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Discriminating malignant
 and benign clinical T1
renal masses on computed tomography
A pragmatic radiomics and machine learning approach
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Abstract
The aim of this study was to discriminate malignant and benign clinical T1 renal masses on routinely acquired computed tomography
(CT) images using radiomics and machine learning techniques.
Adult patients undergoing surgical resection and histopathological analysis of clinical T1 renal masses were included. Preoperative CT

studies in venous phase from multiple referring centers were included, without restriction to specific CT scanners, slice thickness, or
degrees of artifacts. Renal masseswere segmented and 120 standardized radiomic features extracted.Machine learning algorithmswere
used topredictmalignancyof renalmassesusing radiomics features andcross-validation.Diagnostic accuracyofmachine learningmodels
and assessment by independent blinded radiologists were compared based on the gold standard of histopathologic diagnosis.
A total of 94 patients met inclusion criteria (benign renal masses: n=18; malignant: n=76). CT studies from 18 different scanners

were assessed with median slice thickness of 2.5mm and artifacts in 15 cases (15.9%).
Area under the receiver-operating-characteristics curve (AUC) of random forest (random forest [RF], AUC=0.83) was significantly

higher compared to the radiologists (AUC=0.68, P= .047). Sensitivity was significantly higher for RF versus radiologists (0.88 vs
0.80, P= .045), whereas specificity was numerically higher for RF (0.67 vs 0.50, P= .083).
Although limited by an overall small sample size and few benign renal tumors, a radiomic features and machine learning approach

suggests a high diagnostic accuracy for discrimination of malignant and benign clinical T1 renal masses on venous phase CT. The
presented algorithm robustly outperforms human readers in a real-life scenario with nonstandardized imaging studies from various
referring centers.

Abbreviations: AML= angiomyolipoma, AUC= area under the ROC curve, CD= cluster of differentiation, CK= cytokeratin, CT=
computed tomography, HE = hematoxylin-eosin, HMB = human melanoma black, ICC = interobserver correlation coefficient, IQR =
interquartile range, KNN = k-nearest neighbor, NN = neural network, POM = probability of malignancy, RCC = renal cell carcinoma,
RF= random forest, RFE= recursive feature elimination, ROC= receiver operating characteristics, ROI= region of interest, SVM= c,
US = United States, XG boost = extreme gradient boosting.
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1. Introduction

Renal cell carcinoma (RCC) is the most common renal
malignancy worldwide, accounting for approximately 175,000
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annual cancer-related deaths. In recent years, RCC incidence
has been increasing, which is partially attributable to technical
advancements and wider availability of cross-sectional imag-
ing.[2] In particular, the incidence of small renal masses has
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increased, now comprising up to 40% of all renal masses in the
United States.[3,4] Although the majority of renal masses are
malignant, studies report that 16% to 19% of renal masses are
benign.[5,6]

Renal masses are often incidentally detected on cross-sectional
imaging that has been performed for other indications.[7] In these
cases, imaging studies might not be optimized for characteriza-
tion of renal masses and might, thus, lack crucial information.
For example, routine computed tomography (CT) studies might
lack contrast enhanced images in corticomedullary renal phase.
This monophasic imaging studies might complicate renal mass

assessment, since classical CT features are not available, such as
enhancement patterns over time.[8] In patients with incidentally
detected renalmasses onmonophasic studies, repeated imagingwith
dedicated multiphasic CT might be performed. Still, this exposes
patients to radiation andhighdoses of iodinated contrastmedia, and
evenmultiphasic CT studies do not allow unequivocal classification
of renal masses in all cases.[8] Nuclear medicine studies, magnetic
resonance imaging, as well as ultrasound and renal biopsy might be
indicated to further assess incidental renal masses. Still, these
procedures might not be timely available for all patients and are
themselves associated with costs and procedural risk. Therefore, the
questions remain whether advanced image analyses could aid in
assessment of incidental renal masses on monophasic CT studies.
Radiomic feature analyses and machine learning algorithms

have recently been shown to perform well on a range of different
radiological imaging types, including magnetic resonance imag-
ing and CT.[9,10] Still, to date there is no literature to evaluate the
diagnostic performance of these techniques for the assessment of
clinical T1 renal masses in a real-world setting with various CT
scanners, acquisition protocols, and potential artifacts.
The aim of this study was to train amachine learning algorithm

for discrimination of malignant and benign clinical T1 renal
masses that were detected on venous CT and compare its
diagnostic performance to experienced radiologists.
2. Material and methods

This retrospective, STARD-compliant study received previous
approval by the ethics committee of the University Medical
Center Goettingen (No 2/4/17) and is compliant with the
Declaration of Helsinki.

2.1. Patient inclusion

Adult patients presenting for surgical resection of renal masses
consecutively between 2012 and 2017 at the University Medical
Center Goettingen were considered for inclusion if preoperative,
contrast-enhanced CT studies in venous phase were available.
Only renal masses radiologically staged T1 with maximal
diameter of 70mm in any direction were included in this study.
Exclusion criteria were diffuse infiltrative renal disease (ie,
lymphoma) and primarily cystic lesions. A study flow-chart is
provided in Figure 1.

2.2. Radiological Imaging

In a pragmatic, real-life approach, we evaluated contrast-
enhanced CT studies in venous phase only. Our study was not
restricted to CT studies performed at our tertiary center but
included patients that were referred with imaging from external
centers as well. No restrictions were made regarding CT scanner,
slice thickness, or imaging artifacts.
2

2.3. Radiomic features

The open source software 3D Slicer was used for renal mass
segmentation and radiomic feature analyses.[11] Radiomic
features in 3D slicer are based on standardized and reproducible
algorithms in accordance with feature definitions by the Imaging
Biomarker Standardization Initiative.[12,13] A binwidth of 25was
chosen.
Renal masses were segmented (delineation of region of interest)

on axial venous CT images by 2 radiologists in consensus. The
total number of assessed CT slices varied with renal mass size and
CT slice thickness.
From the segmented renal masses, a total of 120 distinct

radiomic features were analyzed, with extended details provided
online.[12] Radiomic features are subdivided into 8 classes:
�
 First-order statistic (describing renal mass voxel intensity)

�
 3D shape features (describing 3-dimensional size and shape of
renal mass)
�
 2D shape features (describing 2-dimensional size and shape of
renal mass)
�
 Gray-level co-occurrence matrix features (GLCM; describing
second-order joint probability function of renal mass)
�
 Gray-level size zone matrix features (GLSZM; quantifying gray
level zones in renal mass)
�
 Gray-level run length matrix features (GLRLM; quantifying
gray level runs in renal mass)
�
 Neighboring gray tone difference matrix features (NGTDM;
quantifying the difference between a gray value and average
gray value of its neighbors in renal mass)
�
 Gray-level dependence matrix features (GLDM; quantifying
gray level dependencies of renal mass).

2.4. Renal mass assessment

As criterion standard, all renal mass specimens underwent
histopathological assessment at the Department of Pathology,
University Medical Center Goettingen. Renal masses were
categorized as malignant (including clear cell, chromophobe,
and papillary RCC) and benign (including oncocytoma and
angiomyolipoma [AML]). Histopathological assessment was
performed on partial or radical nephrectomy specimens using
hematoxylin-eosin staining, and immunostaining for cytokeratin
7, CD10, CD117, as well as Vimentin, following international
recommendations.[14,15] Diagnosis of AMLs was further based
onMelan-A, humanmelanoma black 45 and actin staining.[16,17]

Representative histopathological slides of malignant and benign
renal masses are presented in the appendix, http://links.lww.com/
MD/E31.
All CT studies were independently assessed by 2 radiologists

(with 3 and 5 years of dedicated experience in abdominal
imaging) that were blinded to each other and final histopatho-
logical diagnosis. Renal masses were radiologically assessed using
a Likert scale defining the probability of malignancy (POM)
ranging from 1 (definitely benign renal mass) to 10 (definitely
malignant) with increments of 1.

2.5. Machine learning

In a first step, preprocessing of the radiomic features was
conducted with centering (subtracting the mean from individual
values) and scaling (dividing values by standard deviation) of
each feature.

http://links.lww.com/MD/E31
http://links.lww.com/MD/E31
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Second, a feature selection was conducted using recursive
feature elimination (RFE). For RFE, a full logistic regression
model was fit with all potential predictors, ranking the
importance of each predictor. At each RFE iteration, only the
most important predictors were retained; the model was refitted
followed by an assessment of its diagnostic accuracy. In this
study, RFE was conducted using 10-fold cross-validation to
avoid overfitting. For this cross-validation, the full dataset is
divided into 10 subsamples of which 9 subsamples are used as
training data and the remaining subset for testing. The process is
repeated 10 times using each subset for validation once.
Third, machine learning algorithms were modeled to predict

the probability of malignancy of a specific renal mass (outcome)
given its radiomic features (predictors). Several machine learning
algorithms were considered a priori according to Wolperts’ no
free lunch theorem.[18] The following machine learning algo-
rithms were trained: extreme gradient boosting (XG boost),
random forest (RF), neural network, support vector machines
(SVM), and k-nearest neighbors. Details for each machine
learning algorithm have been published previously and are
provided in a short summary in the appendix, http://links.lww.
com/MD/E31. All machine learning algorithms were trained and
tested using a leave-one-out cross validation: training was
conducted on n-1 observations and the model performance tested
on the left-out observation. This procedure was repeated n-times
to obtain the final model.
2.6. Diagnostic performance assessment

Diagnostic accuracy was assessed using the receiver-operating
characteristics curve (ROC) and the area under the ROC curve
(AUC). AUCs of radiologists and machine learning algorithms
were compared using 2000 bootstrap samples. The Youden
Index was used to determine the optimal cutoff values from
radiologists and machine learning algorithms for calculation of
sensitivity and specificity. The McNemar test was used for
comparison of sensitivity and specificity between radiologists and
machine learning algorithms. Interobserver agreement was
evaluated comparing renal mass assessment between both
radiologists; intraobserver agreement was evaluated comparing
renal mass assessment of one radiologist at 2 separate timepoints.
Inter- and intraobserver agreement were quantified using the
inter-/intraobserver correlation coefficient (ICC) ranging from 0–
1.[19] ICC <0.4 was rated as poor, 0.4 to 0.59 as fair, 0.6 to 0.74
as good, and 0.75 to 1 as excellent. Readings of both radiologists
were combined to simulate an “average radiologist” for
comparison of diagnostic accuracy to the machine learning
algorithms.
Machine learning algorithm implementation and statistical

analyses were performed using R and RStudio [20,21] with the R
package “caret.”[22] An alpha level of 0.05 was chosen to indicate
statistical significance. All provided P values are 2-sided.
3. Results

3.1. Study cohort

A total of 94 patients met were included in our study (female, n=
28, 29.8%; male, n=66, 70.2%) with median age of 64.4 years
(interquartile range [IQR]: 54.9–73 years). The histopathological
assessment revealed 76 malignant lesions (clear cell RCC, n=67;
papillary RCC, n=7; chromophobe RCC, n=2) and 18 benign
3

lesions (oncocytoma, n=9; AML, n=9). A study flowchart is
provided in the appendix, http://links.lww.com/MD/E31.
3.2. Radiological imaging and assessment

The median renal mass diameter was 46.5mm (IQR: 35–56.8
mm). Radiological imaging was acquired from 18 different CT
scanners (see appendix for further details, http://links.lww.com/
MD/E31) with median slice thickness of 2.5mm (IQR: 1–5mm).
Imaging artifacts were present in 15 CT studies (15.9%).
Interobserver agreement in renal mass assessment between

both radiologists was fair with an ICC=0.513. As shown in
Figure 2, interobserver agreement was good for those renal
masses with very low or very high average probability of
malignancy. Intraobserver agreement for repeated renal mass
assessment of one radiologist was fair with ICC=0.435.

3.3. Machine learning algorithms versus radiological
assessment

Table 1 summarizes the diagnostic accuracy of different machine
learning algorithms to predict renal mass malignancy. Among the
machine learning algorithms, RF achieved the numerically
highest AUC=0.83.
As demonstrated in Figure 3, the AUC of RF (0.83) was higher

when compared to the radiologists (AUC=0.68, P= .047).
According to the Youden Index, the optimal cut-off to distinguish
benign and malignant lesions for the RF algorithm was 67% and
for the radiologists a POM 5/10. After dichotomization, RF
sensitivity (0.88) was significantly higher than the radiologists
(sensitivity=0.80, P= .045). RF specificity (0.67) was numerical-
ly higher, but did not reach statistical significance (radiologist
specificity=0.50, P=0.083). Notably, cases of classical AMLs
with macroscopic fat (n=5) were assigned a low POM score by
both radiologists. Case studies for malignancy prediction of renal
masses are provided in Figures 4 and 5.
4. Discussion

The discrimination of malignant and benign renal masses is an
ongoing radiological challenge, especially in the case of CT
studies not specifically tailored to renal imaging and small renal
lesions.
In our study, radiomic features and machine learning

algorithms demonstrated a high diagnostic accuracy for predic-
tion of renal mass malignancy on preoperative, venous CT. The
final RF algorithm robustly performed on a heterogeneous
population with CT studies acquired on a range on different
scanners. Even in cases with large slice thickness, beam-
hardening or motion artifacts, accurate malignancy predictions
were achieved. This robustness corroborates the utility of
machine learning algorithms in a real-life clinical scenario.
Among evaluated machine learning algorithms, RF demon-

strated superior performance. Due to their algorithmic character-
istics, RF excel in cases of high-dimensional and highly correlated
data, such as the radiomic features analyzed in this study.[23]

Compared to 2 experienced radiologists, the RF algorithm
demonstrated superior diagnostic accuracy for renal mass
assessment. Although sensitivity and specificity were numerically
higher for the RF algorithm after dichotomization using the
Youden index, no statistically significant differences were evident

http://links.lww.com/MD/E31
http://links.lww.com/MD/E31
http://links.lww.com/MD/E31
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Figure 1. Study flow chart and prospective clinical application.

Uhlig et al. Medicine (2020) 99:16 Medicine
compared to the radiologists. This could be attributed to a lack of
statistical power given the limited sample size.
The observed suboptimal interobserver agreement between

both radiologists underlines the need for additional diagnostic
tools to reliably assess renal masses. Notably, the radiologists
4

performed well in cases with macroscopic fat, which were
accurately rated as AMLs. The overall lower diagnostic accuracy
of the radiologists compared to the RF algorithm might therefore
be driven by cases with fat-poor AMLs and oncocytomas, which
were falsely described as malignant masses by the radiologists.



Figure 2. Dotplot and Whisker-boxplot depicting the discrepancies between both radiologists’ probability of malignancy (POM) assessment of renal lesions.
Notably, the radiologists’ discrepancies are smaller in cases with very low (1–2) or very high (9–10) POM.

Uhlig et al. Medicine (2020) 99:16 www.md-journal.com
The study cohorts’ characteristics of our study are in line with
population-based analyses, showing a male predominance and
peak incidence between age 60 and 70.[24,25] Further, the
proportion of benign renal masses with 19% in our study is
comparable to the literature ranging from 20% to 30%.[5,6]
Table 1

Diagnostic accuracy of machine learning algorithms and radiologist re
the Youden Index.

Algorithm/reader Maximal AUC

XG boost 0.78
RF 0.83
NN 0.68
SVM 0.76
KNN 0.73

AUC= area under the receiver-operating characteristic curve, KNN= k-nearest neighbor, NN=neural n

5

In renal imaging, machine learning studies are scarce. Recently,
Feng et al used SVMs to discriminate fat-poor AMLs from RCC
in 58 patients.[26] Kocak et al[27] evaluated 68 RCC cases and
were able to discriminate histological subtypes with moderate
accuracy. Yu et el[9] evaluated radiomics and machine learning
aders measured by AUC. Sensitivity and specificity obtained using

Sensitivity Specificity

0.84 0.67
0.88 0.67
0.86 0.50
0.74 0.78
0.63 0.78

etwork, RF= random fores, SVM=SVM, XG boost= extreme gradient boosting.

http://www.md-journal.com


Figure 3. Receiver-operating characteristic curves for random forest machine
learning algorithm and radiologists. POM = probability of malignancy.

Uhlig et al. Medicine (2020) 99:16 Medicine
for discrimination of histological RCC subtypes in 119 patients.
Initial studies also highlighted that RCC mutational status
correlated with CT imaging features and were predictable using
machine learning algorithms.[28,29] Although these studies
showed promising results, most of them were designed to
evaluate CT studies which were acquired in a standardized and
partially multiphasic manner, which might limit their applicabil-
ity to a heterogeneous clinical setting. Our study, in contrast,
demonstrated the feasibility and accuracy of radiomic feature
analyses and machine learning algorithms even in a pragmatic
scenario with diverse CT scanners and relevant artifacts.
Figure 4. Case study of a 38-year-old male patient presenting with heterogeneous
with renal mass highlighted in green). Relevant beam-hardening artifacts are evide
forest machine learning, and rated 10/10 by radiologist 1 and 7/10 by radiologis

6

Our RF algorithm using only venous CT imaging demonstrat-
ed similar diagnostic accuracy to previous multiphasic studies:
using contrast enhancement analyses to differentiate renal mass
subgroups in 200 patients with multiphasic CT, Coy et al[30]

reported an AUC=0.85, which is comparable to findings in our
study (AUC=0.83).
It still remains unclear, how exactly radiomic features

discriminate benign and malignant renal masses. One hypothesis
might be that radiomic features quantify neovascularity and
malignant cell transformation. Another potential mechanism is
the correlation of radiomic features with well described
alterations in renal cancer cell metabolism, such as the metabolic
flux through glycolysis, mitochondrial bioenergetics, and oxida-
tive phosphorylation.[31–33]

Further, it has to be highlighted that radiomic feature analyses
and machine learning are not the only method to discriminate
between benign andmalignant renal masses. In recent years, there
have been several reports on the emerging role of biomarkers in
renal cancer diagnosis: for example, Papale et al described RKIP/
p-RKIP as an urinary biomarker for ccRCC, whereas Lucarelli
et al reported on serum circulating CA 15–3, CA 125 and beta-2
microglobulin as prognostic markers in RCC.[34,35] Further
studies have been published on the prognostic impact of the
autocrine motility factor, soluble serum aKlotho, and kynurine
pathway in ccRCC.[36–38] It remains to be evaluated whether the
combination of radiomic feature analyses and biomarkers can
further assist in accurate renal mass diagnosis.
Our study is not devoid of limitations: first, only patients of

white race and from a restricted European region were evaluated,
which may limit the generalizability of our findings. Still, there is
no literature available on race-specific differences in radiologic
appearance of renal mass. Second, our sample size was not large
enough to allow for an independent validation dataset and results
might thus be overfitted to our specific population. Specifically,
the class imbalance with a small number of benign cases limits the
generalizability of our findings. Third, we excluded primarily
cystic and diffuse infiltrative renal masses, as well as those
>70mm in diameter. Thereby, the proposed machine learning
renal mass of the right upper ventral pole (arrow; A axial plane; B 3D reformation
nt from dorsal instrumentation. Probability of malignancy was 99% by random
t 2. Histopathology diagnosed a clear cell renal cell carcinoma.



Figure 5. Case study of a 73 year-old female presenting with heterogeneous right-sided renal mass of the lateral circumference (arrow; A axial plane; B 3D
reformation with renal mass highlighted in green). Probability of malignancy was 54% by random forest machine learning (and therefore rated as “benign” using the
Youden Index cutoff at 67%), and rated 6/10 radiologist 1 and 7/10 by radiologist 2 (therefore “malignant” using the Youden Index cutoff at 5/10). Diagnosis upon
histopathological assessment was oncocytoma.

Uhlig et al. Medicine (2020) 99:16 www.md-journal.com
algorithm cannot be applied to any case presenting in clinical
routine. Nevertheless, diffuse infiltrative renal disease is clinically
rare with primary renal lymphoma reportedly accounting for
<1% of renal lesions.[39] For renal masses of >70-mm diameter,
patient stratification is less important than for smaller renal
masses, as even benign masses like oncocytomas might be
resected due to risk of hemorrhage.[40] Using a 2-reader
consensus approach in our study, the variability of renal mass
segmentation and its effect on malignancy prediction were not
assessible. Finally, no validation dataset was available for
measuring the algorithm’s performance in unknown data. To
bypass this shortcoming, we used cross-validation which, though
being widely accepted as an internal validation method, lags
behind a completely independent, external validation dataset,
which will be the subject of future studies.
Despite this study’s’ apparent limitation, its innovative

approach and future implementations should be highlighted:
our pragmatic approach carries the potential for developing a
clinically applicable software that not only supports radiologists
in daily routine, but also multidisciplinary tumor board
decisions. Further research should aim to validate and
improve our algorithm on independent datasets. Moreover,
automated renal mass segmentation has a high potential to
streamline implementation of our radiomic and machine learning
approach, which further lowers the threshold for clinical
application.
5. Conclusions

Our study suggests that radiomic features and machine learning
yield good diagnostic accuracy for discrimination of malignant
and benign renal masses on CT studies, which was significantly
higher than that of radiologists. Although limited by a small
sample size and low number of benign renal masses, the presented
RF algorithm robustly performs in a real-life scenario with
nonstandardized CT studies from various referring centers.
Further studies should aim to validate our findings in independent
datasets. A future clinical pipeline should incorporate not only
7

radiomic analyses and machine learning algorithms, but also
automated detection and segmentation of renal lesions to
streamline renal mass diagnostics.
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