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Single-Cell Epigenomics and Functional Fine-
Mapping of Atherosclerosis GWAS Loci
Tiit Örd, Kadri Õunap,* Lindsey K. Stolze,* Redouane Aherrahrou,* Valtteri Nurminen, Anu Toropainen, Ilakya Selvarajan ,  
Tapio Lönnberg, Einari Aavik, Seppo Ylä-Herttuala , Mete Civelek , Casey E. Romanoski, Minna U. Kaikkonen

RATIONALE: Genome-wide association studies have identified hundreds of loci associated with coronary artery disease (CAD). 
Many of these loci are enriched in cisregulatory elements but not linked to cardiometabolic risk factors nor to candidate 
causal genes, complicating their functional interpretation.

OBJECTIVE: Single-nucleus chromatin accessibility profiling of the human atherosclerotic lesions was used to investigate cell 
type–specific patterns of cisregulatory elements, to understand transcription factors establishing cell identity, and to interpret 
CAD-relevant, noncoding genetic variation.

METHODS AND RESULTS: We used single-nucleus ATAC-seq (assay for transposase-accessible chromatin with sequencing) to 
generate DNA accessibility maps in >7000 cells derived from human atherosclerotic lesions. We identified 5 major lesional 
cell types including endothelial cells, smooth muscle cells, monocyte/macrophages, natural killer/T cells, and B cells and 
further investigated subtype characteristics of macrophages and smooth muscle cells transitioning into fibromyocytes. We 
demonstrated that CAD-associated genetic variants are particularly enriched in endothelial and smooth muscle cell–specific 
open chromatin. Using single-cell coaccessibility and cis–expression quantitative trait loci information, we prioritized putative 
target genes and candidate regulatory elements for ≈30% of all known CAD loci. Finally, we performed genome-wide 
experimental fine-mapping of the CAD variants identified in genome-wide association studies using epigenetic quantitative 
trait loci analysis in primary human aortic endothelial cells and self-transcribing active regulatory region sequencing (STARR-
Seq) massively parallel reporter assay in smooth muscle cells. This analysis identified potential causal single-nucleotide 
polymorphisms (SNPs) and the associated target gene for over 30 CAD loci. We present several examples where the 
chromatin accessibility and gene expression could be assigned to one cell type predicting the cell type of action for CAD loci.

CONCLUSIONS: These findings highlight the potential of applying single-nucleus ATAC-seq to human tissues in revealing 
relative contributions of distinct cell types to diseases and in identifying genes likely to be influenced by noncoding genome-
wide association study variants.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.
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Atherosclerosis, a chronic inflammatory disease of 
the artery wall, is the underlying cause of coronary 
artery disease (CAD) and myocardial infarction (MI). 

Recent transcriptomic analyses at single-cell level have 
demonstrated extensive heterogeneity and plasticity of 
cells within atherosclerotic lesions, with over 10 leukocyte 
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subtypes and nonimmune cell types identified in mice 
and humans.1–4 However, the transcriptional mechanisms 
that define these cell states and identities remain elusive. 
As the unique gene expression profile of each cell type 
is controlled by the combined activity of promoters and 
enhancers, a deeper characterization of the transcriptional 
regulatory elements is needed. Although promoters are 
responsible for the binding of the factors that nucleate the 

assembly of a functional preinitiation complex, enhancers 
contain the majority of binding sites for master TFs (tran-
scription factors) responsible for the cell type specificity 
and dynamic patterns of gene expression.5 Thus, the analy-
sis of the TF recognition motifs associated with cell type–
specific enhancer repertoires can provide unprecedented 
information on the lineage-determining TFs that control the 
cells’ developmental and functional properties. To this end, 
recent single-nuclei (sn) chromatin accessibility studies 
have demonstrated the potential to interpret the TF regula-
tory grammar that underlies in vivo enhancer landscapes.6

Genome-wide association studies (GWAS) have dis-
covered hundreds of common genetic variants signifi-
cantly associated with CAD and MI.7,8 However, the large 
majority of the GWAS variants are located in the noncod-
ing regions of the genome with no known function.9,10 
It has been shown that a significant number of disease 
susceptibility regions fall within enhancer elements spe-
cific to disease-relevant cell types and states where they 
affect gene regulation mainly by altering TF binding.11 
For instance, hepatic and adipose gene expression-
associated single-nucleotide polymorphisms (SNPs) are 
enriched for their associations with type 2 diabetes.12 In 
addition, a landmark study focusing on enhancer variant at 
the chromosome 1p13, demonstrated that rs12740374 

Nonstandard Abbreviations and Acronyms

CAD coronary artery disease
EC endothelial cell
FOX Forkhead box
HOX homeobox
LDL-C low-density lipoprotein cholesterol
MEF2 myocyte enhancer factor 2)
MI myocardial infarction
SMC smooth muscle cell
Sn single-nucleus
SOX SRY-related HMG-box
TF transcription factor

Novelty and Significance

What Is Known?
• Single-cell RNA sequencing has uncovered marked 

heterogeneity of cell types within atherosclerotic 
lesions, but little is known how these differences mani-
fest at the level of epigenetics.

• Coronary artery disease (CAD) genome-wide associa-
tion study risk variants have been shown to be enriched 
in arterial tissue enhancers but little is known of the cell 
type–specific mechanisms of disease risk.

• Connecting variants to target genes and pinpointing the 
exact causal single-nucleotide polymorphism (SNP) 
among those in high linkage disequilibrium represents 
a major challenge for understanding the genetic basis 
of common diseases.

What New Information Does This Article  
Contribute?
• Our study provides the first single-cell map of chroma-

tin accessibility in human atherosclerotic lesions.
• We present several CAD loci where chromatin acces-

sibility and gene expression could be assigned to one 
cell type predicting the cell type of action for CAD loci.

• We prioritize and identify the most potential causal 
SNP(s) and the target gene(s) for over 30 CAD 
genome-wide association study loci.

In this study, we describe the cellular composition of ath-
erosclerotic plaques based on chromatin accessibility. This 
allowed us to predict transcription factor binding at cis-
regulatory elements that underlie the identity of the major 
lesional cell types. We use the genome-wide cisregulatory 
element maps to provide cell type–specific annotation 
and fine-mapping of common noncoding genome-wide 
association study variants associated with CAD. We pre-
dict interactions between risk variants and target genes 
using peak-promoter coaccessibility information and fur-
ther prioritize such variants using cis–expression quantita-
tive trait loci information from arterial tissues. Furthermore, 
we use analysis of epigenetic molecular trait loci and mas-
sively parallel reporter assay to functionally characterize 
all common CAD genome-wide association study variants 
located within endothelial and smooth muscle cell–spe-
cific cisregulatory elements, respectively. This strategy 
allowed us to identify the causal variant and the target 
gene for over 30 CAD loci. One-third of these loci were 
further associated with atherosclerosis-relevant pheno-
type in smooth muscle cells, supporting their functional 
importance. Altogether, our study represents an important 
resource to annotate CAD loci, predicting disease-rele-
vant cell types as well as putative genes and variants that 
provide one step towards more comprehensive picture of 
the biology underlying atherosclerosis.
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influences LDL-C (low-density lipoprotein cholesterol) 
level and MI risk via liver-specific transcriptional regula-
tion of the SORT1 gene with minimal effect in adipocytes 
and lymphocytes.13 This highlights the need to identify 
the cell type–specific regulatory regions and their target 
genes to better understand the molecular mechanisms 
underlying the genetic basis of disease.

These findings have also propelled research towards the 
identification of active cisregulatory elements across athero-
sclerosis-relevant cell types in vascular tissue. To this end, 
large-scale functional genomics projects have advanced our 
understanding of cell- and tissue-specific enhancers.14–16 
Furthermore, there is extensive literature describing the 
enhancer repertoires of endothelial cells (ECs), smooth mus-
cle cells (SMCs), macrophages, and T cells and the dynamic 
changes in regulatory element activity upon exposure to 
proatherogenic stimuli.17–19 These include the description of 
superenhancers,20 which are often found to regulate genes 
important for cell identity and to be enriched for disease-
associated variants. Although these initial works have pro-
vided evidence that enhancers may play a significant role in 
orchestrating the gene expression changes observed during 
disease progression, we do not know how well the in vitro 
enhancer landscapes studied correlate with the in vivo tis-
sue context.

To advance our knowledge of the in vivo enhancer 
repertoires of atherosclerosis-associated cell types 
and to identify the enhancer connectivity with target 
genes, we have profiled the cell type–specific cis-
regulatory elements in human atherosclerotic lesions 
using single-nucleus assay for transposase-acces-
sible chromatin with sequencing (snATAC-Seq). We 
use this data to (1) identify cisregulatory elements 
that differ between subtypes of cells, (2) compare 
the in vitro and in vivo enhancer repertoires, (3) to 
characterize the chromatin coaccessibility networks 
encompassing genetic variants associated with the 
risk of atherosclerosis (CAD, MI), and to (4) pinpoint 
potential target genes for these risk loci using chro-
matin coaccessibility scoring combined with cis–
expression quantitative trait loci (eQTL) information. 
Finally, (5)  we fine-map potentially causal genetic 
risk variants located within EC- and SMC-specific 
regulatory elements using molecular QTL information 
and massively parallel reporter assay, respectively.

METHODS
Data Availability
The data used for the analyses described in this article were 
obtained from the Genotype-Tissue Expression Portal on May 
1, 2020 (phs000424.v8.p2).

Anonymized data and materials have been made publicly 
available at the figshare repository and can be accessed at 
https://doi.org/10.6084/m9.figshare.14501985.

Please see the Data Supplement for detailed methods.

RESULTS
snATAC-Seq Identifies the Major Constituent 
Cell Types of Atherosclerotic Lesions
To unravel the molecular composition of human ath-
erosclerotic lesions, we optimized a protocol to obtain 
highly pure suspensions of nuclei from 3 endarterec-
tomy samples and profiled chromatin accessibility at 
the level of individual cells using snATAC-Seq. In total, 
we obtained ≈7000 single-cell ATAC-Seq (assay for 
transposase-accessible chromatin with sequencing) pro-
files (sample 1: 1816 nuclei, sample 2: 2372 nuclei, 
sample 3: 2821 nuclei) with a median depth of 7129 
fragments per nucleus. Projection of the combined data-
set for visualization by t-distributed stochastic neighbor 
embedding followed by automated clustering identi-
fied 15 clusters (Figure 1A), which we manually anno-
tated to 5 major nuclear populations based on known 
cell type–specific genes (Figure 1B and Methods in the 
Data Supplement) including ECs, smooth muscle cells 
(SMCs), monocyte/macrophages, natural killer/T cells, 
and B cells. To confirm the cell type identities, we cal-
culated the top chromatin accessibility marker genes 
(Figure 1C) and analyzed genome-wide enrichment of 
TF motifs in accessible chromatin regions (Figure 1D). 
Importantly, the marker gene accessibility was highly 
consistent throughout the 3 samples (Figure IA in the 
Data Supplement). To investigate the how the chromatin 
accessibility based predictions correlate with expression 
of the predicted transcription factors in the correspond-
ing cell types, we reprocessed the published single-cell 
RNA sequencing (scRNA-Seq) dataset from human 
atherosclerotic arteries (n=4) by Wirka et al1 and anno-
tated each cell cluster using known cell type marker 
genes (Figure II and III in the Data Supplement). A large 
majority of the TFs identified were also associated with 
cell type–specific gene expression in scRNA-seq (Fig-
ure IB in the Data Supplement), confirming their likely 
role in defining cell type–specific enhancer landscapes. 
For example, our analysis confirmed key EC-specific TF 
SOX (SRY-related HMG-box) 13, macrophage-specific 
TF SPI1 (Spi-1 proto-oncogene; encoding PU.1, purine-
rich box-1), SMC-specific TF TEAD3 (TEA Domain Tran-
scription Factor 3), and natural killer/T-cell–specific TF 
ETS1 (ETS proto-oncogene 1) (Figure 1E and Figure IB 
in the Data Supplement).

To discover the regulatory elements, we identified 
accessible chromatin regions in each major cell type 
using HOMER (Hypergeometric Optimization of Motif 
EnRichment).5 Altogether, we identified 328,670 peaks 
with 30 000 to 98 000 peaks per cell type (Figure 1F, 
Tables I and II in the Data Supplement). Somewhat more 
peaks were identified from macrophages, T cells, and 
SMCs, possibly due to a higher overall number of nuclei 
in these clusters. Importantly, we found that a ≈4% frac-
tion of all peaks (12 795) was shared across all 5 cell 
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Figure 1. Clustering and identification of cell type clusters in human atherosclerosis single-nucleus assay for transposase-
accessible chromatin with sequencing (snATAC-Seq) data.
A and B, t-distributed stochastic neighbor embedding (tSNE) projection of the 7009 snATAC-Seq profiles represented as (A) 15 clusters 
identified using automated clustering and (B) the 5 manually annotated clusters corresponding to smooth muscle cells (SMCs), endothelial 
cells (ECs), macrophages (MPs), T/natural killer (NK)-cells and B cells. C, Dot plot demonstrates the top chromatin accessibility marker genes 
of each atherosclerotic lesion cell type. Dot size corresponds to the proportion of cells within the cluster that displays gene accessibility (% 
access.), and dot color intensity corresponds to the average accessibility level (avg. acc.; counts in the gene body and promoter region, depth-
normalized to 10,000 total counts per cell and log-transformed). For each cell type, the top 10 markers by fold change (provided false discovery 
rate [FDR]<0.05 by Wilcoxon rank-sum test) were selected for plotting. D, Heatmap showing differences in chromatin accessibility for the 
TF (transcription factor) motifs with the greatest accessibility variability between the 5 major atherosclerotic lesion cell populations. Color bar 
displays the chromVAR (Chromatin Variation Across Regions) accessibility deviation Z score, and motifs were required to satisfy FDR<0.05 
(Wilcoxon rank-sum test) comparing one cell type vs all other cells. E, tSNE projection of selected TF motif accessibility Z scores. F, UpSet plot 
of intersected peaks among cell types. The 20 most populated intersection groups are presented. G, Pie chart representing the relative fraction 
of common or shared snATAC-Seq peaks in the different genomic annotations. ETS1 indicates ETS proto-oncogene 1, transcription factor; PU.1, 
purine-rich box 1; SOX, SRY-related HMG-box; TEAD3, TEA domain transcription factor 3; and UTR, untranscribed region.
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type clusters, whereas ≈40% of the peaks (127 702) 
were unique to one single-cell cluster (Figure 1F, Table I 
in the Data Supplement). As expected, over 66% of the 
common peaks were promoter-associated (±1 kb of a 
transcription start site [TSS]), whereas 90% of the cell 
type–specific peaks were found at intergenic and intra-
genic enhancer sites, indicating that cell type specificity is 
mainly reflected by the enhancer repertoire (Figure 1G).

Analysis of Cell Subtype Chromatin Profiles in 
Relation to Their Gene Expression
In addition to the 5 major cell types discussed above, 
recent scRNA-Seq studies have identified several sub-
types of these cells in humans.1–4 In line with this, auto-
mated clustering of our dataset identified 15 subtypes of 
cells (Figure 1A). We, therefore, sought to analyze these 
cell subtypes in relation to the gene expression profiles. 
To achieve this, we performed coembedding of the snA-
TAC-Seq with scRNA-seq1 data (Figure 2A and 2B). This 
allowed the prediction of cell types for snATAC-Seq data 
based on distances to the preannotated cells in scRNA-
seq data. We identified corresponding cell populations for 
20 subtypes of cells (Figure 2A), with the largest subdivi-
sion seen among the myeloid cells (3 macrophage and 1 
monocyte subgroup) and in the continuum of pericyte–
SMC–fibroblast axis (8 subtypes). Comparison of the 
scRNA-Seq–derived annotations with the labels derived 
from only snATAC-Seq (Figure 1A and 1B) did not reveal 
major conflicts (Figure IV in the Data Supplement). Nota-
bly, our snATAC-Seq dataset was low in monocytes, 
fibroblasts, and pericytes, likely due to the endarterec-
tomy samples having less complete representation of 
the vessel wall (eg, missing adventitia) compared to the 
whole artery sections used in the scRNA-Seq.

Genome-wide comparison of the accessibility profiles 
between the subtypes of cells suggested a high similar-
ity of open chromatin regions (Figure 2C). We, therefore, 
focused our deeper characterization of the regulatory 
region differences on major macrophage (clusters 5, 11, 
and 13) and SMC lineages (clusters 3, 4, and 14) that 
were well represented in our snATAC-Seq data. In line 
with the current consensus,21 3 main macrophage sub-
sets, proinflammatory (cluster 5, expressing IL1B, CCL3), 
anti‐inflammatory lipid-associated (cluster 11, express-
ing TREM2, SPP1, MS4A7, and APOE), and resident‐like 
(cluster 13, expressing LYVE1, S100A9) macrophages, 
were identified based on marker gene expression (Fig-
ure 2D; Figures V and VI in the Data Supplement). To iden-
tify the key TFs that occupy the cell type–specific open 
chromatin regions, we examined the patterns of motif 
enrichment throughout these 3 subtypes. As expected, 
the inflammatory macrophages showed enrichment of 
proinflammatory TF motifs, such as RELA (RELA proto-
oncogene, NF-kB subunit) and AP-1 (activator protein 
1) factors, whereas the lipid-associated macrophages 

were enriched for IRF1 (interferon regulatory factor 1), 
SP4 (Sp4 transcription factor), and SP2 (Sp2 transcrip-
tion factor). On the other hand, the regulatory elements 
of resident-like macrophages exhibited enrichment of 
KLF4 (Kruppel like factor 4) and NFATC2 (nuclear factor 
of activated T cells 2) motifs. These results are largely in 
line with our recent report, where the analysis was based 
on carotid endarterectomy samples (n=18) but where 
the proinflammatory macrophages were further subdi-
vided into 2 clusters.3

Several recent studies have demonstrated SMC 
reprogramming to other cell types such as fibromyo-
cytes, osteogenic cells, and macrophage-like cells.1,4 We, 
therefore, applied Slingshot22 to infer cell lineages in the 
snATAC-Seq and scRNA-Seq coembedded space (Fig-
ure 2A and 2B). Trajectories were identified within the 3 
major clusters including the natural killer/T cells, myeloid 
cells, and the pericyte–SMC–fibroblast axis, whereas no 
links were predicted between them (Figure VII in the Data 
Supplement). This result, together with the evidence from 
recent SMC lineage tracing studies in mouse models 
of atherosclerosis demonstrating predominant SMC to 
fibromyocyte transformation,1,4,23–25 motivated us to char-
acterize this transition in more detail at the epigenomic 
level. Monocle 226 was used to perform the pseudo-
temporal analysis and uncover DNA motifs that may be 
important in defining the differentiation path. Our analy-
sis of the chromatin accessibility changes corroborated 
the path of SMC de-differentiation into fibromyocytes 
previously supported by scRNA-Seq.1,4 As expected, 
the fibromyocytes were less enriched for NFY (nuclear 
transcription factor Y) and SRF (serum response fac-
tor) motifs that were highly enriched in the differentially 
accessible regions in SMCs (Figure 1D and Table III in 
the Data Supplement). In contrast, a significant genome-
wide enrichment of AP-1, NFATC2, and STAT (signal 
transducer and activator of transcription) 1:STAT2 (and 
the similar motif of IRF1) motifs was seen along the 
SMC trajectory as these cells become more fibroblast-
like. The activity of these TFs was further supported by 
the increased accessibility of the promoters encoding for 
NFATC1 and NFATC2 (Figures VIII and IX in the Data 
Supplement). Interestingly, the genome-wide accessibil-
ity of KLF4 motif only exhibited a nonsignificant trend of 
increase towards the end of the pseudotime, despite the 
important role of KLF4 in SMC reprogramming24 (Figure 
X in the Data Supplement). Altogether, our pseudotem-
poral analysis identifies several transcription factors that 
could play a role in the process of SMC transdifferentia-
tion that merit further research.

In Vivo Enhancer Landscapes Are Highly 
Similar to In Vitro Cultured Cells
As a plethora of studies has characterized the enhancer 
repertoires of the cultured vascular cells or blood-derived 
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Figure 2. Identification of subtypes of macrophages (MPs) and smooth muscle cells (SMCs) based on the integration of single-
cell gene expression and chromatin accessibility data.
A and B, Coembedded UMAP representation of both single-nucleus (sn)ATAC-Seq cells and single-cell RNA sequencing (scRNA-Seq) cells, 
showing (A) the cell type annotation and (B) the data type of origin. C, Row-normalized chromatin accessibility profiles for snATAC-Seq peaks 
reveals high similarity of cell subtypes. D, Dot plot demonstrating the top gene expression markers of the 3 MP subtypes. Dot size corresponds to 
the proportion of cells within the cluster that express the gene, and dot color intensity corresponds to average expression level (gene counts depth-
normalized to 10 000 total counts per cell and log-transformed). E, Heatmap showing differences in chromatin accessibility for the TF (transcription 
factor) motifs with the greatest accessibility variability between the 3 MP subtypes. Color bar displays the chromVAR accessibility deviation Z score. 
F–H, Single-cell ATAC trajectory analysis of SMC lineage cells shown colored by (F) pseudotime, (G) cluster assignment, and (H) examples of 
differentially accessible motifs that vary significantly along the inferred trajectory. In D and E, results were required to pass Wilcoxon rank-sum test 
false discovery rate (FDR)<0.05 comparing one cell type vs all other cells. AP-1 indicates activator protein 1; BATF, basic leucine zipper ATF-like 
transcription factor; B, B cell; EC, endothelial cells; FB, fibroblast; JUN, Jun proto-oncogene, AP-1 transcription factor subunit; MO, monocyte; 
NFATC, nuclear factor of activated T cells 1; NK, natural killer; STAT, signal transducer and activator of transcription 1; and T, T cell.
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Figure 3. Comparison of in vivo–specific accessible regulatory elements to chromatin accessibility in cell culture models.
A, Overlap of in vitro and in vivo regular (nonsuperenhancer) cisregulatory element (CRE) counts by cell type. B, Motif enrichment within in vivo–
specific single-nucleus (sn)ATAC-Seq peaks. Selected JASPAR (http://jaspar.genereg.net/) motif logos are presented. C, Top molecular function and 
biological process of the genes within 100 kb from the in vivo–specific CREs, analyzed using GREAT (Genomic Regions Enrichment of Annotations 
Tool). D, Overlap of in vitro and in vivo superenhancer (SE) counts by cell type. E, Top biological process of the nearby genes located within 1 MB of 
the superenhancer. F, Pseudobulk coverage track visualization of snATAC-Seq signal at the cell type–specific superenhancers. B indicates B cell; 
chr, chromosome; EC, endothelial cells; ECM, extracellular matrix; FOX, Forkhead box; HOX, homeobox; IRF1, interferon regulatory factor 1; MEF2C, 
myocyte enhancer factor 2C; MP, macrophage; NFATC2, nuclear factor of activated T cells 2; NK, natural killer; NR2F2, nuclear receptor subfamily 2 
group F member 2; NS, not significant; POU4F2, POU class 4 homeobox 2; ROS, reactive oxygen species; SMC, smooth muscle cell; and T, T cell.

http://jaspar.genereg.net/
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immune cells, we next sought to compare in vitro regula-
tory landscapes to those in tissue. To achieve this, we 
collected public bulk ATAC-Seq data from in vitro cells 
corresponding to the 5 major cell types identified in Fig-
ure 1, cultured in basal or proinflammatory conditions 
(Table IV in the Data Supplement), and compared them 
to the regulatory elements defined by snATAC-Seq. Our 
results demonstrate that the in vivo enhancer profiles are 
highly concordant with the in vitro profiles, with ≈70% to 
90% of regions identified in vivo overlapping with those in 
corresponding cultured cells (Figure 3A). To gain insights 
into mechanisms driving tissue-specific enhancer land-
scapes, we subjected the in vivo–only regions to de novo 
motif analysis. The results (Figure 3B) identified TF rec-
ognition motifs associated with each cell type, and the 
corresponding TFs further exhibited cell type–specific 
expression pattern and motif accessibility (Figure IB in 
the Data Supplement, Figure 1D), as exemplified by AP-1 
motif enrichment in macrophages and NFI (nuclear fac-
tor I) A/C in SMCs. These results could indicate a higher 
cellular heterogeneity and the existence of additional 
subtypes of cells in tissues, compared to the cell cultures 
commonly used as in vitro model systems. In addition, 
we identified several motifs that were enriched in several 
cell types in vivo compared to in vitro cultures, includ-
ing MEF2 (myocyte enhancer factor 2), HOX (homeo-
box), SOX, POU (Pit-Oct-Unc) domain, FOX (Forkhead 
box), NFATC2, and NR2F2 (nuclear receptor subfamily 
2 group F member 2) (COUP-TFII, COUP transcription 
factor 2) motifs, suggesting that developmental TFs could 
be more active in the tissues (Figure 3B). We extended 
these investigations by analyzing the annotations of 
the nearby genes of in vivo–specific peaks. A common 
gene ontology for nearby genes in macrophages, SMCs, 
and ECs was cell adhesion, whereas for immune cell in 
vivo–unique enhancers immune system process sug-
gesting that the tissue context may have a major impact 
on effector functions associated with these cell types in 
atherosclerosis, compared to basic cell culture models 
(Figure 3C).

Previous studies have demonstrated that superen-
hancers, clusters of multiple enhancers, drive the expres-
sion of genes important for cell identity and function.20 
We, therefore, sought to identify in vivo–specific super-
enhancers and investigate if they were enriched around 
genes central to the cell type–specific functions. We 
detected a total of 2363 superenhancers in the 5 prin-
cipal cell populations of which only 193 were shared 
between cell types (Tables I, V, and VI in the Data Sup-
plement). Interestingly, the overlap of in vitro and in vivo 
superenhancers was smaller (average 57%) compared 
to that of regular enhancers (average 82%), suggesting 
that they could be more affected by the tissue context 
(Figure 3D), although this could also be affected by the 
representation of samples and treatment conditions in 
the superenhancer database27 from which most of the 

regions were selected (Table V in the Data Supplement). 
The superenhancers were associated with gene ontol-
ogy terms representative of the cell type function in the 
tissue, such as EC superenhancers associating with 
genes implicated in angiogenesis and SMC superen-
hancers with genes related to extracellular matrix (ECM) 
organization (Figure 3E). Accordingly, near the strongest 
superenhancers were genes with important roles for the 
cell identity such as ETS1, CDH5, and PODXL for ECs, 
CALD1 and PDGFRB for SMCs, CEBPA, NLRP3, and 
FPR2 for macrophages, CENPM and CCR6 for B cells 
and CD247, BCL11B and CD8A/B for T cells (Figure 3F 
and Figure XI in the Data Supplement). Altogether, this 
provides the first description of superenhancers in the 
lesional cell types that could be used to guide further 
research looking into the cellular control of atherogenesis.

Linking Cell Type–Specific Regulatory Regions 
to Target Genes Using Cis-Coaccessibility 
Networks
Recent studies have demonstrated that arterial tis-
sue contributes the most to the identification of CAD/
MI–associated genes (cis-eQTL discovery).28 We were, 
therefore, interested to investigate which cell types of 
the arterial wall would show the highest enrichment 
of genetic variants associated with CAD/MI or related 
traits in their open chromatin regions. The results demon-
strated that SMCs and ECs show the highest enrichment 
of GWAS SNPs for CAD and circulatory system-related 
traits such as pulse and blood pressure (Figure 4A; Table 
VII in the Data Supplement). Consistent with the overlap 
of CAD-related traits with hyperlipidemia and type 2 dia-
betes,7 significant, although somewhat lower enrichment 
was also seen for these traits.

One of the significant challenges in understanding the 
underlying functional mechanisms of noncoding CAD/MI 
GWAS variants is the identification of their target genes, 
as the nearest gene approach is recognized to be impre-
cise. This has spurred studies based on chromosome 
conformation capture techniques to nominate target 
genes. This approach has been recently used to assign 
target genes of GWAS SNPs in cultures of human aor-
tic ECs and coronary artery SMCs.29,30 However, these 
approaches are limited by the notion that physical inter-
action does not necessarily mean functional interactions 
between an enhancer and a gene. Instead of direct func-
tional interaction, the connections could also represent 
random interactions or bystander interactions (ie, DNA 
close to a direct interaction will also be close as a con-
sequence of the former).31 To mitigate this limitation, we 
adopted a recently published approach, Cicero,32 which 
predicts cisregulatory DNA interactions from single-cell 
chromatin coaccessibility and further identifies cis-coac-
cessibility networks (CCANs) as modules of regulatory 
elements that are highly coaccessible with one another. 
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Figure 4. Enrichment of coronary artery disease (CAD)/myocardial infarction (MI) genome-wide association study (GWAS) 
signals in cell type–specific open chromatin and their linkage to potential target genes.
A, Enrichment of GWAS single-nucleotide polymorphisms (SNPs) for cardiometabolic traits in single-nucleus (sn)ATAC-Seq peaks of the 5 major 
cell types detected in atherosclerotic lesion samples. B, Mean accessibility of all the peaks within the 3427 cis-coaccessibility network (CCAN) 
displayed as row-normalized values by cell type. C, Pseudobulk snATAC-Seq coverage track (light blue) visualization of 2 smooth muscle cell 
(SMC)-specific CCANs centered around the TBX2 (chr17:59018300-59570950) and the SEMA5A (chr5:9014150-9768900) genes. The  
peak-peak cis-coaccessibility is shown by arches for the pairs that exhibit Cicero score >0.5. D, Selected promoter-associated snATAC-Seq 
peaks that harbor CAD/MI GWAS SNPs and exhibit cell type–specific chromatin accessibility and gene expression. The row (Continued )
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We identified 3427 CCANs with a median CCAN size 
of 400 kb (Table VIII in the Data Supplement). Twenty-
seven percent (910/3427) of CCANs were shared 
between the 5 principal cell types suggesting that major-
ity of them are cell type selective (Figure 4B). For exam-
ple, TBX2 and SEMA5A loci presented in CCANs that 
were highly accessible only in SMCs (Figures 4C and 
Figure XII in the Data Supplement). Notably, less CCANs 
were identified for B cells and ECs, possibly due to the 
lower number of nuclei in these clusters.

Next, we overlapped the CAD/MI GWAS SNPs with 
the snATAC-Seq peaks and the CCANs (Table IX and 
X in the Data Supplement). Altogether, 423 CAD/MI 
SNPs fell into 259 snATAC-Seq peaks, representing 
half of the candidate loci for CAD/MI and encompass-
ing 4% (134/3427) of the CCANs detected across the 
atherosclerotic lesion cell types. Thirty-eight percent 
of the SNPs (98/259 SNPs) were in peaks proximal 
to promoters (corresponding to a total of 109 genes) 
and could thus be assigned to a particular gene (Table 
XI in the Data Supplement). These included several cell 
type–specific peaks which were also associated with 
cell type–specific gene expression based on scRNA-
Seq,1 including AGT, EDNRA, TBX2, SEMA5A, PRDM6, 
PDLIM7, ARHGEF26 specific for human aortic smooth 
muscle cells (HASMCs), LDLR, SERPINH1, ARHGEF12, 
VAMP5, PLEKHG1 specific for human aortic endothe-
lial cells (HAECs), and VAMP8, CENPW, DAGLB, and 
GAL3ST4 specific for macrophages (Figure 4D). Inter-
estingly, subtype differences were also observed, as 
exemplified by higher accessibility and expression of 
VAMP8 in resident-like macrophages and of TBX2 in 
SMCs.

As the majority of the CAD SNP-containing enhancers 
were located outside of promoters, we used Cicero coac-
cessibility scoring to identify their putative target genes 
(promoters). Using a stringent coaccessibility threshold 
of >0.5 (Methods and Figure XIII in the Data Supple-
ment), we identified 1182 significant peak pairs, includ-
ing 883 promoters (Table XII in the Data Supplement). 
Interestingly, ≈40% of the genes (322/883) exhibited 
cell type specificity where both chromatin accessibility 
and gene expression were among the top 10% of all 
the studied cell types. Gene ontology analysis of these 
genes identified distinct cell type–specific functions that 

could be implicated in disease cause (Figures 4E and 
Figures XIV and XV in the Data Supplement). For exam-
ple, ECM organization and blood vessel development 
were enriched among the SMC-specific target genes, 
whereas EC-specific target genes were enriched for 
Wnt signaling pathway and embryonic morphogenesis. 
In contrast, the candidate genes which did not connect 
to cell type–specific regulatory mechanism (561/883) 
were enriched for more general cellular processes such 
as DNA and RNA metabolism (Figure 4E; unassigned). 
The enrichment for cytokine production and response 
to DNA damage was explained by extensive sharing of 
chromatin accessibility between the immune cells where 
the genes could not be reliably assigned to one cell type 
(Figure 4B). In summary, our analysis allowed the iden-
tification of an associated target gene for the majority 
(241/259 peaks) of the open chromatin regions harbor-
ing CAD risk SNPs (Table XII in the Data Supplement) 
and provide evidence of cell type–dependent and cell 
type–independent mechanisms.

Prioritization of CAD GWAS Loci That Affect 
Gene Expression in Arterial Tissues
eQTL analysis is an important tool for interpreting GWAS 
findings and allows us to explain regulatory polymorphism 
associations that influence the disease through altered 
gene expression in certain tissues. Using our new cata-
log of stringent Cicero-inferred chromatin coaccessibility 
connections, we next sought to prioritize the CAD GWAS 
SNPs by leveraging all the Genotype-Tissue Expression 
(GTEX) v8 significant variant–gene associations in arte-
rial tissues (coronary, aorta, tibial). Altogether, 185 of 
the 259 snATAC-Seq peaks harboring CAD SNPs also 
had an eQTL supporting that SNP, representing a total 
of 264 genes. Importantly, at the chromatin accessibility 
level, ≈50% (129/264) of these SNP–gene pairs exhib-
ited Cicero coaccessibility score >0.5 between the SNP-
containing peak and the gene promoter, lending weight 
to the cis-eQTL connection (Figure XIIIB in the Data 
Supplement). Importantly, for 80 of these genes, the risk 
SNPs were located in one single-enhancer element (Fig-
ure XVI in the Data Supplement).

The majority of snATAC-Seq peaks (≈60%) were 
accessible in multiple cell types, and this was largely 

Figure 4 Continued. normalization was performed separately for snATAC-Seq (peak cuts per cell) and single-cell RNA sequencing (scRNA-Seq) 
(transcripts per million; TPM) data. The top 10% row value is shown in red. E, Gene ontology enrichment for cell type–specific connections between a 
promoter and a peak containing a CAD/MI SNP (peak-promoter coaccessibility score >0.5). Cell type specificity was defined as peak accessibility and 
gene expression signal within the top 10% among all the cell types studied but only passed that threshold in one cell type. The resulting gene lists were 
profiled for over-representation of Gene Ontology Biological Process categories. The results were corrected for multiple testing to an experiment-wide 
threshold of a=0.05, and up to 7 most significant categories (provided Padj<0.05) were picked for each gene list for plotting. F, The arterial cis–expression 
quantitative trait loci (eQTL) SNPs and the associated gene are shown for snATAC-Seq peaks that exhibit peak-promoter coaccessibility score >0.5. 
Peaks and genes were further filtered for cell type specificity by requiring peak accessibility and gene expression level to be within the top 10% among all 
the cell types studied but only one of the cell types (see Figure XVI in the Data Supplement). Only one SNP per peak is shown. If ≥2 peaks demonstrate 
cell type–specific accessibility, only one SNP is listed and p denotes the number of total cell type–specific peaks. For full list see Table XIII in the Data 
Supplement. B indicates B cell; chr, chromosome; EC, endothelial cells; dep., dependent; ECM, extracellular matrix; MP, macrophage; NK, natural killer; pos, 
position (coordinate) in chromosome; reg., regulation; SRP, signal recognition particle; and T, T cell; and Wnt, Wingless-related integration site.
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explained by extensive sharing of peaks between 
immune cells. However, the remaining ≈40% of the 
peaks exhibited cell type–specific chromatin accessibility 
and frequently also cell type–specific expression of the 
gene associated by peak-promoter coaccessibility (Table 
XIII in the Data Supplement). Such gene-regulatory ele-
ments pairings are exemplified by macrophage-specific 
accessibility and expression of IL6R, PDXK, and DAGLB, 
HASMC-specific expression of SEMA5A, LOXL1, CKB, 
FNDC1, LMOD1, LRP1, MFGE8, SUSD2, COL6A3, 
and COL4A1 as well as HAEC-specific expression of 
PROCR, BCAR1, SLK, and PLEKHA7 (Figure 4F, Fig-
ures XVII and XVIII in the Data Supplement).

Altogether, our analysis allowed the prioritization and 
identification of the potential causal SNP(s) and the 
associated target gene(s) for ≈50% (124/259) of the 
atherosclerotic lesion open chromatin regions carrying 
CAD/MI–risk SNPs. We present several examples where 
the chromatin accessibility and gene expression could be 
assigned to one cell type allowing deeper understanding 
of the mechanisms by which the risk variants could act.

EXPERIMENTAL FINE-MAPPING OF THE 
CAUSAL VARIANTS IN ECS AND SMCS
Finally, we sought to fine map the CAD/MI–associated 
potential regulatory variants by experimental analysis of 
the SNP effect in primary human aortic ECs and SMCs 
by investigating if the genotypes are associated with dif-
ferences in epigenetic molecular quantitative trait loci or 
if the genotypes display allele-specific enhancer activ-
ity under proatherogenic conditions, respectively (Fig-
ure 5A). To further link the functional variants to target 
genes, we used the peak-promoter coaccessibility and 
cis-eQTL evidence from GTEX v8 arterial tissues as 
described above. In addition, we analyzed correlation 
between the peak accessibility and the target gene 
expression in corresponding snATAC-Seq and scRNA-
Seq cell populations (Figure 5A; Methods and Figure 
XIX in the Data Supplement) and investigated cis-eQTL 
associations in pure cell cultures of HAECs and HASMCs 
from genetically diverse donors.

We have previously identified thousands of genetic 
variants associated with differential read abundance 
(allelic bias) in ATAC-seq, histone 3 lysine 27 acetylation 
(H3K27ac) chromatin immunoprecipitation sequencing 
(ChIP-Seq), or TF ChIP-Seq data by collecting data from 
primary cultures of ECs originating from aortic explants 
and subsequently cultured in 2 different conditions: con-
trol (untreated) and proinflammatory cytokine IL (inter-
leukin) 1β treatment.34 We, therefore, sought to overlay 
this information with the CAD/MI GWAS SNPs that were 
located in snATAC-Seq peaks and for which both the 
SNP-containing peak and a coaccessible promoter were 
open (cuts per cell >0.1) in atherosclerotic lesion ECs. 

Altogether, 32 SNPs with significant epigenetic molecu-
lar quantitative trait loci were identified, corresponding 
to 19 peaks (Figure 5B). Importantly, in the majority of 
the peaks, the SNP effect was context-specific, modulat-
ing the epigenetic signature in only one treatment con-
dition (control or IL1β). For this set of genetic variants, 
96 potential target genes were identified by analyzing 
peak-promoter coaccessibility, RNA level-ATAC acces-
sibility correlation, and cis-eQTL association. Seven of 
these were further confirmed to represent cis-eQTLs 
in cultured HAECs including FES, AXL, CLCN6, NEK9, 
ACYP1, EIF2B2, and MLH3 (Figure 5B and 5C and Fig-
ure XX in the Data Supplement). Taken together, these 
data demonstrate successful prioritization of functional 
regulatory variants that direct target gene expression in 
human ECs.

Secondly, we applied the massively parallel reporter 
assay method self-transcribing active regulatory region 
sequencing (STARR-Seq) in HASMCs to study allelic 
regulatory activities of SNPs.35 First, we constructed 
a plasmid library encompassing accessible chromatin 
regions that overlap with CAD/MI GWAS SNPs (leads 
or proxies). From 3 to 5 of the most common haplotypes 
(minor allele frequency [MAF]>1%) in the European 
population were included for each region. The library 
was transfected to HASMCs, which were subsequently 
exposed to cholesterol to induce their phenotypic switch-
ing to cells that have been shown to resemble modulated 
SMCs found in atherosclerotic plaques.36,37 In line with 
this, cholesterol loading led to a reduction in contractile 
markers ACTA2, TAGLN, MYL9, CALD1 and the induction 
of synthetic and inflammatory markers IL1B, IL1A, KLF4, 
and LGALS3 (Figure XXI in the Data Supplement). Read 
counts for the 3 biological replicates of STARR-Seq 
were highly correlated (r>0.93; Figure XXIIA in the Data 
Supplement). For analysis of differential allelic activity, all 
pairwise haplotype-versus-haplotype comparisons that 
were informative (ie, varying in genotype) for at least one 
CAD/MI SNP overlapping an snATAC-Seq peak were 
performed. This resulted in 959 pairwise haplotype com-
parisons across 351 STARR-Seq library regions, repre-
senting 376 CAD/MI–associated SNPs and a total of 
238 snATAC-Seq peaks. A total of 34 CAD/MI SNPs, 
corresponding to 26 snATAC-Seq peaks, were signifi-
cantly associated with an allelic effect (FDR<5%; Figure 
XXIIB in the Data Supplement). Of these, 27 SNPs had 
a GTEX cis-eQTL in arterial tissues across a total of 38 
genes (Figure 6A), reproducing several of our predicted 
causal variants from Figure 4F. In addition, 2 genes rep-
resented further cis-eQTLs in cultured HASMCs (FHL3 
and SNHG18; Figure XXIII in the Data Supplement). 
Importantly, several genes represented high-confidence 
targets for allele-specific enhancer variants with the 3 
lines of association evidence, as exemplified by IL6R, 
COL4A1, DAGLB, FHL3, PDXK, and highly SMC-spe-
cific genes MFGE8, LOXL1, TBX2, SEMA5A, STOML1, 
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Figure 5. Identification of the coronary artery disease (CAD)/myocardial infarction (MI) functional variants using information 
from molecular quantitative trait loci (molQTLs).
A, Schematic representing the experimental fine-mapping of the causal variants in human aortic endothelial cells (HAECs) and human aortic 
smooth muscle cells (HASMCs). B, Dot plot summarizing the significant molQTLs that overlap CAD/MI single-nucleotide polymorphism (SNP)-
containing single-nucleus (sn)ATAC-Seq peaks and where both the peak and the promoter are accessible in ECs. The epigenetic assays were 
carried out using bulk epigenomics methods on a panel of human aortic EC cultures derived from genetically diverse donors. Dot size corresponds 
to statistical significance (false discovery rate [FDR]<0.05, determined by RASQUAL,33 n=21–4434) and dot color corresponds to the allele-
specific ratio (blue, more reference allele reads; red, more alternative allele reads). The most potential predicted target genes, which demonstrate 
peak-promoter coaccessibility score >0.5, peak accessibility–gene expression correlation > 0.5, or cis–expression quantitative trait loci (eQTL) 
association in Genotype-Tissue Expression (GTEX) v8 arterial tissues (Q value≤0.05) or HAECs (FDR<0.05),34 are shown. *Presence of other 
single-nucleotide polymorphisms (SNPs) with identical effect in the same snATAC-Seq peak. For the complete gene list, see Table XIV in the Data 
Supplement. C, Viewpoint plots centered at the molQTL SNPs for FES and BCAR1 loci. Arcs depict peak-promoter coaccessibility (blue arcs) 
and the correlation between peak accessibility and gene expression (red arcs). The most highly supported target genes are highlighted in bold. 
Ctrl indicates control conditions; ERG, ETS transcription factor ERG; H3K27ac, histone 3 lysine 27 acetylation; hap, haplotype; IL, interleukin; LD, 
linkage disequilibrium; ORI, origin of replication with core promoter functionality; pA, poly(A) site; and TF, transcription factor.
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Figure 6. Identification of the coronary artery disease (CAD)/myocardial infarction (MI) functional variants using self-
transcribing active regulatory region sequencing (STARR-Seq) in human aortic smooth muscle cells (HASMCs).
A, Bar plot summarizing the CAD/MI single-nucleotide polymorphisms (SNPs) that demonstrated significant allele-specific enhancer (ASE) 
activity in STARR-Seq performed in cholesterol-loaded primary HASMCs (false discovery rate [FDR] < 0.05 determined by mpralm,38 n=3). 
Whenever available, the top 3 target genes predicted by peak-promoter coaccessibility, peak accessibility–gene expression correlation, and 
cis–expression quantitative trait loci (eQTL) association in Genotype-Tissue Expression (GTEX) v8 arterial tissues (Q value ≤0.05) are shown. 
Peak-promoter pairs with a peak-promoter coaccessibility score >0.5 and peak accessibility–gene expression correlation >0.5 were considered 
connected. rs6496126 was not shown as no target genes were predicted. For the complete list, see Table XV in the Data Supplement. B, 
Viewpoint plot of peak-promoter coaccessibility, peak accessibility–gene expression correlation, and the single-nucleus ATAC-Seq tracks centered 
at the STARR-Seq significant SNPs rs734780, rs28522673, and rs61776719. The predicted target genes are highlighted in bold. B indicates B 
cell; EC, endothelial cells; FMC, fibromyocyte; MP, macrophage; NK, natural killer; and SMC, smooth muscle cell; and T, T cell.
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Figure 7. Association of the coronary artery disease (CAD)/myocardial infarction (MI) variants with smooth muscle cell (SMC) 
phenotypes.
A, Heatmap showing the effect sizes for significant associations between 12/34 CAD/MI variants and 12 SMCs phenotypes determined from 151 
human aortic smooth muscle cell (HASMC) donors using FaST-LMM (Factored Spectrally Transformed Linear Mixed Models).40 12 of the 34 CAD/
MI loci identified in genome-wide association study (GWAS) showed a nominal association (P<0.05) with at least one SMC phenotype. Rows show 
12 SMC phenotypes, and columns show the index variants in the CAD/MI loci. The color key of the correlations is shown on the left. The colors refer 
to single-nucleotide polymorphism (SNP) weight (β) direction and magnitude, ranging from −2.5 (blue) to 2 (red). Significant associations (P<0.05) 
are indicated with a colored box. Negative effect sizes (blue) indicate that CAD/MI risk allele was associated with a lower SMC phenotype. In contrast, 
positive effect sizes (red) indicate that CAD/MI risk allele was associated with a higher SMC phenotype. Whenever the expression of a predicted target 
gene also correlates with the trait, the plot (B–E) is listed after the rsID. B, Correlation of KLF4 (rs944172 locus) expression with SMC proliferation 
relative to control and to PDGF-BB (platelet-derived growth factor BB) stimulus. C, Correlation between HAPLN3 (rs734780 locus) expression and 
the proliferation response to TGF (transforming growth factor) β1 (D) Correlation between CSK, ULK3, SCAMP5, C15orf39 and UBL7 (rs1543927 
locus) and calcification under the osteogenic stimulus. E, Correlation between TMED9, DBN1, PRR7, and FAM193B (rs335428 locus) and proliferation 
response to IL (interleukin) 1β. AUC indicates area under the receiver operator characteristic curve; and TPM, transcripts per million.
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and KANK2 (Figures 6A and 6B and Figure XXIV in the 
Data Supplement). As seen for ECs, often the same reg-
ulatory SNP was predicted to affect the expression of 
several genes within one genomic locus, as shown for 
rs734780 (MFGE8, HAPLN3, and ACAN), rs28522673 
(LOXL1, STOML1, and ISLR), and rs61776719 (FHL3, 
MANEAL, INPP5B, C1orf122; Figure 6B and Figures 
XXV through XXVII in the Data Supplement).

Our analysis was able to pinpoint functional SNPs 
and their target genes in CAD-relevant cell types. How-
ever, to provide evidence of causality, it is important to 
study the impact of CAD/MI–associated variants on 
phenotypes relevant to atherosclerosis. To this end, we 
analyzed the association of the 34 fine-mapped CAD/
MI SNPs from HASMCs with calcification, proliferation, 
and migration as previously described.39 Our results 
demonstrate a nominal association (P<0.05) of 11 out 
of 34 CAD/MI variants with the SMC phenotypes (Fig-
ure 7A). Since the variants were shown to associate with 
the expression of several genes, we further correlated 
the gene expression with the trait to investigate which of 
the genes could mediate the association. We observed 
significant correlations between SMC phenotypes and 
gene expression for 11 CAD/MI–associated genes 
(Figure 7B). These were exemplified by significant cor-
relation between proliferation and gene expression for 
KLF4 and TMED9 whereas the expression level of CSK 
correlated with calcification. Our integrative analyses 
thus identified several CAD/MI–associated genes that 
could modulate CAD risk by affecting SMC phenotypes 
that could serve as basis for future research exploring 
the molecular mechanisms by which the CAD/MI GWAS 
variants and associated target genes affect the disease 
development.

DISCUSSION
Here we investigated the chromatin accessibility in cell 
types of human atherosclerotic lesions and provided a 
resource of 7000 snATAC-seq profiles representing 5 
major cell types, ECs, macrophages, B cells, T/natural 
killer cells, and SMCs. Our findings of cell subtypes are 
in line with recent scRNA-Seq based studies.1–4 Impor-
tantly, our dataset provides one of the first high-reso-
lution maps of cell type–specific regulatory elements, 
compared to prior bulk epigenomics-based maps from 
sorted or in vitro cultured cell populations. Our analysis 
confirmed the master regulators of lineage determina-
tion, such as PU.1 and CEBPA (CCAAT enhancer bind-
ing protein alpha) for macrophages5 as well as TEAD3, 
MEF2C (myocyte enhancer factor 2C), and SRF for 
SMCs,41–43 and also allowed the identification of novel 
cell subtype–specific TFs. To this end, we link the deple-
tion of NFY and SRF motifs and the genome-wide 
enrichment of AP-1, NFAT, and STAT1:STAT2 motifs to 
the phenotypic switching of SMCs to fibromyocytes. Our 

genome-wide findings are supported by several recent 
lines of evidence. First, AP-1 has been shown to bind 
jointly with TCF21 (transcription factor 21) to modulate 
H3K27Ac and chromatin state changes at CAD-linked 
loci.44 TCF21 has been shown to be expressed in cells 
that migrate into the developing plaque, promote pheno-
typic modulation of SMCs to fibromyocytes and contrib-
ute to the protective fibrous cap.1,45 Importantly, TCF21 
has also been shown to suppress the expression of SRF 
and inhibit its association to myocardin and subsequent 
chromatin binding.46 Second, locus-specific analyses 
have associated the binding of NFY, NFAT, and STAT1 
to the suppression of SMC contractile genes.47–49 Impor-
tantly, the inhibition of STAT1 has been shown to alleviate 
inflammation of the arterial wall, reduce plaque burden,50 
and reduce neointima formation after balloon injury,51 
making it a promising target for therapeutic intervention. 
To our surprise, the genome-wide accessibility of KLF4 
motifs was not significantly increased in fibromyocytes, 
despite the established role of KLF4 in SMC reprogram-
ming.24 We speculate that this could be due to the KLF4 
motif being relatively accessible throughout the SMC lin-
eage and thus the KLF4 target genes not requiring the 
opening of many new genomic regions but rather activa-
tion of preexisting enhancer elements.

Numerous studies have found that cultured cells have 
a propensity to lose their tissue-specific properties,52,53 
which is expected to translate into changes at the level 
of cisregulatory elements. Here, we evaluate the extent 
of such change by comparing the in vivo chromatin 
accessibility to published studies of in vitro cultured or 
blood-derived immune cells in basal and proinflammatory 
conditions. We were surprised to note that the in vitro 
enhancer profiles were able to capture the majority of the 
cell type–specific chromatin accessibility regions, reach-
ing on average over 80% overlap for regular enhanc-
ers and 60% for superenhancers. This lends supports to 
the use of primary cell cultures as surrogates for in vivo 
epigenetic studies in cases where tissue-extracted cells 
cannot be directly studied. Whether this holds true also 
for RNA, remains to be studied. Importantly, we identified 
several developmental TF motifs to be enriched in the 
thousands of in vivo–unique regulatory elements, includ-
ing MEF2, HOX, SOX, FOX, POU domain, NFATC2, and 
NR2F2 (COUP-TFII) motifs. This could be explained by 
the different tissue origins, absence of blood flow, or 
reprogramming of epigenetic and transcriptional states 
of the in vitro cell cultures.53–55 Surprisingly, only a few 
motifs were enriched in a cell type–specific manner, 
exemplified by AP-1 in tissue macrophages. In support 
of this finding, the environment has been shown to affect 
the enhancer selection in macrophages, as demonstrated 
by AP-1 motif enrichment occurring more frequently 
near PU.1-bound motifs in large peritoneal macrophages 
compared to microglia.56 Still, even among the 15 mem-
bers of the AP-1 family, the TFs binding can be divided 

https://www.ahajournals.org/doi/suppl/10.1161/CIRCRESAHA.121.318971
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into those that play a role in the opening of the chroma-
tin and to those TFs that participate in fine-tuning the 
optimal level of transcriptional response.57 Future studies 
looking into TF-occupancy at a single-cell resolution are 
needed to provide an understanding of the collaborative 
interactions between the AP-1 family members in shap-
ing the regulatory landscape in different environments.

The heritability of CAD has been estimated as 40%,8 
suggesting strong genetic contributions to disease. How-
ever, over 90% of the CAD GWAS variants are located 
in the noncoding regions of the genome with no known 
function to date.9,10 Additionally, the lead SNP identified 
in GWAS may not be the causal SNP but instead linked 
genetically with a trait-associated SNP. This is explained 
by several SNPs being in high linkage disequilibrium 
within a haploblock, which makes the identification 
of the causal SNPs challenging. Here, we have taken 
advantage of the emerging evidence that common dis-
ease variants are enriched in the enhancers of disease-
relevant cell types58 to identify the cell type and genes 
through which the variant could act and to pinpoint the 
potentially causal variants. We demonstrate that half of 
the risk loci for CAD/MI loci harbor at least one risk SNP 
that falls within the open chromatin regions identified in 
this study. Importantly, ≈30% of the risk loci fell within 
cell type–specific snATAC-Seq peaks, suggesting cell 
type–selective mechanisms of action. The majority of the 
variants were accessible in all or many lesional cell types, 
indicating that multiple mechanisms acting through dif-
ferent cell types could exist.

There is ample evidence that enhancers and promot-
ers that are located within same 3-dimensional chroma-
tin architecture form domains of coordinated regulation.59 
Motivated by this, we also leveraged the profiles of chro-
matin coaccessibility across single cells to infer pairs of 
chromatin accessibility peaks that are likely to be in close 
physical proximity in 3-dimensional space.32 To this end, 
we identified 134 CCANs that harbored risk variants for 
CAD/MI and exhibited coaccessibility correlation with 
≈1700 promoters. This suggests that the cisregulatory 
networks affected by the CAD/MI SNPs could encom-
pass a larger set of target genes than previously antici-
pated. In support of this, we and others have recently 
shown that perturbation of a single enhancer within such 
chromatin interaction hub can lead to significant changes 
in the expression of many connected genes.60,61 In line 
with this, we provide several examples where coacces-
sibility with several promoters is further supported by 
the correlation between peak accessibility and gene 
expression as well as cis-eQTL association. An inter-
esting example is represented by the rs734780-locus, 
where the SNP-containing enhancer is strongly pre-
dicted to regulate MFGE8, HAPLN3, and ACAN genes 
and is associated with altered proliferation in response to 
TGF (transforming growth factor) β1 stimulation. Impor-
tantly, 3 of these genes have been linked to important 

functional changes of SMCs that promote atherogen-
esis: ACAN has been associated with aortic stiffness and 
chondrogenesis,62 MFGE8 to the proinflammatory phe-
notypic shift of SMCs,63 and HAPLN3 to in pericellular 
ECM formation.64 Still, we recognize that the statistical 
association between a peak/SNP and a gene/promoter 
activity does not necessarily mean that the regulatory 
element is necessary or sufficient to exert a functional 
effect and further experimental validations are needed. 
To this end, a recent study confirmed our prediction of 
rs12906125 regulating the expression of both FES and 
FURIN while showing that the variant affects endothelial 
phenotypes relevant to atherosclerosis such as presen-
tation of E-selectin at the cell membrane.65

Finally, our data could help to understand the genetic 
complexity of CAD by providing experimental fine-map-
ping for a total of 65 of the CAD/MI–associated variants 
corresponding to 33 genomic risk loci. These include 
the previously identified candidate causal variants 
rs17293632 (SMAD3) and rs7549250 (IL6R) that were 
validated in enhancer trap assays in HCASMCs66 and 
further validated in our STARR-Seq analysis in HASMCs. 
Our molecular quantitative trait loci analysis also demon-
strated that rs17293632 (SMAD3) exhibits allele-spe-
cific chromatin accessibility and p65/NF-κB (nuclear 
factor-κB) binding in HAECs. Still, no other loci revealed 
similar concordant effects in both cell types, supporting 
high cell type or context specificity of the variant action. 
However, further studies comparing the results from the 
same technology (eg, massively parallel reporter assay) 
and conditions are needed to delineate the extent of this 
phenomenon in CAD loci. Future work should further 
extend to functional characterization of the identified 
target genes to understand their cell type–dependent 
and cell type–independent implications in disease. Our 
analysis provides further support to the genes associ-
ated with vascular remodeling (COL4A1/2, FURIN) and 
transcriptional regulation (FHL3, KLF4, ARNTL) but also 
highlights new candidates with potentially similar roles 
(TBX2, LOXL1, SNHG18) that have not been previously 
associated with CAD.8 For example, TBX2 (T-box tran-
scription factor 2) has been extensively studied in the 
development of myocardium but emerging evidence also 
supports its importance in differentiation and functionality 
of smooth muscle cells67,68 that warrant further research 
in the context of atherosclerosis. We also identified sev-
eral novel target genes with no reported biological func-
tion but rather additional associations that could provide 
mechanistic insight. To this end, we identify a potentially 
causal variant regulating the Scaffold Protein, Cas family 
member BCAR1 gene (rs4888409) in a locus that has 
been further associated with carotid intima-media thick-
ness as well as chloride voltage-gated channel 6 CLCN6 
gene and pyridoxal kinase PDXK (rs7282405)69 loci that 
have both been associated with blood pressure. How 
the effects of the common genetic variants affect the 
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endothelial and smooth muscle cell function and explain 
the phenotype associations remains a central question 
to be answered.

Our study is limited by the number of replicates (n=3 
males) and the fact that the samples originate from endar-
terectomy operations of diseased individuals. The inclusion 
of more patient samples with detailed clinical characteristics 
as well as healthy controls with complete aortic sections is 
expected to allow more robust subtype distinction and to 
also allow sex to be investigated as a biological variable. 
Furthermore, multiomics methods that can measure both 
transcriptome and open chromatin status in a single cell are 
expected to further improve the analysis of transcriptome 
networks in the future. Additionally, our analysis focused 
on the most prominent enhancers and might have missed 
weaker enhancers or enhancers that are only detected upon 
specific environmental cues. Still, we think our analysis pro-
vides a useful resource to the researchers looking to under-
stand the cell type–specific gene-regulatory mechanisms 
in atherosclerosis-associated cell types. Our findings not 
only produce maps of regulatory elements but also predicts 
the cisregulatory interactions that can provide mechanistic 
understanding of the effect of noncoding genetic variants 
associated with CAD.
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