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INTRODUCTION 
 

Colon cancer (CC) is one of the most frequently 

diagnosed malignant tumors worldwide and is a leading 

cause of cancer-related deaths in China [1–2]. 

Approximately 80%–90% of CC cases are colon 

adenocarcinoma (COAD) based on the pathologic 

classification [3]. In general, 20%–25% of CC patients 

are diagnosed with unresectable metastatic disease and 

have a poor prognosis [4]. In recent years, the 5-year 

over survival (OS) rate of CC patients with local stage 

disease was 90.3%, while that of patients with distant 

metastases was 12.5% [5]. Thus, developing promising 
prognostic-related risk assessment signatures is of great 

clinical significance in the management of colon 

cancer. 
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ABSTRACT 
 

Long non-coding RNAs (lncRNAs) have been reported to be prognostic factors for cancer. Ferroptosis is an iron-
dependent process of programmed cell death. Here, we established a ferroptosis-related lncRNA (frlncRNA) 
pair signature and revealed its prognostic value in colon adenocarcinoma (COAD) by analyzing the data from 
The Cancer Genome Atlas (TCGA). FrlncRNAs were identified based on co-expression analysis using the Pearson 
correlation. Differentially expressed frlncRNAs (DEfrlncRNAs) were recognized and paired, followed by 
prognostic assessment using univariate Cox regression analysis. The least absolute shrinkage and selection 
operator (LASSO) penalized Cox analysis was used to determine and construct a risk score prognostic model, by 
which the receiver operating characteristic (ROC) curves for predicting the overall survival (OS) were conducted. 
Following the evaluation of whether it was an independent prognostic factor, correlations between the risk 
score model and clinicopathological characteristics, hypoxia- and immune-related factors, and somatic variants 
were investigated. In total, 148 DEfrlncRNA pairs were identified, 25 of which were involved in a risk score 
prognostic signature. The area under ROC curves (AUCs) representing the predictive effect for 1-, 3-, and 5-year 
survival rates were 0.860, 0.885, and 0.934, respectively. The risk score model was confirmed as an 
independent prognostic factor and was significantly superior to the clinicopathological characteristics. 
Correlation analyses showed disparities in clinicopathological characteristics, hypoxia- and immune-related 
factors, and somatic variants, as well as specific signaling pathways between high- and low-risk groups. The 
novel risk score prognostic model constructed by pairing DEfrlncRNAs showed promising clinical prediction 
value in COAD. 
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Long non-coding RNAs (lncRNAs), which are a subset 

of RNAs more than 200 nucleotides in length, account 

for approximately 80% of the human transcriptome [6]. 

LncRNAs do not code proteins but exert biological 

functions by regulating gene expression [7]. Studies 

have reported that lncRNAs are involved in the 

malignant phenotypes of various cancers, including 

proliferation, invasion, and treatment resistance [8]. 

Evidence has shown abnormal lncRNA expression in 

tumor samples compared to the corresponding adjacent 

normal tissues [9, 10]. In addition, studies have 

demonstrated that lncRNAs contribute to tumorigenesis 

not only through physiological and biochemical cellular 

processes, such as ferroptosis, antioxidant capacity, 

apoptosis, and autophagy, but also by altering  

the immune microenvironment in cancers [11–13]. 

Ferroptosis is an iron-dependent cell death first 

proposed by Dixon in 2012 and is characterized by an 

intracellular iron-dependent accumulation of reactive 

oxygen species (ROS) and lipid peroxidation [14]. It is 

a new form of cell death that differs from apoptosis and 

autophagy [15, 16]. Recent studies have revealed that 

ferroptosis is a critical factor in metabolism, redox 

biology, and cell death and has been gradually 

confirmed as a novel feature for cancer therapy, 

particularly for those resistant to traditional therapies 

[17, 18]. 

 

Previous studies have reported lncRNA prognostic 

signatures that have promising predictive and 

prognostic values in cancer. Tang et al. developed a 

signature that included 25 differentially expressed 

ferroptosis-related lncRNAs to predict the prognosis of 

head and neck squamous cell carcinoma (HNSCC) [19]. 

The area under the receiver operator characteristic 

(ROC) curve (AUC) of the lncRNA signature was 

0.782, showing a promising prediction value for 

HNSCC. Moreover, Shen et al. identified and validated 

an immune-related lncRNA prognostic signature for 

breast cancer. In this prior study, the prognostic 

signature comprised 11 lncRNAs and was associated 

with the infiltration of immune cell subtypes [20]. 

Furthermore, Soudeh Ghafouri-Fard et al. reviewed the 

lncRNA signature in gastric cancer based on the 

available literature and concluded that these transcripts 

deserve further evaluation as therapeutic targets in 

gastric cancer [21]. In addition, Wei et al. constructed 

an autophagy-related lncRNA signature comprising 

eight lncRNAs and predicted unfavorable prognosis in 

colorectal cancer. The AUC of this signature was 0.689, 

indicating that the risk model was effective [22]. Zeng 

et al. established a differentially expressed lncRNA 

signature to evaluate the outcome of patients with 
colorectal cancer. They found that 20 lncRNAs closely 

related to OS in patients with COAD, four of which 

were involved in a prognostic model, could serve as an 

independent factor for survival in COAD [23]. 

Although the lncRNA signature showed promising 

prediction performance in cancer prognosis, it was not 

perfect. The signature required specific expression 

levels of selected lncRNAs, which should be 

normalized to reduce the batch effects between different 

testing platforms before clinical application. 

Additionally, Hong et al. utilized a novel modeling 

algorithm, pairing, and iteration to construct an 

immune-related lncRNA pair prognosis signature in 

human hepatocellular carcinoma [24]. The AUCs of 1-, 

3-, and 5-year survival rates were 0.865, 0.851, and 

0.904, respectively. However, there are few reports on 

lncRNA pair models for cancer prognostic prediction. 

 

In the present study, we developed a novel ferroptosis-

related lncRNA pair (frlncRNA pair) prognostic model 

for COAD. Correlations between the model and 

clinicopathological characteristics, hypoxia-, immune-

related factors, and somatic variants were investigated. 

 

RESULTS 
 

Data characteristics  

 

The expression data of 480 colon adenocarcinoma and 41 

adjacent normal samples were included in the present 

study. The clinical information of patients (n=459) 

including age, gender, stage, T status, N status, and M 

status, are shown in Table 1. A total of 259 ferroptosis-

related genes (frGenes) were downloaded from the 

FerrDb website (Supplementary Table 1). Overall, 896 

lncRNAs were identified as ferroptosis-related lncRNAs 

(frlncRNAs) (Supplementary Table 2). Subsequently, 165 

(including 158 upregulated and 7 downregulated) of these 

were identified as differentially expressed ferroptosis-

related lncRNAs (DEfrlncRNAs) (Supplementary Table 

3), which were visualized using a heatmap (Sup-

plementary Figure 1) and a volcano plot (Supplementary 

Figure 2).  

 

Establishment of a frlncRNA pair risk score 

prognostic model 

 

To explore a more objective prognostic evaluation 

model that did not require the specific expression values 

to be normalized, a 0-or-1–matrix of 7543 frlncRNA 

pairs was constructed (Supplementary Table 4). 

According to univariate Cox proportional hazards 

regression analyses, 148 frlncRNA pairs were 

considered to be prognostic-associated lncRNA pairs 

(Supplementary Table 5). In training cohort, after the 

least absolute shrinkage and selection operator 

(LASSO) regression analysis, a prognostic signature 

including 44 frlncRNA pairs was established 

(Supplementary Table 6). The AUC representing the  
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Table 1. The clinical characteristics of COAD 
patients in the TCGA dataset. 

Variables Number of cases 

Total 459 

Age (years)  

<60 / ≥60 126/333 

Gender  

Male/Female 216/243 

Stage  

I/II/III/IV/NA 76/177/129/65/11 

T  

T0/T1/T2/T3/T4 1/11/78/313/56 

N    

N0/N1/N2 270/106/83 

M    

M0/M1/NA 337/65/57 

 

predictive value of the risk score model for 1-year 

survival rate in training and validation cohort were 

0.904 and 0.728, respectively (Supplementary Figure 

3A, 3B). Survival analyses showed significant 

difference between the high- and low-risk groups both 

in training and validation cohort (Supplementary Figure 

3C, 3D). Subsequently, we constructed a risk score 

model based on the data of entire cohort (Figure 1). The 

list of 25 frlncRNA pairs and their corresponding 

calculation coefficients are shown in Table 2. The 

AUCs for 1-, 3-, and 5-year survival rates were 0.860, 

0.885, and 0.934, respectively (Figure 2A). 

Furthermore, we identified the maximum inflection 

point of 1.307 as the optimal cut-off point on the 5-year 

receiver operator characteristic (ROC) curve (Figure 

2B). Moreover, our results showed that the risk score 

model was significantly superior to the common 

clinicopathological characteristics, including age, 

gender, T status, N status, and M status in predicting the 

OS of COAD patients (Figure 2C).  

 

Predictive assessment and clinical correlation of the 

prognostic model 

 

According to the cut-off point recognized previously, 

226 patients were classified into the low-risk group and 

192 into the high-risk group (Supplementary Table 7). 

The risk assessment model for prognosis prediction 

demonstrated that the number of deaths increased with 

an increase in the risk score (Figure 3A, 3B). Survival 

analysis revealed that the high-risk group had 

significantly worse OS than low-risk group (Figure 3C). 

Age, T status, N status, M status, and risk score model 

were identified as significant risk factors in the 

univariate analysis (all P<0.01) (Figure 3D). The risk 

score model, T status and M status were confirmed as

 

 
 

Figure 1. Establishment of a prognostic model based on (A, B) LASSO regression analysis; (C) Univariate Cox regression analysis. 
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Table 2. The list of lncRNA pairs and corresponding 
calculation coefficients.  

LncRNA pair Coefficient 

LMO7-AS1|LINC00513 0.493078 

LINC01614|AC145423.2 0.746247 

LINC01703|FENDRR 0.375638 

LINC02487|AC010973.2 -0.47787 

LINC02195|AC048344.4 -0.89094 

AC020907.4|AC010973.2 -0.67771 

MHENCR|AC025857.2 0.728441 

AL031716.1|AL117379.1 -0.76209 

MIR17HG|AL161729.4 -0.64218 

AC127024.4|AL355802.3 0.774316 

AC010973.2|AL031673.1 0.521472 

AL021578.1|AL133243.2 0.426426 

AC016831.4|AC011676.1 -0.94739 

AC090116.1|AL353804.2 0.49057 

AP002336.2|AC093732.1 -0.56376 

AC011676.1|AC092168.2 0.835864 

AP005899.1|GK-AS1 0.378791 

LINC-PINT|LINC00513 0.605353 

AF117829.1|SNHG22 -0.57948 

AC245100.7|LINC01811 0.77997 

AL354836.1|SNHG4 0.551547 

SCARNA9|AC104695.4 -0.39001 

AL137782.1|AP001469.3 -0.95082 

AP001469.3|ABALON 0.598743 

ABALON|CD44-AS1 -0.64299 

 

independent prognostic factors by multivariate analysis 

(all P<0.01) (Figure 3E). Furthermore, our results 

showed that the risk score model was significantly 

related to T status, N status, M status, and stage (Figure 

4). Moreover, an accurate prognostic nomogram 

incorporating the risk score model and common 

clinicopathological characteristics was established for 

predicting 1-, 3-, and 5-year OS probability, which

 

 
 

Figure 2. (A) The ROC curves for predicting the 1-, 3-, and 5-year OS; (B) identification of the maximum inflection point as the optimal cut-off 

value on the 5-year ROC curve; (C) comparison of the risk score model and clinicopathological characteristics in predicting the 5-year OS.  
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might be well applied in the clinical evaluation of 

COAD patients (Figure 5).  

 

Functional enrichment analyses of differently 

expressed frGenes (DEfrGenes)  

 

We identified 142 DEfrgenes in COAD tissues 

(Supplementary Table 8). Based on these genes, we 

explored the underlying biological functions by GO 

annotation and KEGG pathway analyses using 

Metascape. In this study, GO pathway and process 

enrichment analysis included molecular functions 

(functional set), biological processes (pathway), and 

cellular components (structural complex). The top 20 

clusters with their representative enriched terms are 

shown in Figure 6A. Our results showed that biological 

processes related to oxygen metabolism were 

significantly associated with differentially expressed 

ferroptosis-related genes, including GO:0006979 

(response to oxidative stress), GO:0072593 (reactive 

oxygen species metabolic process), GO:0055114 

(oxidation-reduction process), GO:0070482 (response 

to oxygen levels), GO:0016491 (oxidoreductase 

activity), and GO:1901615 (organic hydroxy  

compound metabolic process). In addition, autophagy-

related biological processes, such as GO:0006914 

(autophagy), GO:0000422 (autophagy of mitochondria), 

GO:0055072 (iron ion homeostasis), and GO:0000407 

(phagophore assembly site) were prominently related  

to differentially expressed ferroptosis-related genes. 

Moreover, DEfrGenes in COAD also dramatically 

affected GO:0097190 (apoptotic signaling pathway), 

GO:0070997 (neuron death), and several metabolism-

related biological processes. 

 

 
 

Figure 3. Risk scores (A) and survival outcomes (B) of each patient; (C) survival curves of high-risk group and low-risk group patients; (D) 
univariate and (E) multivariate Cox regression analyses of the risk score model and clinicopathological characteristics.  
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The top 20 KEGG pathways (P<0.05) for the 

DEfrGenes were identified (Figure 6B). Classical 

cancer-related pathways such as “foxo signaling 

pathway,” “MicroRNAs in cancer,” “necroptosis,” 

“platinum drug resistance,” “AMPK signaling path-

way,” “TGF-beta signaling pathway” and “PPAR 

signaling pathway” were correlated with the functions 

of the DEfrGenes in COAD. It is worth noting that 

“HIF-1 signaling pathway” was the fourth most 

significantly correlated signaling pathway.  

 

Correlations between the risk score model and 

hypoxia-related factors 

 

GO and KEGG analysis showed that frGenes were 

notably related to biological processes of oxygen

 

 
 

Figure 4. Correlations between the risk score model and clinicopathological characteristics, represented by a heatmap (A), and box 

diagrams (B). 
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Figure 5. Prognostic nomogram incorporating the risk score model and clinicopathological characteristics. 

 

 
 

Figure 6. (A) Top 20 enriched clusters of DEfrGenes in GO annotation analysis; (B) top 20 enriched KEGG pathways of DEfrGenes. 
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metabolism. Therefore, we further investigated the 

relationship between the risk score model and hypoxia-

related factors, including hypoxia-inducible factors,  

and hypoxia-related genes (Supplementary Table 9). 

The results revealed that the high-risk group was 

significantly correlated with high expression of ARNT, 

HIF3A, VEGFA, TUBB6, and low expression of TPI1, 

MRPS17, LDHA, ENO1, and CDKN3 (Figure 7). 

 

Correlations between the risk score model and 

immune-related factors 

 

In consideration of the increasing evidence on the 

correlation between immunological features and 

survival in malignant tumors, we discussed the 

correlations between the risk score model and immune-

related factors. The immune-related factors included 

tumor-infiltrating immune cells (TIICs) and immune 

checkpoint genes (ICGs). The 16 ICGs were chosen 

based on a previous study by Danilova [25] with minor 

modifications by adding ligands (PVR and NECTIN2) 

and competing receptor (CD226) of TIGIT 

(Supplementary Table 10) [26, 27]. We discovered that 

the low-risk group was related to more TIICs such as 

CD8+ T cells, CD4+ T cells, B cells, and neutrophils, 

whereas the high-risk group was related to more tumor-

infiltrating immune cells such as NK cells, 

macrophages, and T cell regulatory (Tregs) (Figure 8A). 

In addition, the high-risk group had significantly 

downregulated expression of CD47 and markedly

 

 
 

Figure 7. Correlations between the risk score model and hypoxia-related factors. 
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upregulated expression of CD276 and NECTIN2 

(Figure 8B). 

 

Correlations between the risk score model and 

somatic variants 

 

Studies have shown that cancers harboring more non-

synonymous variants, which were defined as high tumor 

mutation burden (TMB), were associated with favorable 

survival outcomes with cancer immunotherapy. Given 

the prognostic value of TMB, we sought to investigate 

the relationship between the risk score model and TMB 

level. As shown in Figure 9A, there was no significant 

difference in TMB levels between the high- and low-

risk groups. Furthermore, our study found no significant 

correlation between TMB and prognosis in patients with

 

 
 

Figure 8. Correlations between the risk score model and (A) tumor-infiltrating immune cells; (B) immune checkpoint genes. 
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COAD (Figure 9B). Next, we evaluated the predictive 

power of the risk score model in the low and high TMB 

subgroups. The results revealed that the prognostic 

model presented consistent predictive value in both the 

low and high TMB subgroups, indicating that the TMB 

status did not interfere with the prediction of this model 

(Figure 9C). Moreover, our study explored the mutation 

rates of reported prognostic-related genes in low-and 

high-risk groups. Analysis results demonstrated that 

APC, SMAD4, DOCK2, TMEM132D, and VCAN 

genes had more frequent mutations in the low-risk 

group, whereas TP53 and BRAF mutations were more 

frequent in the high-risk group (Figure 9D, 9E). 

 

Gene set enrichment analysis (GSEA) 

 

The GSEA results indicated that the high-risk score 

group had markedly negative correlations with 26 

enrichment pathways (Supplementary Table 11). As 

showed in Figure 10, the top 10 KEGG pathways 

included “peroxisome,” “citrate cycle,” “cell cycle,” 

“oxidative phosphorylation,” “nucleotide excision  

repair,” and metabolism-related signaling pathways 

such as “propanoate metabolism,” “valine leucine and 

isoleucine degradation,” “pyruvate metabolism,” 

“pyrimidine metabolism,” and so on. 

 

DISCUSSION 
 

Ferroptosis is an iron-dependent cell death, which is 

characterized by an intracellular iron-dependent 

accumulation of ROS and lipid peroxidation. Shen et al. 

found resibufogenin inhibited colorectal cancer cell 

growth and tumorigenesis through triggering 

ferroptosis, suggesting that suppression of ferroptosis is 

closely related to the proliferation of colorectal cancer 

cells [28]. Sui and colleagues demonstrated that RSL3-

induced cell ferroptosis was relevant to colorectal 

cancer progression [29]. They revealed that RSL3 can 

promote CRC cell ferroptosis by promoting ROS 

production. Sujeong Park et al. reported that bromelain 

effectively inhibited cell growth and proliferation by 

stimulating ferroptosis, especially in Kras mutant 

colorectal cancer cells [30]. The findings indicate that

 

 
 

Figure 9. Correlations between the risk score model and somatic variants. (A) TMB levels between the high- and low-risk groups; 
(B) correlation between TMB and prognosis in patients with COAD; (C) prognostic predictive value in different TMB subgroups; (D, E) the 
mutation rates of reported prognostic-related genes in low- and high-risk groups. 
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ferroptosis may be involved in carcinogenesis in mutant 

colorectal cancer cells, compared to Kras wild-type 

colorectal cancer cells. These studies showed that 

ferroptosis is crucial in regulating the growth and 

proliferation of colon cancer cells, and drug activation 

of ferroptosis related signaling pathways is a promising 

strategy for treating colon cancer. Moreover, studies 

have shown that ferroptosis related gene signatures can 

be effectively used for prognostic prediction, optimizing 

survival risk assessment and facilitating personalized 

management in colon cancer [31–33]. These results 

indicate that the research of ferroptosis can provide 

ideas for the clinical diagnosis and treatment of colon 

cancer. LncRNA prognostic signatures have been 

reported to have promising predictive value in cancer. 

In recent years, prognostic prediction models based on 

specific classes of gene-related lncRNAs have attracted 

particular attention from researchers. However, most of 

these prognostic models have limited predictive 

efficacy. For example, the AUC was 0.782 for a 

signature that included 25 differentially expressed 

ferroptosis-related lncRNAs in predicting the prognosis 

of HNSCC [19]. An autophagy-related lncRNA 

signature had an AUC value of 0.689, which comprised 

eight lncRNAs and predicted an unfavorable prognosis 

in colorectal cancer [22]. A prognostic model including 

four differentially expressed lncRNAs had an AUC 

value of 0.706 for evaluating the outcome of patients 

with colorectal cancer [23]. In addition to unsatisfactory 

predictive performance, these models also have 

practical shortcomings. These prognostic models were 

established based on the specific expression values of 

the identified lncRNAs. The measured values must be 

normalized to reduce batch effects between different 

testing platforms before clinical application. In the 

present study, we developed a novel ferroptosis-related 

lncRNA pair prognostic signature for colon 

adenocarcinoma. The AUCs representing the excellent 

predictive value for 1-, 3-, and 5-year survival rates 

were 0.860, 0.885, and 0.934, respectively. Our 

prognostic signature included 25 frlncRNA pairs and 

was confirmed as an independent prognostic factor by 

Cox regression analysis. Notably, it was superior to 

common clinicopathological characteristics such as age, 

sex, T status, N status, and M status in predicting the 

OS for COAD. More importantly, the signature was 

established by a novel modeling algorithm, pairing, and 

iteration; therefore, it could be better applied in clinical 

practice. 

 

To explore the underlying biological functions of our 

signature, we performed GO annotation and KEGG 

pathway analyses of the identified DEfrGenes. Both 

function and pathway enrichment analyses highlighted 

the hypoxia and oxygen metabolism processes, such as 

“HIF-1 signaling pathway,” “response to oxidative 

stress,” “reactive oxygen species metabolic process,” 

“oxidation-reduction process,” “response to oxygen 

levels,” “oxidoreductase activity” and “organic hydroxy 

compound metabolic process.” Studies have found that 

hypoxia is a poor prognostic factor that regulates the 

tumor microenvironment. Hypoxia activates a series of 

signaling pathways and a large panel of genes involved 

in apoptosis, autophagy, DNA damage, mitochondrial 

activity, p53, and drug efflux, which affects the survival 

of cancer cells and confers resistance to conventional

 

 
 

Figure 10. Gene set enrichment analysis of enriched signaling pathways. 
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anticancer treatments [34, 35]. Preclinical studies have 

shown that inhibition of HIF-1 signaling activity can 

significantly reduce cancer growth, and research is 

currently underway to identify HIF-1 inhibitors and 

validate their efficacy in antitumor therapy [36]. Several 

hypoxia-related signatures have been constructed for the 

clinical prediction of diagnosis, prognosis, and 

recurrence in hepatocellular carcinoma. These hypoxia-

related signatures were revealed to be closely associated 

with the immune microenvironment, contributing to 

better clinical management in patients with hepato-

cellular carcinoma [37–39].  

 

For the hypoxia and oxygen metabolism processes, as 

indicated by both the GO and KEGG analyses, we 

further explored the relationship between the risk score 

model and hypoxia-inducible factors and hypoxia-

related genes. The results revealed that the high-risk 

group exhibited a significant correlation with high 

expression of ARNT, HIF3A, VEGFA, TUBB6 and low 

expression of TPI1, MRPS17, LDHA, ENO1, and 

CDKN3. Studies have demonstrated that high levels of 

HIF-1/2α proteins are associated with increased 

radiotherapy and chemotherapy resistance, resulting in 

cancer progression [40, 41]. In addition to inducing 

hypoxia, the HIF signaling pathway also participates in 

various bioregulatory processes, including ROS, 

cytokines, growth factors, oncogene dysfunction, and 

tumor suppressors, providing insights into the targeting 

of the HIF signaling pathway as a potential therapeutic 

approach in cancer management [42]. Studies have 

reported that hypoxia can promote disease development 

and metastasis by activating the HIF1α/VEGFA 

pathway in breast and colorectal cancer [43, 44]. Liang 

and colleagues found that hypoxia activated the 

HIF1α/VEGFA axis in breast cancer angiogenesis by 

inducing miR-153 expression and decreased expression 

of HIF1α and VEGFA, resulting in suppression of 

tumor angiogenesis. Chen et al. demonstrated that 

hypoxia could induce angiogenesis in colorectal cancer 

by activating the HIF-1α/VEGF-A pathway. LDHA and 

ENO1 are crucial glycolytic enzymes, which have been 

revealed as hypoxia-related factors in previous studies. 

Wei et al. found that inhibition of LDHA-mediated 

aerobic glycolysis could markedly suppress the growth 

of bladder cancer cells [45]. Cui et al. reported that 

HIF1/2α could activate LDHA expression, and high 

expression of LDHA promotes the growth and 

migration of pancreatic cancer cells [46]. Nevertheless, 

Wang et al. reported that high LDHA expression was 

associated with better PFS (18.3 vs. 10.1 months, 

P=0.005) and overall response rate (72.2% vs. 15.4%, 

P=0.006) of metastatic colorectal cancer patients 
receiving first-line chemotherapy [47]. Wang et al. 

discovered the role of ENO1 in hypoxia-induced 

gemcitabine chemoresistance, decreased expression of 

which restored sensitivity to chemotherapy by 

modulating redox homeostasis in pancreatic cancer cells 

[48]. However, our results showed lower expression of 

LDHA and ENO1 in the high-risk score group, which 

suggests some unknown underlying signal regulation 

mechanisms, which are worth further exploration.  

 

The immune microenvironment plays an important role 

in tumorigenesis. Infiltrating immune cells may act as 

tumor-antagonizing or tumor-promoting factors [49, 

50]. Cancer cells eventually gain the ability to inhibit 

the tumor-antagonizing functions of immune cells and 

escape immunological surveillance, resulting in cancer 

development [51]. In recent years, immunotherapy 

targeting immune microenvironment regulation and 

immune checkpoint modulation has shown promising 

efficacy in cancer treatment [52, 53]. In addition, iron 

and immunity are closely linked [54]. Many of the 

genes and proteins involved in iron homoeostasis play 

a vital role in controlling iron fluxes. Cells of the innate 

immune system, monocytes, macrophages, microglia 

and lymphocytes, are able to combat bacterial insults 

by carefully controlling their iron fluxes, which are 

mediated by hepcidin and ferroportin. The cell 

involved in iron overload with the greatest effect on 

immunity is the macrophage. Intriguing evidence 

indicated that parenchymal iron overload is linked to 

genes classically associated with the immune system 

[55]. In the present study, we investigated the 

correlation between the risk score model and immune-

related factors. The results showed that the low-risk 

group was related to more tumor-infiltrating immune 

cells such as CD8+ T cells, CD4+ T cells, B cells, and 

neutrophils, whereas the high-risk group was related to 

more tumor-infiltrating immune cells such as NK cells, 

macrophages, and Tregs. Moreover, our analyses 

showed that the high-risk group had significantly 

decreased expression of CD47 and markedly 

upregulated expression of CD276 and NECTIN2. 

Studies have shown that CD47 plays a key role in 

immune regulation and tumor development. 

Overexpression of CD47 could protect tumor cells 

from phagocytosis and is a promising therapeutic target 

in cancer therapy [56, 57]. CD276, also known as B7-

H3, is an important immune checkpoint member of the 

B7 and CD28 families. CD276 was found to be 

overexpressed in various tumor cells, which acts as  

an inhibitor of T cell function and indicates poor 

prognosis in cancer patients [58, 59]. Studies have 

shown that NECTIN2 is an adhesion molecule that 

participates in tumor growth, metastasis, and tumor 

angiogenesis [60]. There were significant differences in 

tumor-infiltrating immune cells and ICGs between the 
high-risk and low-risk groups in our prognostic 

signature, which may serve as potential molecular 

markers for predicting the efficacy of immunotherapy. 
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TMB is not only a prognostic predictor, but also a 

predictor of the efficacy of immunotherapy. TMB has 

been demonstrated to be a useful biomarker for 

predicting the efficacy of immune checkpoint inhibitors 

in some cancer types [61]. Studies have shown a 

positive association between TMB and the response to 

immunotherapy in melanoma and NSCLC [62, 63]. Cao 

et al. found that patients with high TMB may benefit 

more from immunotherapy and experience better 

survival time in various cancer types [64]. However, the 

predictive role of TMB in the prognosis and efficacy of 

immunotherapy in colon cancer remains controversial. 

Lee et al. revealed that high TMB indicated better 

outcomes for patients treated with curative surgery 

followed by adjuvant fluoropyrimidine and oxaliplatin 

chemotherapy [65]. In contrast, Pai et al. found that the 

low TMB group had improved progression-free survival 

time (9.9 months) compared to the intermediate/high 

TMB group (5.8 months) in metastatic colorectal cancer 

patients treated with first-line chemotherapy [66]. Zhou 

et al. constructed a nomogram model for prognosis 

prediction in CC patients, which combined TMB 

profiles, immunocyte infiltration status, and clinico-

pathological data. The results showed that patients with 

low TMB had better outcomes [67]. Indeed, the 

prognostic value of TMB and its predictive effect on 

immunotherapy are controversial. Recently, a study 

found that TMB could only predict response to 

immunotherapy in cancer types where CD8 T cell levels 

positively correlated with neoantigen load, such as 

melanoma, lung, and bladder cancers [68]. The present 

study showed that TMB was not a significant prognostic 

factor for CC. There was no significant difference in 

TMB levels between the high- and low-risk groups. 

Furthermore, our study suggests that the prognostic role 

of the signature is independent of TMB levels. We 

further discovered that the high-risk group had more 

frequent mutations in TP53 and BRAF, as well as less 

frequent mutations in APC, SMAD4, DOCK2, 

TMEM132D, and VCAN genes. Studies have shown 

that TP53 mutations may accelerate the progression of 

CRC by activating oncogenic and inflammatory 

pathways [69]. BRAF mutation was an independent 

factor of recurrence in microsatellite-stabilized colon 

cancer, and the outcome of CC patients with BRAF 

gene mutations was significantly poor [70]. Studies 

have reported that APC mutation is the most common 

mutation, accounting for 60% of gene mutations in CC 

[71]. The current results confirm the role of these genes 

in predicting prognosis in patients with colon cancer, 

which is consistent with a previous study [72].  

 

The present study establishes a novel ferroptosis-related 
lncRNA pair prognostic model that may provide better 

management in patients with COAD. However, some 

limitations still need to be considered. First, we only 

draw conclusions from bioinformatics analysis, and 

further experimental verification is required. Second, 

due to the small sample size, there are some statistical 

defects, for example, the hazard ratio of this the risk 

score model has a big error range in univariate and 

multivariate analysis.  

 

CONCLUSIONS 
 

The novel risk score model constructed by pairing 

DEfrlncRNAs showed promising clinical prediction 

value in COAD, which is worthy of further 

investigation. 

 

MATERIALS AND METHODS 
 

Data collection 
 

High-throughput sequencing (HTSeq) transcriptome 

profiling harmonized to fragments per kilobase million 

(FPKM) and simple nucleotide variation data of COAD as 

well as clinical characteristics of patients were obtained 

from The Cancer Genome Atlas (TCGA) database 

(https://portal.gdc.cancer.gov). Cases with survival data 

were randomly divided into the training cohort and 

validation cohort in 2:1 ratio. The GTF file of long non-

coding RNA gene annotation (version GRCh38.p13) was 

downloaded from the GENCODE human website 

(https://www.gencodegenes.org/human/). The ferroptosis-

related genes involved in the current study were obtained 

from the website of FerrDb, a public database of 

ferroptosis regulators and markers, and ferroptosis-disease 

associations (http://www.zhounan.org/ferrdb/) [73].  
 

Identification of frlncRNAs and pairing DEfrlncRNAs 
 

Identification of the frlncRNAs was performed using 

Pearson correlation to assess the relationship between 

the ferroptosis-related genes and long non-coding 

RNAs. The absolute value of correlation coefficients 

>0.4 and P<0.001 were considered statistically 

significant. The significant thresholds of DEfrlncRNAs 

were set as |log2FC| >1.5 and false discovery rate 

(FDR) <0.001. Subsequently, we established frlncRNA 

pairs based on these DEfrlncRNAs, as previously 

described [24]. All the DEfrlncRNAs were cyclically 

paired and assigned a value according to pairwise 

comparison in accordance with the following rules: 

assume that lncRNA A and lncRNA B were paired 

together as lncRNA pair C, which was assigned a value 

of 1 if the expression level of lncRNA A was higher 

than lncRNA B; otherwise, it was assigned a value of 0. 

If a lncRNA pair had a 0 or 1 ratio of less than 20% or 
greater than 80% in all samples, it was filtered. Cox 

regression analyses were performed to evaluate the 

prognostic value of frlncRNA pairs (P<0.01).  

https://portal.gdc.cancer.gov/
https://www.gencodegenes.org/human/
http://www.zhounan.org/ferrdb/
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Construction and validation of a frlncRNA pair 

prognostic signature  

 

Prognostically associated frlncRNA pairs were used to 

establish the LASSO regression model in the training 

cohort. Subsequently, a risk score model of these 

frlncRNA pairs was constructed and the risk score of 

each patient was calculated according to the following 

formula: Risk score = coefficient lncRNA pair1 × 

expression lncRNA pair1 + coefficient lncRNA pair2 × 

expression lncRNA pair2 + coefficient lncRNA pair3 × 

expression lncRNA pair3 +……+ coefficient lncRNA 

pairn × expression lncRNA pairn. The 1-year ROC curve 

for predicting the OS was constructed according to the 

risk score model. Using the median value of risk scores, 

patients in training- and validation cohort were divided 

into high- and low-risk groups. Survival curves were 

conducted using the Kaplan-Meier method. The 

validation cohort was applied for cross test to assess the 

stability of this model. In order to obtain a more 

accurate model with a larger sample size, we further 

constructed the final model based on the data of entire 

cohort. The 1-, 3-, and 5-year ROC curves were 

conducted. The maximum inflection point of the 5-year 

ROC curve was considered as the optimal cut-off point 

for the classification of different risk groups. A risk 

assessment model for prognosis prediction was 

generated to show the risk scores and survival outcomes 

of each patient. Moreover, univariate and multivariate 

regression analyses were used to evaluate whether the 

model was an independent prognostic factor for OS in 

COAD patients. 

 

Clinical correlation analysis of the risk score model 

and development of a nomogram 

 

The correlations between the risk score model and 

traditional clinicopathological features were assessed 

using the chi-squared test and presented as a heatmap. 

The risk score differences among different groups of 

these clinicopathological features were calculated using 

the Wilcoxon signed-rank test and visualized using box 

diagrams. The p value was labeled as follows: P<0.001 

= ***, P<0.01 = ** *, and P<0.05 = *. The multivariate 

logistic model, including the risk score model and 

clinicopathological characteristics, was used to develop 

a nomogram to predict the survival probability of 

COAD patients. The 1-, 3-, and 5-year OS rates were 

used as the endpoints in the nomogram. 

 

Correlations of the risk score model with hypoxia-

related and immune-related factors  

 
DEfrGenes in COAD tissues were identified using the R 

package limma. Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) analyses 

of DEfrGenes were performed using Metascape 

(http://metascape.org) with thresholds of min overlap 3, 

P<0.05, and min enrichment 3 [74]. Hypoxia-inducible 

factors included HIF1A, ARNT, EPAS1, ARNT2, 

HIF3A, and ARNTL. Hypoxia-related genes were 

retrieved from previous reports [75, 76]. Differential 

gene expression between the two risk score groups was 

conducted using the Wilcoxon signed-rank test. We 

employed several currently acknowledged algorithms to 

evaluate the correlations between the risk score and 

TIICs, including XCELL, TIMER, QUANTISEQ, 

MCPCOUNTER, EPIC, CIBERSORT−ABS, and 

CIBERSORT. Associations between the risk score 

groups and the expression of ICGs were assessed, and 

the results were presented as violin plots. The statistical 

significance was set at P<0.05. 

 

Correlations between the risk score model and 

somatic variants 

 

To evaluate the TMB, we counted the total number of 

non-synonymous mutations in COAD. TMB was 

defined as the number of somatic, coding, indel 

mutations, and base substitution per megabase (Mb) of 

the genome examined. To calculate the TMB score of 

each sample, the total number of mutations counted was 

divided by the exome size (38 Mb was used as the 

estimate of the exome size) [77]. The somatic variant 

status of reported prognostic-related genes in COAD 

was assessed in low- and high-risk groups. The included 

genes were APC, TP53, KRAS, NRAS, BRAF, FAT4, 

SMAD4, COL6A3, CDH10, DOCK2, TMEM132D, 

and VCANT, which were retrieved from a previous 

study [72].  

 

Gene set enrichment analysis  

 

Gene set enrichment analysis (high-risk score group vs. 

low-risk score group) (version 4.1.0; http://software. 

broadinstitute.org/gsea/index.jsp) was performed to 

investigate the potential molecular mechanisms by 

which the risk score model might act on tumor 

progression in COAD, as previously described [78, 79]. 

FDR <0.05 was used to identify significantly enriched 

pathways. 

 

Statistical analysis 

 

Perl software (version 5.32) was used to extract and 

structure the HTSeq FPKM and simple nucleotide 

variation data. The differentially expressed lncRNAs 

were identified using the Benjamini-Hochberg method 

based on the log fold change and FDR. Survival 
analyses of COAD patients based on the risk score 

model were assessed using the Kaplan-Meier method. 

Multivariate analysis was performed using the Cox 

http://metascape.org/
http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
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regression model. R software version 4.0.3, with 

Bioconductor packages, was used to conduct the 

analyses.  

 

Data statement  

 

The data used for bioinformatics analyses in this study 

are freely available on the National Cancer Institute 

Genomic Data Commons (GDC) Data Portal 

(https://portal.gdc.cancer.gov/). The interpretation and 

reporting of these data are the sole responsibility of the 

authors. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Differentially expressed frlncRNAs in COAD visualized by a heatmap. 
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Supplementary Figure 2. Differentially expressed frlncRNAs in COAD represented by a volcano plot.  

 

 
 

Supplementary Figure 3. The ROC curves for predicting the 1-year OS in (A) training cohort and (B) validation cohort; survival curves of 
high-risk and low-risk group patients in (C) training cohort and (D) validation cohort. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–5, 7, 8. 

 

Supplementary Table 1. The list of 259 ferroptosis-related genes. 

 

Supplementary Table 2. The list of 896 ferroptosis-related lncRNAs. 

 

Supplementary Table 3. The list of 165 differentially expressed ferroptosis-related lncRNAs. 

 

Supplementary Table 4. A 0-or-1–matrix of 7543 ferroptosis-related lncRNA pairs. 

 

Supplementary Table 5. The list of 148 prognostic-associated lncRNA pairs. 

 

Supplementary Table 6. The list of lncRNA pairs and  
corresponding calculation coefficients in training cohort. 

Gene Coef 

AP000866.6|GK-AS1 0.050517142 

LINC01614|AC145423.2 0.325460089 

LINC01876|AC123023.1 0.021230585 

LINC01876|AC000061.1 0.017454934 

LINC01703|FENDRR 0.351506677 

B4GALT1-AS1|AL109614.1 -0.470853267 

LINC02487|AC010973.2 -0.44273071 

ARHGEF38-IT1|AL136115.2 -0.090659931 

LINC02195|AC048344.4 -0.168551255 

AC020907.4|AC010973.2 -0.128374285 

MHENCR|AC025857.2 0.14001933 

AL031716.1|AL117379.1 -0.026252276 

AL031716.1|AC245884.8 -0.048075783 

MIR17HG|AL161729.4 -0.201226884 

AC127024.4|AL355802.3 0.247392389 

AC000061.1|AC007938.3 -0.076967626 

AC000061.1|AL445222.2 -0.166595929 

LINC01748|LINC00513 0.239026862 

AP005233.2|SLC12A9-AS1 0.013512242 

AC010973.2|AP002336.2 0.000819065 

AC010973.2|LINC01311 0.009915108 

AC010973.2|SCARNA9 0.067640044 

AC010973.2|AC026356.1 0.024730177 

AC010973.2|AL031673.1 0.091362139 

TSPOAP1-AS1|AC245100.7 -0.025201899 

AC007128.1|ABALON 0.141543495 

AL021578.1|AL133243.2 0.307784852 

AC092535.5|FENDRR 0.072656736 

AP002336.2|AC093732.1 -0.034956361 

MIR181A2HG|AC103591.3 0.06281789 

AC011676.1|AC092168.2 0.335286777 
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AC121761.1|AL109614.1 -0.05947878 

AC121761.1|CD44-AS1 -0.070098552 

AP005899.1|GK-AS1 0.194484479 

LINC-PINT|LINC00513 0.376302947 

AF117829.1|SNHG22 -0.451862499 

AC245100.7|LINC01811 0.228863795 

SCARNA9|AC104695.4 -0.074535782 

HM13-IT1|MAFG-DT 0.096156896 

AL137782.1|AC245884.8 -0.184358171 

AL137782.1|AP001469.3 -0.46691788 

AL161729.4|AL031673.1 0.03850454 

GK-AS1|AC084117.1 -0.12372433 

ABALON|CD44-AS1 -0.066789815 

 

Supplementary Table 7. Risk classification of patients according to the cut-off point. 

 

Supplementary Table 8. The list of differently expressed ferroptosis-related genes. 

 

Supplementary Table 9. The list of hypoxia-related genes. 

Gene 

VEGFA 

SLC2A1 

PGAM1 

ENO1 

LDHA 

TPI1 

P4HA1 

MRPS17 

CDKN3 

ADM 

NDRG1 

TUBB6 

ALDOA 

MIF 

ACOT7 

 

Supplementary Table 10. The list of immune checkpoint genes. 

Gene 

CD274 

CTLA4 

IDO1 

LAG3 

CD276 

VTCN1 

CD70 

HAVCR2 

CD40 

CD47 

TNFRSF18 

TNFSF14 

TIGIT 

PVR 

NECTIN2 

CD226 
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Supplementary Table 11. Cancer-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 
associated with risk group based on a gene set enrichment analysis. 

Enrichment in phenotype: C1  

ES NES 
NOM p-

val 
FDR q-val FWER p-val 

GS  

1 KEGG_PEROXISOME -0.66 -2.24 0 0.001 0.001 

2 KEGG_CITRATE_CYCLE_TCA_CYCLE -0.81 -2.23 0 0 0.001 

3 KEGG_PROPANOATE_METABOLISM -0.73 -2.15 0 0.003 0.009 

4 KEGG_HUNTINGTONS_DISEASE -0.58 -2.14 0 0.002 0.01 

5 KEGG_ALZHEIMERS_DISEASE -0.57 -2.12 0 0.003 0.013 

6 KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION -0.72 -2.05 0.002 0.007 0.028 

7 KEGG_PYRUVATE_METABOLISM -0.64 -2.04 0 0.007 0.031 

8 KEGG_PROTEASOME -0.76 -2.04 0 0.007 0.035 

9 KEGG_PARKINSONS_DISEASE -0.63 -1.98 0.008 0.012 0.061 

10 KEGG_PYRIMIDINE_METABOLISM -0.54 -1.97 0.008 0.014 0.073 

11 KEGG_CELL_CYCLE -0.59 -1.95 0.012 0.014 0.079 

12 KEGG_OXIDATIVE_PHOSPHORYLATION -0.64 -1.94 0.01 0.013 0.083 

13 KEGG_OOCYTE_MEIOSIS -0.52 -1.94 0.002 0.013 0.088 

14 KEGG_NUCLEOTIDE_EXCISION_REPAIR -0.64 -1.91 0.01 0.016 0.115 

15 KEGG_BUTANOATE_METABOLISM -0.61 -1.85 0.008 0.026 0.174 

16 KEGG_FATTY_ACID_METABOLISM -0.59 -1.84 0.01 0.031 0.211 

17 KEGG_CYSTEINE_AND_METHIONINE_METABOLISM -0.54 -1.84 0.004 0.029 0.214 

18 KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS -0.5 -1.83 0.013 0.028 0.217 

19 KEGG_PROTEIN_EXPORT -0.72 -1.82 0.014 0.029 0.227 

20 KEGG_AMINOACYL_TRNA_BIOSYNTHESIS -0.65 -1.82 0.021 0.029 0.239 

21 KEGG_PURINE_METABOLISM -0.43 -1.8 0.008 0.032 0.262 

22 KEGG_GLUTATHIONE_METABOLISM -0.52 -1.8 0.002 0.031 0.266 

23 KEGG_BIOSYNTHESIS_OF_UNSATURATED_FATTY_ACIDS -0.62 -1.78 0.01 0.034 0.3 

24 KEGG_DNA_REPLICATION -0.72 -1.77 0.02 0.037 0.323 

25 KEGG_BASAL_TRANSCRIPTION_FACTORS -0.59 -1.77 0.023 0.036 0.325 

26 KEGG_MISMATCH_REPAIR -0.69 -1.73 0.018 0.049 0.401 

 


