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Abstract

Objective: To define confounding bias in difference-in-difference studies and compare

regression- and matching-based estimators designed to correct bias due to observed

confounders.

Data sources: We simulated data from linear models that incorporated different con-

founding relationships: time-invariant covariates with a time-varying effect on the

outcome, time-varying covariates with a constant effect on the outcome, and

time-varying covariates with a time-varying effect on the outcome. We considered a

simple setting that is common in the applied literature: treatment is introduced at a

single time point and there is no unobserved treatment effect heterogeneity.

Study design: We compared the bias and root mean squared error of treatment

effect estimates from six model specifications, including simple linear regression

models and matching techniques.

Data collection: Simulation code is provided for replication.

Principal findings: Confounders in difference-in-differences are covariates that

change differently over time in the treated and comparison group or have a time-

varying effect on the outcome. When such a confounding variable is measured,

appropriately adjusting for this confounder (ie, including the confounder in a regres-

sion model that is consistent with the causal model) can provide unbiased estimates

with optimal SE. However, when a time-varying confounder is affected by treatment,

recovering an unbiased causal effect using difference-in-differences is difficult.

Conclusions: Confounding in difference-in-differences is more complicated than in

cross-sectional settings, from which techniques and intuition to address observed con-

founding cannot be imported wholesale. Instead, analysts should begin by postulating a

causal model that relates covariates, both time-varying and those with time-varying

effects on the outcome, to treatment. This causal model will then guide the specification

of an appropriate analytical model (eg, using regression or matching) that can produce

unbiased treatment effect estimates. We emphasize the importance of thoughtful incor-

poration of covariates to address confounding bias in difference-in-difference studies.
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What is known on this topic?

• Difference-in-difference studies can estimate causal effects of treatment if strong causal

assumptions are met.

• Confounding in difference-in-difference arises because covariates evolve over time differ-

ently in the treated and control groups or because the effects of covariates on outcomes vary

over time.

• Time-varying confounding can bias estimates from difference-in-difference designs by violat-

ing the causal assumptions.

What this study adds?

• Regression and matching techniques to address confounding by observed covariates must be

coherent with the underlying causal model to produce unbiased estimates.

• Postulating a causal model of the evolution of covariates in treated and control groups over

time and those covariates' relationships to outcomes over time is a crucial prerequisite for

any difference-in-differences study.

1 | INTRODUCTION

Difference-in-differences (diff-in-diff) studies are frequently used to

evaluate new policies and programs. For example, hundreds of studies

have estimated the effects of expanded Medicaid eligibility through

the Affordable Care Act (ACA) in the United States, and many of these

used diff-in-diff. Following the Supreme Court ruling on the ACA,1

each state chose whether to expand its threshold for Medicaid eligibil-

ity, which created groups of treated states and comparison (untreated)

states and enabled the application of diff-in-diff.2 These studies have

informed ongoing policy debates about the future of the ACA and

state Medicaid waivers.

Diff-in-diff relies on strong and unverifiable assumptions. The key

assumption for diff-in-diff is that the outcomes of the treated and

comparison groups would have evolved similarly in the absence of

treatment. Unlike cross-sectional studies, diff-in-diff does not require

the treated and comparison groups to be balanced on covariates.

Thus, a covariate that differs by treatment group and is associated

with the outcome is not necessarily a confounder in diff-in-diff. Only

covariates that differ by treatment group and are associated with out-

come trends are confounders in diff-in-diff.

In applied literature, many diff-in-diff studies are run on autopilot:

plot the data, test for parallel trends before the intervention, and fit a

regression model that includes an interaction between time and treat-

ment, perhaps with some adjustment for covariates. Rarely are the

mechanisms of confounding considered. In this paper, we discuss how

diff-in-diff requires a different understanding of confounding and regres-

sion adjustment than other study designs. We show how covariates,

both time-invariant and time-varying, affect the causal assumptions and

inform analysis choices. Using simulations, we demonstrate how to

adjust for confounders using regression and matching. We focus on

common diff-in-diff models with a single start date for a binary treat-

ment and no unobserved treatment effect heterogeneity. To applied

researchers, we offer strategies to estimate unbiased causal effects by

combining subject matter expertise with thoughtful modeling.

1.1 | Parallel trends

In cross-sectional studies, the definition of a confounder comes from

the assumption that potential outcomes are independent of treat-

ment. Colloquially, we say that a confounder is a covariate related to

both treatment and outcome, and we must condition on all con-

founders to ensure independence between treatment and potential

outcomes. VanderWeele and Shpitser noted the lack of rigor in the

definition of a confounder.3 In this spirit, we examine confounding in

diff-in-diff.

First, we define time-varying and time-invariant covariates and

time-varying effects of covariates. A time-varying covariate is one that

changes over time for a unit, whereas a time-invariant covariate does

not change over time for a unit. For example, a person's weight is

time-varying while their place of birth is time-invariant. A covariate

that has a time-varying effect on an outcome is different than the (in)

variance of the covariate itself. When a covariate affects the outcome

differently over time, we say it has a time-varying effect on the

outcome.

In diff-in-diff, our target estimand is the average effect of treat-

ment on the treated (ATT),

ATT t*
� �¼ E Y1 t*

� ��Y0 t*
� � jD¼1

n o
, ð1Þ

for some time t*≥T0 after the intervention is introduced to the treat-

ment group (T0). In this expression, D = 1 indicates the treated group

and Yd(t) is the potential outcome at time t under treatment d. Note

that Equation (1) contains the posttreatment untreated outcome in the

treated group, Y0(t*), which we can never observe. However, with some

additional assumptions, we can re-write the target estimand in a form

that contains only observables, a process known as identification.

Below, we describe assumptions that allow us to identify the ATT.

First, we assume no anticipation effects, that is, potential out-

comes are not affected by future treatment. From this, it follows that
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the observed and potential outcomes are the same at pretreatment

times, Y(t) = Y0(t) = Y1(t) for t< T0. Second, we assume that we can

observe the potential outcomes corresponding to actual treatment

received, Y(t) = Y0(t)(1�D)+Y1(t)D.

Third, we make the so-called “parallel trends” assumption, which

we define first in the simple setting of one pretreatment time (t = 0)

and one posttreatment time (t = 1):

E Y0 1ð Þ�Y0 0ð Þ jD¼0
n o

¼ E Y0 1ð Þ�Y0 0ð Þ jD¼1
n o

: ð2Þ

Under parallel trends we assume the change in the average

untreated potential outcomes from pre- to posttreatment is the same

in the treated and comparison groups. Since the untreated potential

outcome in the posttreatment period Y0(1) is not observable in the

treated group, this assumption is untestable.

This definition of parallel trends with two time points is nearly

universal in the diff-in-diff literature.4 However, many applications

consider more than two time points, so we extend the assumption

accordingly. In the strictest version of parallel trends, every pair of

time points satisfies Equation (2). That is,

E Y0 t*
� ��Y0 t0ð Þ jD¼0

n o
¼ E Y0 t*

� ��Y0 t0ð Þ jD¼1
n o

, ð3Þ

for t*≠ t0. While we can relax this, many researchers have this version in

mind when testing for parallel trends in the preintervention periods, con-

tending that evidence of parallel trends before treatment strengthens

the plausibility of parallel trends over the whole study period.5

Given these assumptions, we can now rewrite the ATT in a form

involving only observable quantities6:

ATT t*
� �¼ EfY t*

� �jD¼1g�EfY t0ð ÞjD¼1g� �
� EfY t*

� �jD¼0g�EfY t0ð ÞjD¼0g� �
,

with t
0
< T0≤ t

*. To estimate this quantity, we can select from a variety

of techniques, ranging from simple nonparametric estimators based

on sample means to more sophisticated regression models.

We start by specifying a model for the untreated potential out-

comes. Following convention in diff-in-diff literature,7 we write the

untreated potential outcome of the ith unit as

E Y0
i tð ÞjD¼ d,X¼ xit

h i
¼ α0þα1diþζtþλtxit, ð4Þ

where ζt are time fixed effects, di is an indicator for the treated group,

and xit is a covariate that can vary across units i and time t. The coeffi-

cients are an intercept, α0; a constant difference between treated and

comparison groups, α1; and the effect of the covariate on the out-

come at time t, λt.

So far, we have only considered untreated potential out-

comes. Next, we write the data-generating model for the treated

potential outcomes by assuming a constant, additive effect of

treatment,

Y1
i tð Þ¼Y0

i tð Þþ γ,

which implies

E Y1
i tð ÞjD¼1,X¼ xit

� �¼ α0þα1diþζtþλtxitþ γ:

With these data-generating models, we can establish conditions

in which the covariate can confound the treatment effect γ. (Proofs of

these are found in Appendix A in Supporting Information.)

First, consider a time-invariant covariate. Parallel trends hold if

either: (1) the means of the covariate are the same in both treated and

comparison groups or (2) the effect of the covariate on the outcome

is the same across time. Thus, a time-invariant covariate is a con-

founder if the means of the covariate are different in the two groups

and it has a time-varying effect on the outcome.

Next, consider a time-varying covariate. Parallel trends hold if:

(1) the means of the covariate are the same in both treated and com-

parison groups (and evolve the same over time) or (2) the relationship

of the covariate to the outcome is constant and the difference in the

mean of the covariate between groups is constant over time. Thus, a

time-varying covariate is a confounder if (1) the covariate means evo-

lve differently between the two groups or (2) the covariate means

start at different levels and evolve in parallel, and the covariate has a

time-varying effect on the outcome.

Putting this all together, a confounder in diff-in-diff is a variable with

a time-varying effect on the outcome or a time-varying difference

between groups. The parallel trends assumption ensures that group-

invariant time trends or time-invariant level differences between the

groups are not problematic. However, time-varying differences between

groups, due to covariates with an evolving relationship to the outcome

or differential evolution in the groups, can cause confounding bias.

Compare this to the definition of a confounder in cross-sectional

settings, which is a variable associated with both treatment and out-

come. In diff-in-diff, a confounder always has some time-varying effect:

either the relationship of the variable to the outcome changes over time

or the variable evolves differently between the groups over time.

Next, we consider adjusting for these types of confounding vari-

ables. An effective adjustment strategy must account for the covariate's

time-varying differences between groups or its time-varying effect on

the outcome. In addition to regression adjustment, we also consider

matching8,9 in the section titled “What about Matching?”

1.2 | Adjusting for confounders

We use a linear regression model to estimate the ATT γ in the pres-

ence of a confounder X. In our simulations, we explore models of the

following form:

E Yi tð Þ D¼ di,X¼ xitj � ¼ α0þ ζtþα1diþλtxitþγptdi ,½

where ζt are time fixed effects, α1 is the constant difference between

treated and comparison groups, and pt is an indicator for
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posttreatment time points. The coefficient γ on the interaction

between treatment group and postintervention times, ptdi, is the ATT

when the model is correctly specified.

The correct form for regression models that account for con-

founding depends on whether the covariate is time-invariant or

time-varying and whether its effect on the outcome is constant or

time-varying. We consider models that include constant (main) effects

of time-invariant and time-varying covariates (λxi and λxit) or time-

varying (interactions with time) effects of covariates (λtxi and λtxit).

1.2.1 | Adjusting for time-invariant confounders

When X is a time-invariant confounder, linear regression with a (time-

invariant) main effect will not eliminate bias. Nevertheless, practi-

tioners often adjust for main effects only,10-13 perhaps out of habit. A

simple demonstration will show that adjusting only for main effects is

ineffective in correcting nonparallel trends. Suppose we have a time-

invariant covariate xi with different means in the two groups at base-

line, E[XjD = 0]≠ E[XjD = 1] . To be a confounder, it must have a

time-varying effect. Recall that confounding arises because of a

covariate's effect on parallel trends, which involve only the untreated

outcomes, so we ignore treatment effects. Thus, the treated and

untreated potential outcomes are the same, and we can illustrate our

points in observed data. Outcomes are generated from Equation (4)

with a time-varying relationship between the covariate and outcome

and different covariate means in the treated and comparison groups.

In Panel A of Figure 1, we plot the mean outcomes by group and

time, and the nonparallel outcome evolution is apparent. Panel B

shows residuals from a simple linear regression with only a time effect.

In Panel C, we add a main effect for the covariate X to the model.

However, Panels B and C still show diverging trends. In Panel D, we

add an interaction between X and time. Only in Panel D do we prop-

erly account for the time-varying nature of the confounder and obtain

an unbiased result (recall the true treatment effect is zero here).

1.2.2 | Adjusting for time-varying confounders

Time-varying confounders can also invalidate parallel trends and intro-

duce bias into our estimate of the ATT. If we adjust for time-varying

confounders by including the main effect or its interaction with time

in a regression, we risk conditioning on posttreatment covariates that

may be affected by treatment. As Rosenbaum notes, at best, adjusting

for posttreatment covariates provides no benefit; at worst, it may

introduce additional bias.14 This occurs because the time-varying

covariate can act as both a confounder and a mediator. As such, when

trying to recover the ATT via regression, the usual interaction parame-

ter may not be an unbiased estimate of the ATT.

Imagine three scenarios: (a) the time-varying covariate changes in

a way completely unrelated to treatment, (b) the time-varying covari-

ate changes in a way wholly determined by treatment, and (c) the

time-varying covariate changes in a way determined by a combination

of treatment and other factors. Whenever (b) or (c) is true and the

time-varying covariate is a cause of the outcome, the ATT is a combi-

nation of the direct effect of treatment and the indirect effect of

treatment via the covariate. As a result, the regression parameter on

the interaction between treatment and the posttreatment indicator

F IGURE 1 Adjusting for the main effect of a covariate does not correct for diverging trends, but adjusting for its interaction with time does.
Legend: In this simulated example, untreated potential outcomes depend on a time-invariant covariate with a time-varying effect. Panel A shows
mean untreated potential outcomes by group. Panels B to D show residuals from linear models, denoted using pseudo-code for the function lm,
which fits a linear model for outcome y. In panel B, the only predictor is time. In panel C, the predictors are time and the covariate x. In panel D,
the predictors are time, the covariate, and their interaction [Color figure can be viewed at wileyonlinelibrary.com]
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may not equal the ATT, even adjusted for the time-varying covariate.

However, if we fail to account for the covariate, we face parallel

trends violations. For more details, see in Supporting Information.

1.2.3 | What about matching?

Matching on time-invariant covariates

Through matching, we aim to reduce confounding bias by selecting units

from the treated and comparison groups that have similar observable

characteristics, eliminating imbalances between the groups — a key ingre-

dient in confounding. When matching, we can match observations on

pretreatment outcomes, pretreatment covariates, or some combination.

Matching on pretreatment outcomes allows us to use an alterna-

tive assumption to estimate the causal effect. This assumption — inde-

pendence between potential outcomes and treatment assignment

conditional on past outcomes — is the basis of lagged dependent vari-

ables regression and synthetic control methods.6,7,15 However,

matching on pretreatment outcomes in diff-in-diff can yield unwanted

results. In some settings, it reduces bias,8,9 while in others, matching

induces regression to the mean and creates bias.7,16

Matching on time-varying covariates

Matching only on time-invariant pretreatment covariates is attrac-

tive because it removes covariate differences between groups.

Matching on time-varying covariates in the pretreatment period can

produce bias due to regression to the mean. Moreover, if con-

founding arises because of differential evolution of the covariate in

the two groups, matching only on pretreatment values will be insuffi-

cient to address the confounding. While it may be tempting in this

case to match on both pre- and posttreatment values of a time-

varying covariate, matching on posttreatment variables that may be

affected by treatment can produce causal estimates that do not

equal the ATT.14 For this reason, we do not explore strategies that

match on posttreatment covariates. Clearly, choosing the right

matching variables is the key to effective matching. A good overview

on the current state of matching for diff-in-diff is provided by

Lindner and McConnell.17

Returning to the demonstration of parallel trends in Figure 1,

matching on the pretreatment covariate also fixes diverging trends.

Eliminating the difference between the covariate means in the treated

and comparison group via matching is sufficient to address con-

founding. If the confounding had arisen due to a time-varying covari-

ate, the strategy would not suffice.

2 | METHODS

As we have discussed, both matching and regression adjustment have

limitations. We conduct simulation studies to illustrate the advantages

and shortcomings of regression and matching techniques that are

commonly employed by practitioners of diff-in-diff. In each simulation

scenario, we generate 400 datasets of n = 800 units observed at

T = 10 time points. The first five time points are pretreatment times,

and the rest are posttreatment. Each unit is assigned to the treatment

group with probability 0.5. To each simulated data set, we apply

regression and matching techniques and compare the bias of the

resulting treatment effect estimates.

We simulate data and analyze it using the R environment.18 We

fit regression models using the lm function and estimate post hoc,

cluster-robust SEs using the cluster.vcov function in the multiwayvcov

package.19 For our matching estimators, we implement nearest neigh-

bor matching with replacement using the MatchIt package.20 We pre-

sent averages, across simulated data sets, of the absolute percent bias

and SE of the estimated treatment effects. Mean absolute percent

bias is calculated by taking the average of all estimates, subtracting

the true value of the ATT, taking the absolute value, and converting it

to a percentage relative to the true ATT. Mean SE is the mean of the

400 SE estimates.

Below, we describe the specifics of our data-generating and analysis

models, first for scenarios with time-invariant covariates and then for sce-

narios with time-varying covariates. Table 1 gives an overview of the data-

generating process for each simulation scenario; more detail is provided in

Table D1 in Supporting Information. Simulation code is on GitHub

(https://www.github.com/zeldow/DID-confounding-supplementary).

2.1 | Time-invariant covariate

2.1.1 | Data-generating models

Our first set of simulations involves a time-invariant covariate. In Sce-

nario 1, the distribution of X differs by treatment group, but X has a

time-invariant effect on the outcome Y. Scenario 2 is the same as Sce-

nario 1 but we allow the effect of X on Y to be time-varying. In

Scenario 3, the effect of X on Y is again time-varying, but the distribu-

tion of X is the same in the treated and control groups.

In Scenarios 1 and 3, analyses that do not adjust for X will be

unbiased, because X does not satisfy the definition of a confounder.

In Scenario 1, this is because X does not have a time-varying effect on

Y; in Scenario 3, this is because the distribution of X is the same in

both groups. In Scenario 2, only analyses that adjust appropriately for

the time-varying effect of X on Y will yield unbiased results. For all

three scenarios, the ATT equals the regression parameter which was

set to 1. We measure bias with respect to this true ATT.

2.1.2 | Analysis approaches

We use both matched and unmatched regression to analyze the sim-

ulated data. All regression models include time fixed effects and indi-

cators for treatment, the postperiod, and their interaction. The

simple model includes only those elements, ignoring the covariate

entirely:

E yitð Þ¼ α0þζtþα1diþγptdi: ð5Þ
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TABLE 1 Illustration of the data-generating processes for simulation studies [Color table can be viewed at wileyonlinelibrary.com]

Simulation scenario Covariate evolution by group Covariate effect over time Confounded?

1: Time-invariant covariate effect

Constant Constant

No

2: Time-varying covariate effect

Constant Varying

Yes

3: Treatment-independent covariate effect

Equal Varying

No

4a: Parallel evolution

Parallel Constant

No

5a: Evolution differs by group

Divergent Constant

Yes

6a: Evolution diverges in postperiod

Diverges in post Constant

Yes

4b: Parallel evolution

Parallel Varying

Yes

5b: Evolution differs by group

Divergent Varying

Yes

6b: Evolution diverges in postperiod

Diverges in post Varying

Yes

Note: The column showing covariate evolution by group shows how the simulated covariate differs by treatment group, indicated by the two different

lines. The covariate effect over time column shows how the covariate affects the outcome over time (ie, is there an interaction between the covariate and

time?). The last column tells us whether or not the scenario has confounding. For scenarios without confounding, a simple unadjusted difference-in-

differences estimator will recover the true treatment effect.
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F IGURE 2 Simulation results for a time-invariant covariate. Legend: Six regression and matching methods were compared across three
simulation scenarios. Each panel shows results from 400 simulated datasets of 800 units each. In Scenario 1, the distribution of the covariate
varied by treatment group but the covariate's effect on the outcome did not change (ie, no interaction between the covariate and time). In
Scenario 2, the covariate's effect on the outcome changed over time. In the third scenario, the distribution of the covariate was the same in the
treated and comparison groups, and the covariate's effect on the outcome changed over time. All analyses were assessed on the mean percent
bias and mean standard error (SE) of the effect estimate. CA = Covariate-adjusted; TVA = Time-varying adjusted
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The covariate adjusted (CA) model adjusts for the covariate with

a constant coefficient:

E yitð Þ¼ α0þζtþα1diþλxitþ γptdi: ð6Þ
The time-varying adjusted (TVA) model allows the coefficient on

the covariate to vary over time:

E yitð Þ¼ α0þζtþα1diþ λtxitþ γptdi: ð7Þ

Our matching strategies include matching on both outcomes and

covariates. We use nearest-neighbor matching to create three mat-

ched data sets, to which we fit the model in Equation (5). The first is

matched on the vector of pretreatment outcomes [denoted “match

(level)” in Figures 2–4], the second on the vector of pretreatment out-

come first differences [denoted “match (trend)”], and the third on pre-

treatment covariates [denoted “match (cov)”]. Once we had a

matched dataset, we fit the regression model in Equation (5).

2.2 | Time-varying covariate

2.2.1 | Data-generating models

The second set of simulations involves a time-varying covariate,

which may evolve differently in the treated and comparison groups.

The setup of these simulations is the same as in Scenarios 1 through

3. We include three types of covariate evolution. In Scenario 4, the

covariate evolves the same for both the treated group and the com-

parison group; in Scenario 5, the covariate evolves differently

starting from baseline; and in Scenario 6, the covariate evolves the

same in the two groups before treatment but differently after

treatment.

For all these scenarios, we have two outcome processes: (a) the

covariate has a time-invariant effect on the outcome and (b) the

covariate has a time-varying effect on the outcome. The data-

generating distributions are summarized in Table 1 with more detail in

Table D2 of Supporting Information. For scenarios 4 and 5, the ATT

equals the regression parameter (set to 1). However, scenario 6 has a

covariate that is changed by treatment, acting in part as a mediator.

Thus, for scenario 6, the ATTs are 0.85 and 0.87 for outcome pro-

cesses (a) and (b), respectively. These calculations are provided in

Supporting Information.

2.2.2 | Analysis approaches

The analysis methods are the same as for time-invariant covariates

(see above), with one exception: in the third matched data set

[“match (cov)”], we match on the vector of pretreatment covariate

values.

0

25

50

75

100

A
b

s
o

lu
te

 M
e
a
n

 %
 B

ia
s

Parallel
Evolution

(no confounding)

Scenario 4a

0

25

50

75

100

Evolution Differs
By Group

(confounding)

Scenario 5a

0

25

50

75

100

Evolution Diverges
in Post−Period
(confounding)

Scenario 6a

0.00

0.05

0.10

Sim
ple C

A
TVA

M
at

ch
 (l

ev
el

)

M
at

ch
 (t

re
nd)

M
at

ch
 (c

ov)

M
e
a
n

 S
E

0.00

0.05

0.10

Sim
ple C

A
TVA

M
at

ch
 (l

ev
el

)

M
at

ch
 (t

re
nd)

M
at

ch
 (c

ov)

Model

0.00

0.05

0.10

Sim
ple C

A
TVA

M
at

ch
 (l

ev
el

)

M
at

ch
 (t

re
nd)

M
at

ch
 (c

ov)

F IGURE 3 Simulation results for a time-varying covariate with a time-invariant effect on the outcome. Legend: Six regression and matching
methods were compared across three simulation scenarios. Each panel shows results from 400 simulated datasets of 800 units each. For all
scenarios, the covariate's effect on the outcome was constant over time. In Scenario 4a, the time-varying covariate evolved in the same way for
the treated and comparison group. In Scenario 5a, the covariate evolved differently between the two groups starting from the first timepoint
(before treatment was implemented). In Scenario 6a, the covariate evolved the same prior to treatment. Once treatment was implemented,
evolution of the covariate diverged relative to the two groups. All analyses were assessed on the mean percent bias and mean standard error (SE)
of the effect estimate. CA = Covariate adjusted; TVA = Time-varying adjusted
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3 | RESULTS

3.1 | Time-invariant covariate

Figure 2 shows the results of applying each of the analysis approaches to

the data generated with a time-invariant covariate (Tables 1 and D1). In

Scenario 1, while X is associated with treatment, it is not a confounder

because the effect does not vary over time. Thus, the unadjusted analysis

(simple model) is unbiased and adjusting for X in the CA and TVA models

does not affect either bias or SEs. The results from our matched regres-

sions are similar to those from the unmatched regressions.

In Scenario 2, the time-varying effect of X on Y makes X a con-

founder and thus requires covariate adjustment with a time-varying

aspect. Adjusting for the main effect of X (CA model) does not alleviate

bias or reduce the estimate's SE. Fortunately, we can address the bias by

adjusting for the interaction of X with time (TVA model). Of the matching

strategies, only matching on the covariate effectively eliminates bias.

In Scenario 3, the simple model is already unbiased because X is

not a confounder. In fact, all estimation strategies yield unbiased esti-

mates except matching on pretreatment outcomes, which is biased by

about 10% due to regression to the mean. We see about 20% lower

mean SE when we adjust for the covariate in the TVA model com-

pared to the simple model.

3.2 | Time-varying covariate

Figures 3 and 4 show the results of applying each of the analysis

approaches to the data generated using time-varying covariate pro-

cesses (Table 1 and Table D2). In Scenario 4a, there is no confounding

when the effect of X on Y is constant over time, and the mean of X

evolves the same for each group. As a result, each modeling strategy

is unbiased. However, when X has a time-varying effect on Y in Sce-

nario 4b, X is a confounder and only time-varying adjustment (TVA)

eliminates bias. Matching on the vector of pretreatment values of X

nearly eliminates the bias.

In Scenario 5, the time-varying covariate evolves differently by

group, beginning at baseline. When the effect of X on the outcome is

constant (Scenario 5a), we can simply adjust for time-varying X

(CA model) to eliminate confounding bias. When the effect of X on Y

varies over time (Scenario 5b), we must adjust for the interaction of X

and time (TVA model). All the matching strategies have significant bias.

In Scenario 6, the time-varying covariate evolves differently by

group, but only after the treatment is introduced at t = 6. Recall that

in this scenario, the ATT does not simply equal the regression coeffi-

cient on an interaction term. Thus, in both Scenarios 6a and 6b, we

have significant confounding bias in our estimates and never succeed

in recovering the true ATT.
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F IGURE 4 Simulation results for a time-varying covariate with a time-varying effect on the outcome. Legend: Six regression and matching
methods were compared across three simulation scenarios. Each panel shows results from 400 simulated datasets of 800 units each. For all
scenarios, the covariate's effect on the outcome differed across time. In Scenario 4b, the time-varying covariate evolved in the same way for the
treated and comparison group. In Scenario 5b, the covariate evolved differently between the two groups starting from the first timepoint (before
treatment was implemented). In Scenario 6b, the covariate evolved the same prior to treatment. Once treatment was implemented, evolution of
the covariate diverged relative to the two groups. All analyses were assessed on the mean percent bias and mean standard error (SE) of the effect
estimate. CA = Covariate adjusted; TVA = Time-varying adjusted
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4 | DISCUSSION

We contribute to diff-in-diff literature by examining how observable

covariates may violate causal assumptions and comparing regression

and matching strategies to adjust for confounders. It is tempting to

toss all observed covariates into a regression model, but the form of

the model specification should be tailored to address time-varying

confounding. Our findings have several limitations, discussed below.

First, adjusting for confounders may be untenable for sparse data.

Regression adjustment depends on knowing and measuring the con-

founders as well as the functional form of their effects on the out-

come. The true relationship between covariates and treatment and

outcomes over time may be complex and involve high-dimensional

interactions. All of the usual cautions about parametric regression

models apply here.21 An alternative doubly robust method has

recently been proposed that may avoid some of the pitfalls of correct

outcome regression model specification by introducing a second

opportunity to ameliorate confounding.22

Second, our conclusions only apply to linear models; nonlinear

models present different challenges.23 For one, the interaction term in

generalized linear models is difficult to interpret.24 Moreover, it is

well-known limitation of diff-in-diff that the parallel trends assump-

tion is scale-dependent. Even a seemingly innocuous outcome trans-

formation, transforming dollars to log dollars, can have serious

implications for the underlying causal assumptions. Two groups satis-

fying parallel trends on the log dollars scale will not necessarily satisfy

parallel trends on the original scale.6 Addressing scale-invariance is

beyond the scope of this paper but has been broached elsewhere.25

Third, our paper only does not consider heterogeneous treatment

effects. As other authors have noted, model specification often

imposes additional assumptions on the treatment effect. For example,

the unit-and time-fixed effects regression requires treatment effects

to be homogeneous with respect to the covariates and no divergent

outcome evolution across units with different values of the covari-

ate.22 “Expected gains bias” is one form of treatment effect heteroge-

neity that can limit the generalizability of our conclusions.26,27 If some

units are able to select their treatment group based on its perceived

benefit, the treatment effect estimated in the study sample will not

match the population ATT. However, expected gains biases are typi-

cally driven by unobserved characteristics, but we focus entirely on

observed variables.

Lastly, recovering the ATT in diff-in-diff can be difficult, especially

with time-varying confounders. Goodman-Bacon notes that adding

time-varying covariates adds a new source of identifying variation and

changes the decomposition of the regression parameter.28 None of

our analysis methods produced an estimate that equaled the true ATT

in the scenario with a time-varying covariate affected by treatment. In

this scenario, the parameter from regression is not an estimate of the

ATT and should not be interpreted as such.

Done properly, regression adjustment can alleviate bias caused by

diverging trends due to measured confounders. Further, even in the

absence of confounding, adjusting for covariates can improve

efficiency of the effect estimate (see the SE of Scenario 3 in Figure 2).

A correctly specified regression approach avoids conditioning on pre-

treatment outcomes and thus is not susceptible to regression to the

mean as some matching methods are.16 Lastly, our regression adjust-

ment strategy is agnostic to the structure of the data, whether we

have panel data or repeated cross sections. Our simulations assumed

panel data, but our results will hold for repeated cross sections.

Matching on repeated cross sections is trickier, since some covariates

will necessarily be measured on different subjects at different time

points, but it is possible.29 Both matching and regression adjustment

have clear pitfalls (discussed in the above paragraphs), and both have

strengths in diff-in-diff applications. Deciding which to implement

must be done carefully and depends on various factors, including data

structure, which covariates are measured, and how many units are in

the dataset. Our goal in this paper is not to provide guidance in choos-

ing between matching and regression adjustment. However, in our

simple simulations, matching was not better than regression adjust-

ment, and in some cases, it increased bias. We only implemented

nearest neighbor matching with replacement; many other matching

techniques are possible.

For applied researchers using diff-in-diff, we recommend several

steps for addressing confounding. First, researchers should clearly

specify a causal model and explain how the inclusion of covariates

and their functional forms conforms to their assumptions about the

relationships among covariates, treatments, and outcomes over time.

This begins by writing out the full model specification and by provid-

ing analysis code in Supporting Information. Each covariate and coeffi-

cient should correspond to a threat to the validity of parallel trends

and provide a remedy. We recommend researchers comprehensively

list covariates — both observed and unobserved — that might cause

violations of parallel trends. The list should contain information on

whether the variable is observed, whether the distribution of the

covariate is expected to differ in the treatment and comparison

groups, whether the covariate is time-varying, whether its effect on

the outcome is likely to vary over time, and whether the covariate

may be causally affected by treatment. Such a list is critical to choos-

ing an analytical approach that is suited to the true underlying data-

generating model. For example, if many unobserved covariates are a

concern, the analyst may choose a different estimator (instead of one

that relies on diff-in-diff and the parallel trends assumption). On the

other hand, a single time-invariant confounder with a simple linear

relationship to the outcome suggests a straightforward regression

approach. Other authors have given similar advice, stressing attention

to the reasons for baseline differences between the treated and com-

parison groups and how these differences might affect parallel

trends.30

Being thorough in our diff-in-diff studies will strengthen conclu-

sions and help alleviate concerns on the credibility of parallel trends.

We expect diff-in-diff to continue its critical role in informing policy

decisions for the foreseeable future. Further development of diff-in-

diff methodology should involve cooperation among statisticians, epi-

demiologists, economists, political scientists, and policy analysts.
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