδ T CeLLS iN THe HUMAN ePiDeRMiS

Murine DETCs lack an exact counterpart in humans. γδ T cells 
have a TCR that expresses the Vδ1 chain reside in both the 
epidermis and dermis of human skin (29). γδ T cells that exist in 
peripheral blood express the Vδ2 TCR (30). Cutaneous leukocyte 
antigen (CLA), which is the ligand for E-selectin and a skin-hom-
ing marker, is also expressed on epidermal- and dermal-resident 
Vδ1 T cells and αβ T cells, while CLA expression on Vδ2 T cells 
from the blood is low (29). No significant or distinct differences 
in CLA expression on Vδ1 T  cells or αβ T  cells exist between 
the epidermis and dermis. Vδ1 TCR comprise about 10–20% of 
T cells in the human epidermis and dermis, respectively, while the 
ratio of Vδ1 T/αβ T cells is less in the epidermis than in the der-
mis. Epidermal-resident Vδ1 T cells and αβ T cells are activated 
after acute injury and produce IGF-1 to promote wound repair. 
However, both Vδ1 T cells and αβ T cells separated from chronic 
non-healing wounds do not secrete IGF-1, indicating that their 
function is impaired in chronic wounds compared with T cells 
isolated from acute wounds (29). Moreover, human blood Vδ2 
T cells can be recruited to the skin inflamed with psoriasis. These 
Vδ2T cells are CLA- and CCR6-positive, secrete proinflamma-
tory cytokines, such as IL-17A, TNF-α, and IFN-γ, and produce 
psoriasis chemokines, such as IL-8, CCL3, CCL4, and CCL5 (31). 
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CLA+Vδ2 T cells not only upregulate the production of IGF-1, 
but also activate keratinocytes dependent on TNF-α and IFN-γ 
(31). Skint-1 is absent in humans, which may partially explain 
why the development of TCR chains is different between humans 
and mice (17).

THe ACTivATiON OF DeTCs UPON SKiN 
iNJURY

The activation of DETCs around wound edges is necessary for 
their proliferation and the secretion of epidermal growth factor 
during wound healing (3, 4, 32). Once keratinocytes get stressed 
or damaged, the morphology of DETCs changes from dendritic 
to round at the wound edge 1 h later (3). TCR complexes locate 
at the apical dendrite ends under a steady state, but migrate to 
the basal epidermis upon wounding (23). Functional changes 
follow the morphological changes, and the expression of IGF-1 
is markedly increased in DETCs (4). Differing from αβ T cells, 
γδ T cells are directly activated by TCR signaling in a non-major 
histocompatibility complex (MHC)-restricted manner (33). 
TCRs on DETCs sense some unidentified ligands expressed on 
damaged keratinocytes after skin injury (34). Apart from TCR 
signaling, other co-stimulatory molecules [such as NKG2D, 
junctional adhesion molecule-like protein (JAML), and 2B4] 
and T cell growth factors have been recently demonstrated to 
contribute to the activation of DETCs (35–38).

NKG2D

NKG2D is a C-type lectin-like stimulatory receptor, expressed 
on activated CD8+T  cells, macrophages, NK1.1+T  cells, and 
DETCs (39). NKG2D has two alternative splicing isoforms: 
NKG2D-S (short) and NKG2D-L (long) (40). DETCs consti-
tutively express NKG2D-S, NKG2D-L, and cell surface protein 
NKG2D (40). NKG2D signals act as co-stimulatory signals 
for CD8+T cells, or directly trigger cytotoxicity and cytokine 
production in activated murine NK  cells (39). Without TCR 
engagement, NKG2D signals are sufficient to trigger cytotox-
icity and IFN-γ production in DETCs (40). NKG2D ligands, 
which belong to MHC-class-I related proteins, are expressed 
under stress conditions, such as infection, tumorigenesis, and 
tissue damage (41). Retinoic acid early inducible-1 α-ε, mouse 
UL16-binding protein-like transcript 1, and histocompatibility 
a-c (H60 a-c) are known NKG2D ligands in mice, and among 
them H60c has been detected in skin (42). H60c protein is 
inductively expressed on keratinocytes at wound margins (43). 
The interaction between NKG2D and H60c is necessary for 
KGF secretion by DETCs in wound repair (43).

JUNCTiONAL ADHeSiON MOLeCULe-
LiKe PROTeiN (JAML)

Junctional adhesion molecule-like protein is expressed on the sur-
face of DETCs (44). Coxsackie and adenovirus receptor (CAR) is 
induced on damaged keratinocytes and acts as a functional ligand 

for JAML (44). The JAML–CAR interaction is necessary for the 
activation of DETCs and cytokine production of TNF-α and 
KGF-1 (44). Blocking the interaction between JAML and CAR 
impedes wound healing, suggesting that JAML–CAR provides a 
costimulatory signal for the activation of DETCs during wound 
repair (44).

2B4

2B4, a 66-kD glycoprotein, is expressed on NK and T cells and 
kills tumor targets by non-MHC-restricted mechanisms (45). 
2B4 is also detected on DETCs and helps DETCs to mediate 
cytotoxic killing against skin-derived tumors (46). IL-2 upregu-
lates 2B4 expression and enhances cytotoxic ability of DETCs 
(46). Whether 2B4 participates in wound healing has not been 
clarified.

TOLL-LiKe ReCePTOR (TLR) 4

Toll-like receptor 4 is the primary signaling receptor for 
lipopolysaccharide (LPS) (47). MD2 assists TLR4 for intracellular 
distribution and accelerates TLR4 for LPS recognition (48). In the 
steady state, the expression of TLR4-MD2 is lacking on the surface 
of DETCs, while during cutaneous inflammation, TLR4-MD2 
expression is improved on DETCs when they migrate from the 
epidermis (47). The roles of TLR4-MD2 in wound healing are 
not known.

iL-15

IL-2 and IL-15 participate in the survival and activation of γδ 
T cells (25, 49, 50). Both interact with α, β, or γc chains of the 
receptor complexes (50, 51). Although IL-15 is similar to IL-2 
in its biological properties and three-dimensional configura-
tion, IL-15 is more important than IL-2 for the survival and 
proliferation of DETCs upon TCR engagement, because IL-15 
and not IL-2 is expressed in the epidermis under a steady state 
(25). In addition, mature fetal Vγ5 thymocytes and DETCs 
express the IL-15Rβ chain (CD122) but not IL-2Rα (CD25) 
(11). Compared to wild-type controls, the number of mature 
Vγ5 T cells is reduced in the fetal thymus and DETCs are absent 
in IL-15−/− mice, while the number of mature Vγ5 T  cells is 
normal in the fetal thymus and DETCs survive in the adult skin 
of IL-2−/− mice (25). Therefore, IL-15 rather than IL-2 seems 
to be necessary for DETC homeostasis in the skin (25, 35). 
Moreover, activated DETCs secrete IL-15 but fail to produce 
IL-2, indicating that IL-15 is more important than IL-2 for 
the efficient activation of DETCs at the early stages of wound 
healing. Liu et al. and Wang et al. have demonstrated that IL-15 
rescues the insufficient activation of DETCs and increases 
IGF-1 production by DETCs, and IGF-1 in turn induces 
keratinocytes to secrete IL-15 in diabetic mice (26, 28). Their 
work indicates that IL-15 and IGF-1 are positively correlated 
in the wounded epidermis to promote re-epithelialization 
(Figure  1). Furthermore, the regulation of the IGF-1-IL-15 
loop partially depends on the mTOR pathway (26–28).

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FiGURe 1 | Dendritic epidermal T cells (DETCs), keratinocytes, and Vγ4 T cells constitute two correlated loops to improve wound repair in diabetic mice. Upon skin 
injury in diabetic mice, keratinocyte-derived IL-15 increases IGF-1 production by DETCs, which in turn enhances keratinocytes to secrete IL-15. A positive 
correlation between IL-15 and IGF-1 is formed in wounded epidermis, and thereby amplifies IGF-1 production in epidermis for promoting re-epithelialization and 
wound healing. Meanwhile, keratinocytes could also interact with Vγ4 T cells, which infiltrate in epidermis to form an IL-17A-IL-1β/IL-23 feedback loop to augment 
local inflammation for efficient skin wound healing. In the wounds of diabetic mice, DETC-mediated IL-15-IGF-1 correlation and Vγ4 T cell-mediated IL-17A-IL-1β/
IL-23 loop are coordinated to improve the defects of diabetic wound healing through enhancing re-epithelialization and local inflammation, respectively.

4

Li et al. γδ Cell Functions on Wound-Healing

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1099

ACTivATeD DeTCs PROMOTe  
Re-ePiTHeLiALiZATiON BY  
PRODUCiNG iGF-1 AND KGF-1/2

IGF-1 is primarily produced in the liver, but it is also derived from 
DETCs in the epidermis. DETCs constitutively generate IGF-1, and 
keratinocytes express IGF-1R under normal conditions (4). IGF-1 
combined with IGF-1R can trigger phosphoinositide 3-kinase and 
mitogen-activated protein kinase pathways to protect keratinocytes 
from apoptosis and differentiation (4, 52, 53). Beyond secreting 
a small amount of IGF-1 in the steady state, DETCs also express 
IGF-1R to maintain survival in the epidermis via an autocrine 
pathway (4). Phosphorylated IGF-1R is increased at wound margins 
24 h after injury, and upregulated IGF-1 protects keratinocytes from 
apoptosis in damaged areas to assist re-epithelialization (4).

Dendritic epidermal T cells do not secrete KGFs (KGF-1 and 
KGF-2) in homeostasis conditions, but rapidly produce KGFs upon 
wounding (3). Keratinocytes constitutively express KGF recep-
tor FGFR2-IIIb, and thus KGFs derived from DETCs can bind 
FGFR2-IIIb receptor to induce the proliferation and migration of 
keratinocytes during the re-epithelial phase of wound healing (3, 
54). FGFR2-IIIb is not expressed on DETCs, showing that KGFs 
do not reversely regulate the effector functions of DETCs under 
stressed conditions (3). DETCs can also secrete TGF-β to aid tissue 
repair; release GM-CSF XCL1, CCL3, CCL4, CCL5, and hyaluronan 
to recruit leukocytes to wound sites; and produce IL-17, IFN-γ, and 
TNF-α to facilitate inflammation (55, 56).

THe DeveLOPMeNT OF vγ4 T CeLLS iN 
THe THYMUS

Vγ4 TCR is rearranged in the late fetal thymus from ED 17 
until birth and afterward (57, 58). Vγ4 T  cells develop into 

two main subsets: IL-17A+Vγ4 T  cells with the phenotype 
of CCR6+CD27−, and IFN-γ+Vγ4 T  cells with CCR6−CD27+ 
(59). Certain embryonic thymus conditions are required for 
γδ T  cells to acquire the capacity to produce IL-17A. IL-7 is 
necessary for the development of γδ T17 cells in the thymus, 
which can promote the accessibility of the TCR γ locus to 
V(D)J recombinase and regulate the differentiation of γδ 
T  cells preferentially toward the CD27−IL-17A+ subset (15, 
60). CCR6+CD27−γδ T17 cells express the subunit of IL-17A/F 
receptor IL-17RC, which is not detected on CCR6−CD27+γδ 
T  cells (61). In the absence of IL-17A, CCR6+CD27−γδ T17 
cells become overabundant in the thymus and secondary lym-
phoid organs, indicating that the development and homeostasis 
of γδ T17 cells is restricted by IL-17A in a negative feedback 
loop (61). Moreover, transcription factor Sox13 is required for 
the maturation of IL-17A+Vγ4 T cells in the neonatal thymus, 
and its mutation is able to protect mice from psoriasis-like 
dermatitis (62).

vγ4 T CeLLS ARe THe DOMiNANT 
SUBSeT OF MURiNe DeRMAL γδ T CeLLS

When exiting the thymus, Vγ4 T cells have obtained stem cell-like 
properties of self-renewal and are radiation resistant (63). Vγ4 
T  cells are localized to the secondary lymphoid organs as the 
dominant subset of murine peripheral γδ T cells, and they are also 
distributed in the dermal layer of murine skin (63). Vγ4 T cells 
comprise nearly 50% of dermal γδ T cells, though Vγ1, Vγ5, Vγ6, 
and Vγ7 T cells also exist in the dermis (64). Vγ4 T cells, as the 
major γδ T cells in the dermis, are capable of secreting IL-17A 
and IFN-γ, which play distinctive roles in autoimmune diseases, 
graft rejection, antiviral immunity, and antitumor responses (6, 
10, 33, 65).
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vγ4 T CeLLS PROviDe THe MAJOR 
SOURCe OF iL-17A AT THe eARLY STAGe 
OF SKiN iNFLAMMATiON

Vγ4 T cells have been reported to participate in autoimmune 
diseases and skin graft rejection at the early stages by producing 
IL-17A (10, 33, 62, 66). IFN-γ-positive Vγ4 T cells play a pro-
tective role in antitumor immunity, but they do not contribute 
in skin transplantation and wound healing (10, 33, 67). Which 
cytokine Vγ4 T  cells secrete may depend on local circum-
stances. As it is well-known that Th17 cells are a major source of 
IL-17A in the adaptive immune response, Vγ4 T cells act as an 
innate source of IL-17A before Th17 cells play their roles (68). 
Vγ4 T  cells have some features in common with Th17  cells, 
such as IL-23 receptor, CCR6, and RORγ (68). However, Vγ4 
T cells have gained the potent ability to produce IL-17A and 
express dectin-1 and TLRs when they egress from the thymus 
and, therefore, they can directly interact with pathogens and 
secrete IL-17A as the first line of defense against bacterial 
pathogens (61, 68). Vγ4 T cells also produce IL-17A to induce 
psoriasis-like skin inflammation, and IL-17A-positive T  cells 
expand promptly in draining lymph nodes when exposed to 
the inflammatory agent imiquimod (64, 69). Furthermore, we 
have reported recently that Vγ4 T cells provide a major source 
of IL-17A in the epidermis at the early stages of wounding. 
Approximately half of the epidermal IL-17A-positive cells are 
Vγ4 T  cells after skin injury (67). IL-17A production in the 
epidermis is dramatically decreased after the depletion of Vγ4 
T  cells in wild-type mice, but it is significantly enhanced in 
Tcrδ−/− animals by the addition of freshly isolated Vγ4 T cells 
onto wound beds (67). In addition, Vγ4 T cells also migrate to 
noninflamed skin and peripheral lymph nodes, and respond 
faster and stronger to a second imiquimod challenge (69). 
Expanded Vγ4 T cells in lymph nodes can infiltrate back into 
inflammatory skin via S1P1 with similar migratory mechanisms 
as conventional αβ T cells (70). Of note, we purchased anti-Vγ4 
TCR (UC3-10A6) antibody (Ab) from BioXcell to deplete Vγ4 
T cells according to previous research (71, 72). However, in vivo 
treatment with both GL3 and UC7-13D5 antibodies against 
TCR, as identified by Koenecke et al., caused TCR internaliza-
tion instead of γδ T cell depletion (73). Therefore, we cannot 
exclude the possibility that Ab treatment cannot eliminate γδ 
T  cells, but instead decreases TCR complexes on the cellular 
surface.

vγ4 T CeLL-DeRiveD iL-17A AND 
ePiDeRMAL iL-1β/iL-23 FORM A 
POSiTive FeeDBACK LOOP TO AMPLiFY 
LOCAL iNFLAMMATiON AFTeR SKiN 
iNJURY

The IL-1β/IL-23-IL-17A axis is critical for the initiation and 
amplification of inflammatory responses (5, 6, 69, 74, 75). 
IL-17A has been demonstrated to act upstream to enhance epi-
dermal IL-1β/IL-23 production in a skin graft transplantation 

model (10). Furthermore, IL-1β and IL-23 production in the 
epidermis of wound edges is weakened by a deficiency or 
blockage of IL-17A but enhanced by the addition of rIL-17A 
(67). Depletion of Vγ4 T cells reduces epidermal IL-1β/IL-23 
production, but supplementing wild-type rather than Il-17a−/− 
Vγ4 T cells onto wound beds promotes epidermal IL-1β/IL-23 
production in Tcrδ−/− mice (67). Therefore, we regard that 
IL-17A secreted by Vγ4 T cells and IL-1β/IL-23 derived from 
epidermal cells may form a positive feedback loop in the epi-
dermis around wounds to amplify local inflammation after skin 
injury. In addition, IL-17A-producing γδ T cells express high 
levels of CCR6 on their surface and are recruited by CCL20 
to inflammatory sites (76). CCL20 neutralization dramatically 
decreases the infiltration of Vγ4 T  cells into the epidermis 
around wounds and reduces epidermal IL-17A production. 
Together, IL-1β/IL-23 and CCL20 have the ability to amplify 
IL-17A production by Vγ4 T cells and thereby exacerbate local 
inflammation in the epidermis after skin injury (Figure  2). 
However, the capability of Vγ4 T cells to produce IL-17A can be 
repressed by B and T lymphocyte attenuator, which decreases 
the accumulation of Vγ4 T cells in imiquimod-induced inflam-
matory skin and draining lymph nodes (77). Whether IL-17A 
production by Vγ4 T cells is negatively regulated by BLTA in 
wound healing needs further investigation.

iL-17A iS ReQUiReD FOR eFFiCieNT 
SKiN wOUND HeALiNG, BUT eXCeSSive 
iL-17A ReTARDS wOUND RePAiR

IL-17A is an important pro-inflammatory cytokine that plays a 
critical role in the initiation and amplification of inflammation 
responses. IL-17A is required for efficient skin wound healing. 
Il-17a−/− mice exhibit defects in wound repair, which can be 
restored by the addition of rIL-17A and IL-17A-producing 
DETCs (9). Moreover, IL-17A production is reduced in skin 
around wounds of diabetic mice, and IL-17A-positive Vγ4 
T cells transferred to the wound bed can improve wound heal-
ing (78). In addition, DETCs provide a source of epidermal 
IL-17A after skin injury, which accelerates wound healing by 
inducing epidermal keratinocytes to express the host-defense 
molecules β-defensin 3 and RegIIIγ (9). However, Rodero et al. 
reported a contradictory role for IL-17A in skin wound repair 
and found that the application of an IL-17A-neutralizing Ab 
onto the wound bed significantly promoted wound healing (8). 
To reconcile these conflicting roles of IL-17A in skin wound 
healing, Li et al. blocked IL-17A with an overdose of neutraliz-
ing Ab (200 μg/wound) in wound margins, which led to defec-
tive skin wound closure, indicating that IL-17A is essential for 
efficient wound healing. However, the addition of a moderate 
dose of anti-IL-17A neutralizing Ab (20  μg/wound) signifi-
cantly improved skin wound repair. In addition, a high dose 
of rIL-17A (200 ng/wound) rather than low or medium doses 
(2 or 20 ng/wound) injected into the wound bed prominently 
delayed skin wound healing, suggesting that excessive IL-17A 
has a negative impact on skin wound repair (67). These facts 
strongly suggest that IL-17A plays dual roles: moderate IL-17A 
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is required for efficient skin wound healing, but excessive 
IL-17A dampens skin wound closure. We consider that these 
dual roles do not coexist at the same time, but rather depend 
on the concentration of IL-17A under the circumstances. Mild 
amounts of IL-17A at the wound edge re-establish the anti-
microbial skin barrier after skin injury by inducing epidermal 
keratinocytes to express antimicrobial peptides and proteins, 
but superfluous IL-17A induces the IL-1β/IL-23-IL-17A loop 
to amplify local inflammation, thus inhibiting wound repair.

vγ4 T CeLLS iNHiBiT iGF-1 PRODUCTiON 
OF DeTCs TO DeLAY SKiN wOUND 
CLOSURe THROUGH iL-17A

Vγ4 T cells secrete IL-17A to delay wound repair, but IL-17A fails 
to directly affect the pro-healing function of DETCs, as IGF-1 
expression by DETCs is not able to be directly reduced by IL-17A 
(67). However, epidermal IL-1β and IL-23 are key factors for the 
suppression of IGF-1 in DETCs. Taken together with the posi-
tive loop of IL-17A and IL-1β/IL-23, it is very likely that IL-1β 
and IL-23 act as the bridge between Vγ4 T  cells and DETCs. 
Furthermore, IL-1β and IL-23 notably promote the phosphoryla-
tion of NF-κB and STAT3 and facilitate their translocation from 

the cytoplasm to the nucleus in DETCs. However, IL-1β shows 
more significant effects on DETCs than IL-23, which only exhib-
its synergic inhibition with IL-1β (67). Therefore, we consider 
that IL-17A produced by Vγ4 T cells indirectly impedes DETCs 
to secrete IGF-1 and delays skin wound closure with mediators 
IL-1β and IL-23 (Figure 2).

A POTeNTiAL FUNCTiONAL LiNK 
BeTweeN vγ4 T CeLLS, ePiDeRMAL 
CeLLS, AND DeTCs iN SKiN wOUND 
HeALiNG

Upon skin injury, epidermal cells interact with DETCs to 
form an IL-15-IGF-1 loop to amplify IGF-1 production in the 
epidermis for re-epithelialization (26, 28). Meanwhile, epi-
dermal cells can also interact with epidermis-infiltrating Vγ4 
T cells to form an IL-17A-IL-1β/IL-23 loop to augment local 
inflammation (78). In diabetic wounds, the DETC-mediated 
IL-15-IGF-1 loop and Vγ4 T  cell-mediated IL-17A-IL-1β/
IL-23 loop improve the defects of diabetic wound healing 
by enhancing re-epithelialization and local inflammation, 
respectively (Figure 1). However, in normal wounds, the Vγ4 
T cell-mediated IL-17A-IL-1β/IL-23 loop has a negative impact 
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on IGF-1 production by DETCs and thereby delays skin wound 
closure (Figure 2). This indicates that a balance exists between 
Vγ4 T cell-derived IL-17A and DETC-derived IGF-1 for opti-
mal skin wound healing.

Some interesting issues need to be further investigated in the 
near future: the precise underlying mechanisms of IL-1β and IL-23 
inhibition of IGF-1 production in DETCs, and the influence of 
co-stimulatory molecules on the two loops during wound healing. 
Whether epidermal stem cells are involved in the regulation of 
IL-17A and IGF-1 during re-epithelialization, and how IL-17A and 
IGF-1 play roles in the homeostasis, migration, proliferation, and 
differentiation of epidermal stem cells still remains unknown.
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