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non-coding regions

Dongyang Wang1, Xiaohong Wu1, Guanghui Jiang1,
Jianye Yang1, Zhanhui Yu1, Yanbo Yang1, Wenqian Yang1,
Xiaohui Niu1, Ke Tang2* and Jing Gong1,3*
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Genome-wide association study (GWAS) has identified thousands of single

nucleotide polymorphisms (SNPs) associated with complex diseases and traits.

However, deciphering the functions of these SNPs still faces challenges. Recent

studies have shown that SNPs could alter chromatin accessibility and result in

differences in tumor susceptibility between individuals. Therefore,

systematically analyzing the effects of SNPs on chromatin accessibility could

help decipher the functions of SNPs, especially those in non-coding regions.

Using data from The Cancer Genome Atlas (TCGA), chromatin accessibility

quantitative trait locus (caQTL) analysis was conducted to estimate the

associations between genetic variants and chromatin accessibility. We

analyzed caQTLs in 23 human cancer types and identified 9,478 caQTLs in

breast carcinoma (BRCA). In BRCA, these caQTLs tend to alter the binding

affinity of transcription factors, and open chromatin regions regulated by these

caQTLs are enriched in regulatory elements. By integrating with eQTL data, we

identified 141 caQTLs showing a strong signal for colocalization with eQTLs.

We also identified 173 caQTLs in genome-wide association studies (GWAS) loci

and inferred several possible target genes of these caQTLs. By performing

survival analysis, we found that ~10% caQTLs potentially influence the

prognosis of patients. To facilitate access to relevant data, we developed a

user-friendly data portal, BCaQTL (http://gong_lab.hzau.edu.cn/caqtl_

database), for data searching and downloading. Our work may facilitate fine-

map regulatory mechanisms underlying risk loci of cancer and discover the

biomarkers or therapeutic targets for cancer prognosis. The BCaQTL database

will be an important resource for genetic and epigenetic studies.
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Introduction

As the most common type of genetic variation, single nucleotide

polymorphism (SNP) plays a vital role in complex human diseases.

Genome-wide association studies (GWAS) have identified thousands

of SNPs associated with human traits or diseases (1). However, the

vast majority of them are located inside the non-coding regions (2),

and their functions remain largely unknown. Many studies have

emphasized the important role of non-coding SNPs in multiple

regulatory processes, including histone modifications (3) and TF

binding (4). For example, SNPs within CTCF binding sites could

disrupt the binding site, thus altering the loop formation and

chromatin topology, ultimately affecting target gene expression (5).

Studies have also shown that SNPs could affect histone functions in

human liver (6), lupus patient lymphoblastoid cell lines (7), and

obesity-related traits (8), indicating that these SNPsmay affect histone

modification or histone binding, which indirectly changes the

chromatin accessibility.

As one of the high-throughput sequencing, ATAC-seq was

used to identify open chromatin regions which usually represent

cis-regulatory elements (9, 10). Increasing evidence has shown

that chromatin accessibility is crucial for gene expression

regulation in specific cells and multiple biological processes, and

abnormal chromatin accessibilities have been observed in various

human diseases, especially cancers (11–13). Quantitative trait

locus (QTL) analysis is a statistical method that links genotypic

data with phenotypic data and has been demonstrated as a

powerful tool for interpreting the SNP function on molecular

traits such as gene expression and chromatin accessibility (11, 14–

18). Recent studies have shown that SNPs could alter chromatin

accessibility and result in differences in tumor susceptibility

between individuals. Chromatin accessibility quantitative trait

loci (caQTL) analyses have been performed in some human

tissues and diseases (11, 18, 19). However, systematic analyses

of the effects of genetic variation on chromatin accessibility in

human cancers have rarely been conducted.

The Cancer Genome Atlas (TCGA) (20) generated a large

amount of omics data, including genotype data, clinical

information, and ATAC-seq data (20). The rich data from

TCGA make it possible to systematically identify genetic

variants altering chromatin accessibility in human cancers. In

this study, to gain insight into the genetically regulated chromatin

accessibility in human cancers, we performed caQTL analysis by

integrating matched genotypes and ATAC-seq data. In addition,

we further characterized the functional mechanisms of these

caQTL SNPs and their potential clinical application by

integrating caQTL data with other omics and clinical data.
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Materials and methods

Genotype data processing

We obtained the genotype matrix of 898,620 SNPs detected

using the Affymetrix SNP 6.0 array from the TCGA data portal

(20) (https://tcga-data.nci.nih.gov/tcga/). For better

performance in QTL analysis, we imputed autosomal variants

for all samples in 23 types of cancer using IMPUTE2 (21) (1000

Genomes Phase 3 (22) as the reference panel). The imputation

was performed in the two-step procedure provided by

IMPUTE2. After imputation, we performed quality control

(23) to select high-quality SNPs with: (i) imputation

confidence score (INFO) ≥ 0.4, (ii) minor allele frequency

(MAF) ≥ 5%, (iii) missing rate < 5 %, and (iv) Hardy-

Weinberg Equilibrium p > 1e-6 (estimated by Hardy-

Weinberg R package). To eliminate the impact of population

structure on chromatin accessibility, we used smartpca in the

EIGENSOFT program to generate the principal component

factors. We included the first five principal components in

the covariates.
ATAC-seq data processing

We obtained all the ATAC-seq data from TCGA (https://

tcga-data.nci.nih.gov/tcga/), containing ATAC-seq bam files of

410 tumor samples from 404 TCGA donors across 23 cancer

types. The processing strategy described in Corces et al. (24) was

used to process ATAC-seq data. To obtain open chromatin

regions, the “call peak” command in MACS2 with parameters “–

shift -75 –extsize 150 –nomodel –call-summits –nolambda –

keep-dup all -p 0.01” was used to perform peak calling. Then the

peak summits were extended by 250 bp on both sides, resulting

in a set of fix-width peaks of 501 bp width. Peaks that extend

beyond the length of chromosomes or overlap with the DAC

Exclusion List Regions from ENCODE were excluded in the

downstream analysis.

We used an iterative removal procedure (24) to identify

independent peak calls in each sample. For each sample, we first

sorted the peaks in descending order of the peak scores (the

“pValue” column). Next, we kept the most significant peak and

removed any peak which overlapped with that peak. Finally, we

sort the remaining peaks and repeat the previous operation until

no peaks overlap with each other.

Since the score calculated by MACS2 varies when samples

have different read depth or quality, we should normalize the
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scores of the significance of peaks across samples and cancer

types to enable the comparison between samples and between

different cancer types. The peak score in each sample was first

converted to score per million (SPM). Then, to obtain

independent peak sets in each cancer type, we combined peak

sets from all the samples in that cancer type. Next, we used the

same iterative removal procedure to obtain independent peaks.

We only kept peaks that: (i) were observed in over two samples,

(ii) have an SPM ≥ 5, (iii) did not span the gap region, and (iv)

were on the autosomes. These SPMmatrices were used in caQTL

mapping and downstream analysis.

Finally, to remove the hidden batch effects or other

confounders in the chromatin accessibility data, the PEER R

package was used to generate the PEER factors from chromatin

accessibility data to minimize the batch effect. Reported that

PEER factors equivalent to 25% of the sample size were selected

to avoid the batch effect of the chromatin accessibility data (25).
The enrichment of chromatin state in
ATAC-peaks

We obtained the data on chromatin states from the Roadmap

Epigenomics Consortium. We combined related chromatin states

and redefined the states as follow: (i) 1_TssA, 2_TssFlnk,

3_TssFlnkU, 4_TssFlnkD, and 14_TssBiv to promoter, (ii) 5_Tx

and 6_TxWk to transcribed, (iii) 7_EnhG1, 8_EnhG2, 9_EnhA1,

10_EnhA2, 11_EnhWk, and 15_EnhBiv to enhancer, (iv)

16_ReprPC and 17_ReprPCWk to polycomb, (v) 12_ZNF/Rpts to

ZNF repeats, (vi) 13_Het to heterochromatin and 18_Quies to

quiescent. We calculated the coverage of each ATAC-peak for each

chromatin state using the BEDTools “coverage” command. The

peak was assigned to the chromatin state with the highest coverage,

except for quiescent. Only when the peak has a coverage of 100%

with quiescent will it be assigned to quiescent. Otherwise, that peak

will be assigned to the chromatin state with the second-highest

coverage. Background peaks were selected randomly by the

bedtools shuffle command.
Selection of expressed transcription
factors in cancer

We downloaded all of the 838 non-redundant transcription

factors (TF) binding motifs for vertebrates from JASPAR CORE

2022 (26) (https://jaspar.genereg.net/downloads/) and restricted

to TFs expressed in cancer. To do this, we obtained the

expression data of all cancer types from TCGA and TFs with a

median TPM > 1 marked as expressed in that cancer type. Only

the expressed TFs were included in TF enrichment and motif

disruption analyses.
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Enrichment of transcription factor
binding sites in ATAC-peaks and
caQTL peaks

Using the non-redundant expressed TFs and the Analysis of

Motif Enrichment (AME) software (27), we tested for the TF

enrichment in ATAC-peaks. To do this, we first extracted the

sequence of the peaks from the reference genome using

BEDTools. The “–control generated the control sequences for

the enrichment test –shuffle–” command of AME. The full

arguments we used was “–control –shuffle– –kmer 2 –scoring

max –hit-lo-fraction 0.75”. Motifs with an E-value < 1e-100 were

classified as significantly enriched.
caQTL mapping

caQTL was mapped using the MatrixEQTL (28) R package.

We chose the linear model to quantify the statistical association

of chromatin accessibility with the genotypes of variants in each

cancer type. Cis-caQTL mapping was performed in a window of

1 Mb, and the significant associations were defined if FDR was

smaller than 0.05. Covariates were used to eliminate the hidden

cofounders. In addition to the PEER and principal component

factors, we also included essential clinical information, including

age, gender, and tumor stage, to avoid the potential impact of

clinical status on caQTL mapping.
Colocalization of caQTLs and eQTLs

Colocalization analysis could find the causal variation that

caQTLs and eQTLs may share. To do this, we used the Bayesian

test for colocalization implemented in the coloc R package to

assess the probability that cis-caQTLs and cis-eQTLs shared the

same causal variant. The cis-eQTL data used in this analysis

came from our previous research (14). We adopt a two-step

procedure for colocalization. The first step is to identify the QTL

pairs which may share a causal variant for the test and then

perform the Bayesian test for colocalization.

To identify the QTL pairs for the colocalization test, we

extracted the lead caQTL of the caQTL peak for each caQTL

peak. The eQTL gene correlated with this lead caQTL was tested for

colocalization. If multiple genes are linked with the same lead

caQTL, we first obtained the lead eQTL SNP of each eQTL gene,

and then we calculated the LD between the lead eQTL SNP and the

lead caQTL SNP. Only the eQTL genes whose lead eQTL SNP has

the highest LD with the lead caQTL SNP were retained. For each

caQTL peak, this workflow helped us obtain a peak-gene pair that

showed an association with the same SNP. Then, we applied the

Bayesian model implemented in the coloc R package to all peak-
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gene pairs. Colocalization results with a PP4 > 0.8 were regarded as

solid colocalization evidence.
Mediation analysis

Using the colocalized peak-gene pairs, we applied model-

based causal meditation analysis implemented in the mediation

R package to investigate whether the effect of a cis-eQTL SNP is

mediated by influencing chromatin accessibility. To do this, we

extract the chromatin accessibility and gene expression data of

all matched samples for each colocalized pair. We fitted two

statistical models to estimate the effect direction of the SNP. In

the mediator model, we hypothesize chromatin accessibility as

the mediator and gene expression as the outcome. Moreover, we

reverse the mediator and the outcome in the outcome model.

The average causal mediation effects (ACME) calculated by

coloc were used to characterize the mediation effects in a

specific model. In addition, we used the nonparametric

bootstrap (resample 1,000 times) instead of the quasi-Bayesian

Monte Carlo simulation for variance estimation.
Identification of GWAS-related caQTLs

We obtained the latest release of the NHGRI-EBI GWAS

catalog (1). For this data, we first extracted all the single-variant

associations. We extracted each GWAS SNP’s alleles from the

dbSNP (build 155) dataset and removed all the non-bi-allelic

variants for LD calculation. Next, we extracted the LD region of

each SNP using a threshold of R2 > 0.5 calculated by LDlink

(https://ldlink.nci.nih.gov/). The caQTL SNPs falling into the LD

regions were identified as GWAS-related caQTLs. LocusZoom

(29) was used for visualizing specific loci.
Transcription factor binding sites
disrupted by caQTL SNPs

To find all TF binding sites potentially disrupted by

caQTLs, we selected all the caQTL SNPs falling in the caQTL

peaks using the BEDTools “intersect” command. For both

alleles of each caQTL, we extracted the DNA sequence

containing the variant and extended it by 30 bp on both

sides. We then scanned these sequences for matches of the

motifs using the Find Individual Motif Occurrences (FIMO)

software (30). Only the most significant match per allele and

the match that overlapped with the caQTL position was

retained. The log ratio of p-values defined as lg(p_weak) - lg

(p_strong) was used for quantifying the difference in motif

match between alleles (31), where the p_weak and the p_strong

stand for the p-values for the alleles with the weaker and

stronger match, separately.
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Identification of survival-related caQTLs

To identify caQTLs associated with disease prognosis, we

obtained clinical information, including the survival time of all

donors from TCGA. We divided all the donors into groups

based on the SNP genotype and used the Log-Rank test to test

the difference in survival time between these groups. There were

three models that we used in this study. In the additive model,

we divided the donors into three groups based on the three

genotypes of each SNP and tested the difference in survival time

among the three groups. In the dominant model, the

heterozygous donors (Aa) and the homozygous carriers of the

minor allele (aa) were merged into one group and tested against

the other. In the recessive model, the heterozygous donors (Aa)

and the homozygous carriers of the major allele (AA) were

merged into one group and tested against the other group. The

Kaplan–Meier plot was used for visualization.
Results

Open chromatin region related to
regulatory elements

We downloaded the ATAC-seq data of 410 samples derived

from 404 tumor donors across 23 cancer types from The Cancer

Genome Atlas (TCGA). We then performed peak calling using

MACS2 (https://github.com/macs3-project/MACS) to get open

chromatin regions. By adopting the strategy described by Corces

et al. (24), we normalized each peak’s score for downstream

analysis. As a result, we obtained a collection of open chromatin

regions with a fixed width. The number of these peaks ranges

from 55,979 (in cervical squamous cell carcinoma and

endocervical adenocarcinoma, CESC) to 215,354 (in invasive

breast carcinoma, BRCA) with an average of 105,307 peaks per

cancer type (Figure 1A).

To explore the regulatory function of these ATAC-peak, we

mapped our ATAC-peaks to chromatin states of matched tissues

obtained from the Roadmap Epigenomics Project (32). As

expected, compared to peaks randomly selected, accessible

peaks were enriched in enhancers and promoters (Figure 1B

and Supplementary Figure S1), indicating that accessible regions

were primarily located in regulatory regions. We checked

whether genes with ATAC-peaks at the transcription start site

(TSS) were more likely to be expressed (median transcript per

million (TPM) > 1) than those without peaks at the TSS. In all

the cancer types, we found that expressed genes were more likely

to have an ATAC-peak overlapping the TSS (minimum OR =

23.57 in hepatocellular liver carcinoma, Figure 1C) than those

not expressed. Then for expressed genes, on the other hand,

genes with ATAC-peaks overlapping their TSS tend to have a

higher expression than those without TSS peaks (Figure 1D and

Supplementary Figure S2).
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Then we tested for the enrichment of the transcription factor

(TF) binding sites in these ATAC-peaks. We found 374 TFs

significantly enriched (Evalue < 1e-100) in all of the 23 cancer

types, including 125 oncogenes on the list of oncogenes provided

by the Network of Cancer Genes (33) (NCG v7.0), which

indicated that ATAC-peaks reflect active regulatory elements

in cancer tissues.
Genetic variants associated with
chromatin accessibility

Using imputed genetic variants (Figure 2A), we mapped

caQTLs using the linear model implemented in MatrixEQTL

(28). In caQTL mapping, a window of 1 Mb was used to

distinguish cis-caQTL from trans-caQTLs (Figure 2B). To

correct for hidden confounders, we introduced covariates from

the population, chromatin accessibility, and clinical information

(Methods). Using the threshold of false discovery rate (FDR) <

0.05, we identified 8,194 SNPs associated with 532 ATAC-peaks

in BRCA, accounting for 0.25% of all the ATAC-peaks and

0.30% of the SNPs in BRCA. All these caQTLs were located

within the 1 Mb window of their associated peaks (cis-caQTLs).

However, in other cancers, none of the caQTLs passed our
Frontiers in Oncology 05
threshold. Considering that the second-highest sample size of

cancers is 33 in the kidney renal papillary cell carcinoma (KIRP)

(Figure 2C), we attribute this result to the insufficient sample

size. Hence, we focused on the cis-caQTLs identified in BRCA.

Consistent with previous reports (11, 18, 33), caQTLs tend

to be close to their related caQTL peaks. A substantial portion of

cis-caQTLs (n = 6,757, 71.3%) was located within the 0.1-Mbp

region of their related caQTL peaks (Figure 2D), suggesting the

regulation of SNP on chromatin accessibility was mainly local.

The majority (86.9%) of the caQTLs were assigned to a single

caQTL peak, while other caQTLs were assigned to multiple

caQTL peaks (Figure 2E). As expected, caQTL SNPs were

significantly enriched in promoters (OR = 1.85), enhancers

(OR = 1.64), and transcribed regions (OR = 1.95), and

depleted in polycomb (OR = 0.52), heterochromatin (OR =

0.81), and Quiescent (OR = 0.64) states (Figure 2F).
Several caQTLs could also affect gene
expression

We compared caQTLs to eQTLs identified previously (14).

We found that 3,406 (41.6%) of the caQTL SNPs were also

observed in eQTLs, contained in 7,576 SNP-gene- ATAC peak
A B

D

C

FIGURE 1

Open chromatin region related to regulatory elements. (A) Distribution of the number of the ATAC-peaks in 23 human cancers. BRCA, breast
invasive carcinoma; KIRP, kidney renal papillary cell carcinoma; PRAD, prostate adenocarcinoma; COAD, colon adenocarcinoma; LUAD, lung
adenocarcinoma; STAD, stomach adenocarcinoma; ESCA, esophageal carcinoma; LIHC, liver hepatocellular carcinoma; KIRC, kidney renal clear
cell carcinoma; LUSC, lung squamous cell carcinoma; THCA, thyroid carcinoma; LGG, low-grade glioma; BLCA, bladder urothelial carcinoma;
HNSC, head and neck squamous cell carcinoma; PCPG, pheochromocytoma and paraganglioma; TGCT, testicular germ cell tumors; ACC,
adrenocortical carcinoma; MESO, mesothelioma; SKCM, skin cutaneous melanoma; UCEC, uterine corpus endometrial carcinoma; CHOL,
cholangiocarcinoma; CESC, cervical squamous cell carcinoma; GBM, glioblastoma multiforme. (B) Percent of ATAC-peaks of breast carcinoma
by chromatin state in breast tissue from the Roadmap Epigenomics Project. All peaks, red; randomly selected genomic regions. (C) Fisher’s test
shows that expressed genes (median TPM > 1) are more likely to have an ATAC-peak overlapping the TSS. Error bars indicate 95% confidence
intervals. (D) Comparison of the expression between genes expressed in BRCA with and without an ATAC-peak overlapping the TSS.
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pairs. According to the peak-gene linking analysis in Corces et al.

(24), 1,543 out of 7,576 pairs (1,299 unique SNPs) were found to

contain SNPs that affect the same genes by the corresponding

caQTLs and eQTLs, indicating that changes in chromatin

accessibility may also affect gene expression. We performed a

Bayesian colocalization analysis to identify the potential causal

SNPs shared by caQTLs and eQTLs (35), and identified 141

SNPs with strong evidence for having shared genetic effects

(posterior probability > 0.8, Figure 3A). Among these colocalized

caQTL SNPs, 13 SNPs were also related to the expression of

genes reported to be potential driver genes in cancer. For

example, the G allele (allele frequency (AF) = 0.547) of

rs4283211 was predicted to downgrade the chromatin

accessibility of BRCA_162467 (chr15:90647785-90648286, p =

6.35e-7, Figure 3B). This allele was also predicted to cause a

decrease in the expression of gene IDH2 (p = 4.89e-20,

Figure 3C). IDH2 was a widely reported driver gene in

multiple cancers (36–38). According to the mutation

distribution data for IDH2 from the COSMIC database (38,

39), the number of mutants of A-to-G and G-to-A together

accounted for 77.95% of the total mutants, indicating that the

regulation of variants to IDH2 may have preference.
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To assess the evidence that chromatin accessibility mediates the

effect of a SNP on local gene expression, we performed mediation

analysis on our 141 colocalized SNP-peak-gene pairs. Under a

threshold of adjusted p < 0.05, we observed 19 SNP-gene-peak pairs

showing evidence of mediating effect (total effect p < 0.05 and

mediation p < 0.05), and four of them were in the oncogenes list

mentioned before. It is worth noting that the rs4283211-

BRCA_162467-IDH2 pair has a significant mediating effect (p <

0.001, Figure 3D) but showed no signs of direct impact (p = 0.65),

which means that the effect of SNP on gene expression is entirely

through chromatin accessibility. Another example was the pair

rs2071487-BRCA_9060-GSTM1 (Figure 3E), which showed

significance in both mediating effects (p = 0.004) and significant

direct effect (p < 0.001), indicating that the impact of this SNP on

the expression of GSTM1 may be exerted through the accessibility

changing of BRCA_9060 (chr1:110230129-110230630).
caQTLs disrupted the binding sites of TFs

Altering chromatin accessibility by affecting the

transcription factor binding sites (TFBS) is an important
A B

D E F

C

FIGURE 2

Genetic variants associated with chromatin accessibility. (A) Distribution of the number of the ATAC-peaks in 23 human cancers. (B) Cis-caQTLs
are identified using the variants within 1 Mb of ATAC-peaks, and caQTLs outside the window are defined as trans-caQTLs. (C) The number of
samples with matched ATAC-seq data and SNP genotype data. There is no matched sample in GBM. (D) Distribution of the distance between
caQTL SNPs and their related caQTL peaks. Distance distribution between caQTL SNPs and caQTL peak, red. Distance distribution between all
tested variants and their tested ATAC-peaks, blue. (E) Distribution of the number of single-peak caQTLs and multi-peak caQTLs. (F) Enrichment
of caQTL SNPs in breast chromatin states. Error bars represent 95% confidence intervals.
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regulatory pathway of genetic variants (18, 40, 41) (Figure 4A).

In our caQTL results, 187 caQTL SNPs were located in 104

caQTL peaks. Among these in-peak caQTLs, 172 (92.0%) caQTL

SNPs could change the binding affinity of TFs (Methods). Of the

104 caQTL peaks containing the related caQTL SNPs, 96 caQTL

peaks contained at least one motif-disrupting caQTL SNP, while

40 of these caQTL peaks contained more than one motif-

disrupting caQTL SNP. 16 motifs were disrupted by ten or

more caQTL SNPs. Almost all these motifs (15 of 16) were

significantly related to caQTL status (OR > 1, p < 4.6e-4,

Figure 4B), including motifs of five oncogenes including

CTCF, RREB1, TFAP2A, BNC2, and BACH2. According to

previous reports, CTCF induced the expression of Nm23-H1

and was related to cell migrations in MDA-MB-231 cell lines

(42). In our study, the binding sites of CTCF were affected by

rs4997687 (Figure 4C), suggesting that CTCF may be an

important mediator for several caQTLs exerting their

functions. We then investigated whether TFs are more likely

to bind the more accessible allele. TFs are theoretically more
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likely to bind the alleles with higher accessibility (31). In our

results, more than half of the 406 motifs of 377 expressed TFs

(59.9%) bind the alleles with more accessibility better. When

restricting to the TFs with more than ten disruptions, similar

results (60.0%) were observed, and this percentage varies among

different TFs (Figure 4D). The FOSL2 and BNC2 almost only

bind the alleles with higher accessibility. Together, these results

reveal that caQTL SNP could exert its function by affecting the

TF binding but having TF specificity.
Possible regulatory caQTL SNPs and
target genes at GWAS loci

To identify the potential causal caQTLs and genes located

in GWAS loci, we performed a linkage disequilibrium (LD)-

based-colocalization analysis on our caQTLs and GWAS SNPs

downloaded from the GWAS Catalog (1, 43). Using GWAS

variants of breast carcinoma and a threshold of R2 > 0.5, we
A B

D
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C

FIGURE 3

caQTLs overlapped with eQTLs. (A) Circos plot of colocalized caQTLs and eQTLs. Outer track lighter red, caQTL SNPs. Outer track darker red
dots colocalized caQTL SNPs. Inner track lighter green, eQTL variants overlapped with caQTL SNPs. Inner track darker green dots colocalized
eQTL variants. (B) Distribution of chromatin accessibility of BRCA_162467 in groups with different genotypes of rs4283211. (C) Distribution of
expression of IDH2 in groups with three different genotypes of rs4283211. (D) Effect sizes in mediation analysis on the rs4283211-
BRCA_162467-IDH2 pair. ACME, average causal mediation effects; ADE, average direct effects and TE, total effect. (E) Effect sizes in mediation
analysis on the rs2071487-BRCA_9060-GSTM1 pair.
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identified 173 GWAS-related caQTLs mapped to three GWAS

loci. Previous studies have not reported clear causal SNPs and

genes for these three GWAS loci. Among these caQTLs, only

two caQTL SNPs, rs9289981 (Figure 5A) and rs3819405

(Figure 5B), directly overlapped with GWAS SNPs. However,

rs9289981 was not the most significant caQTL mapped to

peak BRCA_43002.

Another example was rs11763970, the second significant

GWAS-related caQTLs in the LD block of the GWAS SNP

rs847577 mapped to LMTK2 after rs6465658 (Figure 5C).

rs6465658 was also a GWAS SNP for prostate cancer and a

prostate cancer eQTL variant for gene BHLHA15 (p = 4.02e-4)

but showed no significant effect on gene expression in breast

cancer. The three SNPs showed high LD with each other (R2 >

0.8, Figure 5D). Although rs11763970 was not the most

significant caQTL in that LD block, it showed a significant

association with the gene BAIAP2L1 in eQTLs of BRCA

(Figures 5E, F). Furthermore, according to the evidence from

the STRING database (44), BAIAP2L1 has evidence for protein-

protein interaction with TP53 (Figure 5G), indicating the

potential regulation among variants, accessible chromatin, and

gene expression in human cancer.
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caQTLs related to patient survival time

In our previous studies, we have identified many survival-

related QTLs in different molecular traits. To determine whether

SNPs related to chromatin accessibility are associated with

patient survival time, we performed survival analysis on the

caQTL SNPs we identified. We assessed the significance of the

difference in survival time among three genotype groups

(additive genetic model) and identified 730 caQTL SNPs

significantly (p < 0.05) associated with survival time. For

example, the G-to-C mutation of rs2223850 was significantly

correlated with a worse prognosis (p < 0.001, HR = 1.59 [1.29,

1.98], Figure 6A). During the analysis, we noticed that the

correlation between genotypes and survival time showed

deviations from linearity in some of the caQTL SNPs.

Specifically, the survival time observed for the heterozygous

individuals was different from the expected values based on

the observation of the homozygous individuals. Thus, we

separately performed survival analysis with dominant and

recessive models for a better understanding of the impact of

genotypes on patient survival time. Under new models, we

identified 483 and 553 more survival-related caQTLs,
A B

DC

FIGURE 4

caQTLs disrupted the binding sites of TFs. (A) Motif disruption analysis was performed using the caQTL SNPs in their related caQTL peaks.
(B) Disruption of motifs is significantly associated with the caQTL status. Loss, the reference alleles match the motif better. Gain, the alternative
alleles match the motif better. (C) An example of the disruption of rs4997687 in the motif of CTCF. (D) The proportion of the disrupted motifs
for which the allele with higher chromatin accessibility matched the motif better. Only the 16 TFs with more than ten disruptions are shown.
The red line represents the average percent across the 16 TFs.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1035855
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2022.1035855
respectively, increasing the number of survival-related caQTLs

to 1,069. For each survival-caQTL, we also extracted the genes

linked to the caQTL-related peaks using the peak-gene link data

(24) and performed gene-base survival analyses. As a result, we

totally found 122 SNP-peak pairs (116 unique caSNPs), in which

both SNPs and their peak-linked genes were significantly

associated with the patient survival time (Log Rank P < 0.05).

An example was the caQTL rs9289981, a GWAS-related caQTL

significantly related to the overall survival time of BRCA

patients. Individuals with T/T genotype exhibited worse

prognosis than those with A/T and A/A (p < 0.001, HR = 0.55

[0.37, 0.81], Figure 6B). This caQTL was also a GWAS-related

BRCA caQTL and the eQTL of CMSS1, with its T allele

associated with the increase in the chromatin accessibility of

caQTL peak BRCA_43002 (Figure 6C) and the decrease in

expression of CMSS1 (Figure 6D). Furthermore, TF binding
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prediction revealed that rs9289981 could improve the binding

affinity of RBPJ (Figure 6E). Previous studies have reported the

important role of RBPJ in cancers (45, 46), indicating that

rs9289981 may exert its function by influencing chromatin

accessibility and regulating CMSS1 expression.
User-friendly data portal

To facilitate easy access to the relevant data, we developed a

data portal with a user-friendly interface, BCaQTL (http://gong_

lab.hzau.edu.cn/caqtl_database, Figure 7A), to store all our

results for searching, browsing, and downloading. Except for

the home page, the about page, and the contact page, we

developed three modules for data retrieval (Figure 7B). On the

cis-caQTL page, we provided a quick search (Figure 7C) where
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FIGURE 5

Identification of regulatory caQTLs at GWAS loci. (A) Locus plot shows the LD region of rs9289981. caQTL is marked in purple rhombus, and the
caQTL peak is highlighted in green. (B) The locus plot shows the LD region of rs3819405. caQTL is marked in a circled purple rhombus, and the
caQTL peak is highlighted in green. (C) The locus plot shows the LD region of rs847577. The caQTL rs11763970 and rs6465658 are marked, and
the caQTL peak is highlighted in green. (D) The linkage disequilibrium (LD) of the GWAS tag SNP rs847577, caQTL variant rs11763970, and
caQTL variant rs6465658. (E) Distribution of chromatin accessibility of BRCA_88185 in groups with different genotypes of rs11763970.
(F) Distribution of expression of BAIAP2L1 in groups with three different genotypes of rs11763970. (G) Protein-protein network of gene BAIAP2L1
and LMTK2, both of which interact with TP53. Genes involved in the interaction are highlighted in red.
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the users can quickly obtain information on caQTL SNPs

(Figure 7D). For each record, a vector diagram of the boxplot

is embedded (Figure 7E). On the survival-caQTL page, users can

obtain information on the statistical result of survival analysis

and the KM-curve plot. The GWAS-related caQTL page

provides information on the caQTL SNPs, GWAS SNPs, and

LD scores.
Discussion

We performed a caQTL analysis in this study to link the

genetic variants to chromatin accessibility. Prior to the caQTL

mapping, we found that open chromatin regions can represent

active regions in the genome. Specifically, open chromatin

regions are enriched in active regulatory regions such as

promoters and enhancers, and the binding sites of TFs are

enriched in these open regions. More importantly, genes with

an ATAC-peak overlapping the TSS usually have a higher

expression than those without an ATAC-peak on the TSS site.
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Among the 23 human cancer types, we only identified cis-

caQTLs in breast cancer, mainly ascribed to the small sample

size in this study. It has been reported that the sample size can

significantly affect QTL mapping, and the discovery of eQTLs

and their related genes increases with sample size with no

apparent saturation at the sample size of 300 (47), suggesting

that more samples should be included to improve the quantity of

the identification of caQTLs in the future studies.

The multi-omic data from the same individuals make it

possible for us to investigate the cascading effect of genetic

variation rather that overlap them. Using the eQTLs that came

from the same collection of TCGA cancer donors, we

investigated the relationship between chromatin accessibility

and gene expression using causal inference. We found

computational evidence for mediating effect in some of the

SNP-peak-gene pairs. Those results could provide further

insights into the regulatory mechanisms of eQTLs.

In GWAS analysis, due to genetic linkage disequilibrium, a

cluster of SNPs is usually found in the region associated with a

specific disease. SNP with the smallest P-value was typically
A B

D EC

FIGURE 6

caQTLs related to survival time. (A) KM curves show the difference in survival time of patients with different genotypes of rs2223850. (B) KM
curves show the difference in survival time of patients with different genotypes of rs9289981 in the dominant model. Patients in the TT
genotype group showed a poor prognosis. (C) Distribution of chromatin accessibility of BRCA_43002 in groups with different genotypes of
rs9289981. (D) Distribution of expression of CMSS1 in groups with three different genotypes of rs9289981. (E) Potential disruption of rs9289981
on the binding site of RBPJ.
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chosen as the tag SNP, and the region around the SNP was

defined as a risk region. However, the actual causal variants and

the target genes in these risk loci and the underlying mechanisms

remain largely unknown. In this study, we found that the

variants altering chromatin accessibility are more likely to be

located in the LD regions of GWAS tag SNPs rather than directly

overlapping them. Our results indicated that caQTL SNPs

instead of tag SNPs might act as the actual causal variants in

breast cancer risk loci. In our study, we further identified the

caQTLs that may affect TF binding, and these caQTLs are more

likely to be causal variants in GWAS loci.

The dominant and recessive models are often used in GWAS

because individuals with heterozygous genotypes sometimes

have a similar phenotype to those with homozygous

genotypes. With the observation that the caQTLs showed the

same effect on survival time, we performed survival analysis

using the dominant and the recessive models. As a result, we

found more significant survival-related caQTLs than the additive

model that classifies the individuals into three genotype groups.
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In conclusion, we performed caQTL analyses in human

cancer and identified thousands of functional SNPs, providing

a new perspective for deciphering the effects of genetic variants

in non-coding regions. Our BCaQTL database will be an

important resource for genetic and epigenetic studies.
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SUPPLEMENTARY FIGURE 1

Enrichment of ATAC-peaks in different chromatin states across 23 cancer

types. The background peaks were genomic regions with the same width

randomly selected.

SUPPLEMENTARY FIGURE 2

Differences in gene expression levels between genes with ATAC-peaks

overlap with the TSS, and those without ATAC-peaks overlap with the TSS.
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