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Abstract

Gene expression microarray and next generation sequencing efforts on conventional, clear cell renal cell carcinoma (ccRCC)
have been mostly performed in North American and Western European populations, while the highest incidence rates are
found in Central/Eastern Europe. We conducted whole-genome expression profiling on 101 pairs of ccRCC tumours and
adjacent non-tumour renal tissue from Czech patients recruited within the ‘‘K2 Study’’, using the Illumina HumanHT-12 v4
Expression BeadChips to explore the molecular variations underlying the biological and clinical heterogeneity of this cancer.
Differential expression analysis identified 1650 significant probes (fold change $2 and false discovery rate ,0.05) mapping
to 630 up- and 720 down-regulated unique genes. We performed similar statistical analysis on the RNA sequencing data of
65 ccRCC cases from the Cancer Genome Atlas (TCGA) project and identified 60% (402) of the downregulated and 74% (469)
of the upregulated genes found in the K2 series. The biological characterization of the significantly deregulated genes
demonstrated involvement of downregulated genes in metabolic and catabolic processes, excretion, oxidation reduction,
ion transport and response to chemical stimulus, while simultaneously upregulated genes were associated with immune
and inflammatory responses, response to hypoxia, stress, wounding, vasculature development and cell activation.
Furthermore, genome-wide DNA methylation analysis of 317 TCGA ccRCC/adjacent non-tumour renal tissue pairs indicated
that deregulation of approximately 7% of genes could be explained by epigenetic changes. Finally, survival analysis
conducted on 89 K2 and 464 TCGA cases identified 8 genes associated with differential prognostic outcomes. In conclusion,
a large proportion of ccRCC molecular characteristics were common to the two populations and several may have clinical
implications when validated further through large clinical cohorts.
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Introduction

Renal cell carcinoma (RCC) is a constellation of malignancies of

different histological subtypes arising from the renal parenchyma.

The most common histological subtype of RCC is clear cell RCC

(ccRCC) which accounts for 70–80% of sporadic cases and for the

majority of renal cancer mortality [1]. Worldwide in 2008 more

than 273,000 cases of renal cancer have been diagnosed and

116,000 patients died of this cancer. Several countries in Central

and Eastern Europe show high rates of renal cancer incidence and

mortality. The Czech Republic has reported the highest incidence

and mortality rates in the world with age-standardized incidence

and mortality rates of 16.6 and 5.6 per 100,000 person-years,

respectively [2].

Several risk factors associated with ccRCC have been identified

in large epidemiological studies, such as cigarette smoking, obesity,

hypertension (and antihypertensive medication) and family history

of the disease [3]. On the molecular level, RCC is a heterogeneous

disease controlled by different genes and pathways. Recent

developments driven by advances in genomic biology have

brought a significant body of knowledge into our understanding

of this disease. Loss-of-function alterations in the von Hippel

Lindau (VHL) tumour suppressor gene have been observed in at

least two-thirds of sporadic ccRCC tumour tissue [4], and

germline mutations involved in hereditary ccRCC as well [5].

Inactivating mutations of other tumour suppressor genes, such as

SETD2, KDM6A, KDM5C, PBRM1 and BAP1 have recently been

reported to play a role in ccRCC carcinogenesis. For all but BAP1,

the proteins encoded by these genes are involved in histone and

chromatin regulation [6,7,8]. Hypoxia-inducible factors (HIF)

pathway and compensatory hyperactivation of angiogenesis

through upregulation of VEGFR and PDGFR pathways are
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thought to be particularly important in ccRCC pathogenesis,

given the highly vascularised nature of renal tumours and the

specific association with mutations in VHL [9]. In addition,

activation of PI3K/AKT/mTOR [10], Wnt/b-catenin [4,11],

epithelial to mesenchymal transition (EMT) [12,13], HGF/MET

[11,14] as well as inflammatory [15] pathways have all been

reported to be implicated in RCC carcinogenesis.

Transcriptional profiling has emerged as a powerful approach

for identification of molecular subgroups (class discovery),

prediction and relation to clinical outcome in many cancers. In

ccRCC several studies identified two patterns of gene expression

with different cancer-specific survival [16,17,18]. Others have

reported transcript patterns related to expression of HIF1 and

HIF2 factors, regulated by VHL [6,19] and gene signature

associated with metastatic potential [20,21]. To our knowledge,

populations from the Central and Eastern Europe have not been

covered in previous reports, which mostly included limited

number of cases and internal replications. Using the array-based

whole genome gene expression technology, we performed a gene

expression profiling of 101 ccRCC specimens and their adjacent

non-tumour renal tissue collected in patients from the Czech

Republic to explore systematically the molecular variations

underlying the biological and clinical heterogeneity of this cancer.

In parallel, we performed secondary statistical analysis of RNA

sequencing data generated by The Cancer Genome Atlas (TCGA)

consortium in an effort to replicate our findings in an independent

ccRCC patient series from the US.

Results

Unsupervised Hierarchical Clustering (K2 Series)
To compare the gene expression profiles of all 101 tumour and

adjacent non-tumour tissue sample pairs of the K2 series

(described in Table 1), we first performed an unsupervised

hierarchical cluster analysis of vst-transformed and quantile

normalized gene expression data without background subtraction

using all 47,231 probes present in the dataset (corresponding to

28,688 well-established coding transcripts). In unsupervised

clustering of tumour and non-tumour tissue, all tumour samples

clustered together: the dominant distinction was between tumour

and non-tumour tissues rather than between individuals (Figure 1).

Furthermore, we examined the expression profiles of tumour and

adjacent non-tumour tissue samples separately (Figure S1). We

found that all tumour samples were tightly clustered together

suggesting homogeneity of ccRCC samples used in this study.

Similarly, we did not observe significant differences between

adjacent non-tumour tissue samples. There was also little evidence

of any batch effects (day the arrays were performed, lot number of

chip), or difference by RNA quality levels, percentage of viable

tumour cells and processing procedures at local recruiting centres

that may be confounding the results (data not shown).

Identification of Differentially Expressed Genes and
Pathway Analyses (K2 Series)

We conducted paired analysis on the samples from the 101 K2

patients to identify genes differentially expressed in tumour vs.

adjacent non-tumour tissue using the genome-wide expression

microarray data. This comparison resulted in 1650 significant

differentially expressed probes (modulated by at least 2-fold [FC

$2] and showing an Benjamini and Hochberg (BH) false

discovery rate (FDR) adjusted p-value ,0.05 for the paired t-test

comparison, Table S1), of which 743 probes were upregulated and

907 were downregulated in tumour samples, mapping to 630 and

720 unique genes, respectively. Hierarchical clustering analysis

restricted to 50 the most up-, and 50 the most down - regulated

probes correctly classified tumour and non-tumour samples in two

groups, with the exception of two tumour samples (Figure 2). The

biological characterization of the 1350 differentially expressed

genes using Gene Ontology (GO) annotation implemented in the

DAVID programme (http://david.abcc.ncifcrf.gov/) highlighted

that the majority of genes downregulated in ccRCC tissues were

involved in metabolic processes (organic, carboxylic, amino acid,

lipid), catabolic processes, oxidative reduction, excretion, ion

transport, response to chemical stimulus and cellular localization.

The genes upregulated in ccRCC tissues were associated with

regulation of immune and inflammatory responses, response to

stimuli, stress, wounding and hypoxia, regulation of cell prolifer-

ation, cell activation, angiogenesis, cell adhesion and motility. The

complete list of enriched GO terms and genes is available in Table

S2.

To gain further insight into the biological pathways involved in

ccRCC pathogenesis, a gene set enrichment analysis (GSEA) was

performed. GSEA (http://www.broadinstitute.org/gsea/) is a

powerful bioinformatics tool that determines whether a priori

defined sets of genes (‘‘pathways’’) show statistically significant,

concordant differences between two biological states (e.g. pheno-

type). We found 84 pathways to be enriched in ccRCC phenotype

at FDR cut-off values of 0.25 [22] using the Biocarta pathway

database from the Molecular Signatures Database – MsigDB

(http://www.broad.mit.edu/gsea/msigdb/index.jsp). These in-

cluded cell cycle pathways (G1, G2, CELLCYCLE) characterized

by the presence of cyclins (CCND1, CCND2, CCND4, CCNB1),

cyclin-dependent kinases (CDK2, CDK4, CDK6, CDK7), cyclin

dependent kinase inhibitors (CDKN1A, CDKN1B, CDKN2A,

CDKN2B, CDKN2C, CDKN2D) as well as retinoblastoma 1 (RB1),

CHEK1 and CHEK2. Furthermore, GSEA identified several

oncogenic signalling pathways, such as ARF, P53, ATM, MET,

ATRBRCA, WNT and ETS pathways. The top-score genes

recurring in these pathways included key cancer genes, such as

MYC, RB1, TP53, JUN, ATM, CDKN1A, NFKB1 among others.

Other pathways known to be associated with ccRCC have

been identified including gene sets linked to hypoxia (HIF

pathway), angiogenesis (VEGF pathway) as well as immune and

Figure 1. Unsupervised Hierarchical Clustering of K2 samples. Unsupervised Hierarchical Clustering of all samples following quantile
normalization highlighting two groups of samples: tumour (violet) and adjacent non-tumour (light green) tissue. Dendrogram for clustering
experiments was created using centred correlation and average linkage method. Length of nodes corresponds to correlation between samples.
doi:10.1371/journal.pone.0057886.g001
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Table 1. Characteristics of the 101 ccRCC patients from the ‘‘K2 study’’ (Czech Republic) included in the whole-genome gene
expression microarray study.

Characteristics Male Female p-value*

N % N %

Total (N = 101) 59 100 42 100

Recruiting Center

Czech Republic 0.685

Ceske Budejovice 28 47.5 22 52.4

Prague 14 23.7 6 14.3

Brno 10 17.0 9 21.4

Olomouc 7 11.9 5 11.9

Age **0.060

42–44

45–54 15 25.4 5 11.9

55–64 22 37.3 11 26.2

65–74 13 22.0 19 45.2

75–84 9 15.3 7 16.7

Age, Mean 6 SD 62.8 (610.0) 65.8 (67.9) 0.108

Body mass index (BMI) 2 yrs prior to recruitment 0.985

22.0–24.9 12 20.3 8 19.1

25–29.9 26 44.1 20 47.6

30–47.3 21 35.6 14 33.3

Body mass index (BMI) [kg/m2], Mean 6 SD 28.95 (64.7) 28.44 (63.9) 0.567

Grade (Fuhrman system) 0.919

Well-differentiated 14 23.7 8 19.1

Moderately differentiated 27 45.8 20 47.6

Poorly differentiated 13 22.0 11 26.2

Undifferentiated 5 8.5 3 7.1

Stage*** 0.190

I 28 47.5 15 35.7

II 6 10.2 8 19.0

III 7 11.9 4 9.5

IV 5 8.5 9 21.4

Missing 13 22.0 6 14.3

Smoking status 0.065

Never 24 40.7 27 64.3

Former (.1 yr since quitting) 12 20.3 5 11.9

Current 23 39.0 10 23.8

Self-reported hypertension history 0.713

Yes 40 67.8 27 64.3

No 19 32.2 15 35.7

Treatment

First line treatment 0.120

Radical nephrectomy 55 93.2 35 83.3

Partial nephrectomy 4 6.8 7 16.7

Second line treatment

None 51 86.4 32 76.2

Antiangiogenic and/or biotherapy 6 10.2 6 14.3

Radiotherapy and/or chemotherapy 1 1.7 1 2.4

Additional surgery 1 1.7 1 2.4

Gene Expression Profiling of ccRCC
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inflammatory signalling (INFLAM, TOLL, TH1TH2, NFKB,

NKCELLS, TCR, DC, TNFR1, TNFR2, CYTOKINE) path-

ways. The genes related to inflammation and immune response

enriching the mentioned pathways included cytokines and their

receptors (IL2, IL4, IL6, IL8, IL10, IL12, IFNG), toll-like receptors

(TLR2, TLR3, TLR4, TLR6, TLR7, TLR10), NF-kB genes (RELA,

NFKB1, NFBIA, TNF, TNFAIP3) as well as T-cell signalling genes

(ZAP70, LCK, LAT, FYN CD3D, CD3E, CD3G). In addition, gene

sets related to survival, apoptosis (FAS, PML, DEATH, CASPASE

and BAD) and kinase signalling (GSK3, P38MAPK, PAR1,

PTEN, ERK) were enriched in ccRCC phenotype. The complete

list of pathways is included in Table S3.

Replication of Differential Expression in an Independent
TCGA Population

To explore whether the ccRCC gene expression signatures

identified in the Czech Republic population were reproducible in

other populations and using a different experimental platform, we

evaluated the gene expression status of 65 tumour/non-tumour

renal tissue pairs from ccRCC patients recruited in the US for the

TCGA project and sequenced through the RNA sequencing

(RNA-seq) technology. Key clinical characteristics of the cases

available are described in Table 2. The Level 3 processed RNA-

Seq TCGA data, generated by an Illumina HiSeq2000 platform,

were downloaded from https://tcga-data.nci.nih.gov/tcga/. The

flowchart of the previous analysis performed by the TCGA data

analysis centres and further data normalization and transforma-

Figure 2. Hierarchical Classification of 100 significant differentially expressed genes in K2 series. Heatmap representing the 50
significant upregulated (in red) and 50 downregulated (in green) probes with the highest fold change following differential expression in ccRCC
compared with non-tumour tissue (FDR-adjusted p-value (BH) ,0.05, FC $2).
doi:10.1371/journal.pone.0057886.g002

Table 1. Cont.

Characteristics Male Female p-value*

N % N %

Combination of the above 0 0.0 2 4.8

*p value calculated using Pearson x2 testing for categorical variables and t-test for continuous variables.
**The two younger categories were grouped.
***All stage IV patients had distant metastasis at diagnosis, and by definition none of stage I, II or III patients had distant metastasis. Missing stages were due to the lack
of lymph nodes and/or metastasis evaluation. Out of 19 cases with missing stage, 9 were pT1a, 7 were pT1b, 1 was pT2a, and 1 was pT3a.
doi:10.1371/journal.pone.0057886.t001
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tion are presented in Figure S2A and S2B, respectively. We used

RPKM values [23] calculated by (raw read counts6109)/(total

reads6length of a gene) as an estimate of gene expression. The

RPKM method corrects for biases in total gene exon size and

normalizes for the total short read sequences obtained in each

tissue library. RPKM values for each sample were merged into a

single file, TMM normalized (similar assumptions to quantile

normalization) [24] and log2-transformed. Following the recom-

mendations provided in edgeR and limma packages on the use of

raw count data in the mentioned methods, the same analysis was

performed using both raw count as well as RPKM values. Both

analyses resulted in the comparable set of most differentially

expressed genes (BH FDR-adjusted p-values ,0.05 and FC $2);

however, more significant differentially expressed genes were

obtained when using count values. Taking into consideration that

significant genes found using the RPKM method were overlapping

with count data analysis, this set of genes was used for all

downstream analysis. As with the microarray analysis described

above, genes with BH FDR-adjusted p-values ,0.05 and FC $2

were considered. Using paired t-tests for the complete set of genes

(20,532), we identified 2493 significant differentially expressed

genes (Table S4), of which 1299 genes were upregulated and 1194

genes were downregulated. To obtain a broader overview of the

biological changes occurring at the gene expression level, we used

Gene Ontology term enrichment (DAVID software) to identify

annotated functions and processes that were overrepresented in

genes that were significantly up -or down -regulated. Likewise in

microarray analysis, downregulated genes were involved in

metabolic and catabolic processes, excretion, ion transport,

oxidation-reduction, localization and developmental processes

(including kidney development). Besides, the upregulated genes

enriched mainly immune system responses and regulation,

inflammation, response to stimulus, cell activation (primarily T-

cell activation), antigen processing and presentation, lymphocyte

differentiation, angiogenesis and signal transduction (Table S5).

Using GSEA on the TCGA RNA-Seq dataset we did not find

significant overrepresented pathways (data not shown).

We then investigated the correlation between the RNA-Seq

data and the microarray K2 study. A Venn diagram was used to

represent the overlap between significant differentially expressed

genes obtained with both platforms (Figure 3). RNA-Seq results

broadly agree with gene expression measurements obtained with

previous microarray data, with approximately 60% (402) of

downregulated and 74% (469) of upregulated genes from the

discovery phase having been validated in the RNA-Seq analysis.

Importantly, in the majority of cases the subset of genes with the

highest fold change identified through both analyses overlaps,

highlighting the ability of both approaches to accurately record

changes in gene expression arising in ccRCC. The 50 genes

identified by both methods with the highest (logFC,23) decrease

in expression when compared to adjacent non-tumour tissue

included uromodulin (UMOD), aquaporin 2 (AQP2), kininogen 1

(KNG1), chloride channel Ka gene (CLCNKA), metallothionein 1G

(MT1G), ATPases - ATP6V1B1 and ATP6V0A4, ion transport

regulator – FXYD4, claudin 8 (CLDN8), potassium inwardly-

rectifying channel gene (KCNJ1), T-cell differentiation gene (MAL),

nephrosis 2 (SFRP2), sodium channel gene (SCNN1A) and serpin

peptidase inhibitor (SERPINA5). This indicates that genes impor-

tant for proper kidney function, responsible for cellular ion

homeostasis and transport are deregulated during disease devel-

opment. The 50 genes overexpressed in the process of ccRCC

growth with the highest fold change (logFC .2) included NADH

dehydrogenase - NDUFA4L2, angiopoietin (ANGPTL4), PNCK

kinase, carbonic anhydrase IX (CA9), neuronal pentraxin II

(NTPX2), nicotinamide N-methyltransferase (NNMT), genes en-

coding glycoproteins VWF and STC2, insulin-like growth factor

binding protein 3 (IGFBP3), solute carrier family genes (SLC16A3

Table 2. Characteristics of the 65 ccRCC patients included in
the TCGA series (US) using RNA-Sequencing technology.

Characteristics Male Female p-value*

N % N %

Total (N = 65) 46 70.8 19 29.2

Age **0.375

38–44 4 8.7 2 10.5

45–54 9 19.6 3 15.8

55–64 14 30.4 4 21.1

65–74 10 21.7 8 42.1

75–90 9 19.6 2 10.5

Age, Mean 6 SD 62.87
(612.9)

62.84
(611.2)

0.994

Grade ***0.358

Well-differentiated 0 0 1 5.3

Moderately
differentiated

16 34.8 8 42.1

Poorly differentiated 20 43.5 6 31.6

Undifferentiated 9 19.6 3 15.8

Missing 1 2.2 1 5.3

Stage% ***0.821

I 16 34.8 7 36.8

II 6 13.0 1 5.3

III 11 23.9 5 26.3

IV 10 21.7 5 26.3

Missing 3 6.5 1 5.3

Data from all paired tumour/non-tumour sets available on April 19, 2012 were
retrieved from TCGA data portal.
*p value calculated using Pearson x2 testing for categorical variables and t-test
for continuous variables.
**the younger two categories were grouped.
***excluding missing category.
%Of stage IV patients 15 had distant metastasis at diagnosis, and by definition
none of stage I, II or III patients had distant metastasis. Missing stages were due
to the lack of lymph nodes and/or metastasis evaluation.. These four patients
were pT1aNXMX, pT3aNXM0, pT1bNXMX and pT3aNXMX, respectively.
doi:10.1371/journal.pone.0057886.t002

Figure 3. Venn diagrams showing the intersection of signifi-
cant genes differentially downregulated (A) and upregulated
(B) in the whole – genome expression profiling microarray
dataset (K2) vs. RNA-Sequencing dataset from the Cancer
Genome Atlas (TCGA).
doi:10.1371/journal.pone.0057886.g003
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and SLC6A3), fatty acid binding protein 7 (FABP7), tumor necrosis

factor, alpha-induced protein 6 (TNFAIP6) and transforming

growth factor (TGFBI). In addition, cytochrome P450 gene

(CYP2J2), pyrophosphatase/phosphodiesterase (ENPP2), endothe-

lial cell-specific molecule 1 (ESM1), transmembrane collagen

(COL23A1), chemokine (C-X-C motif) receptor 4 (CXCR4),

regulator of G-protein signaling 1 (RGS1), cytokine CD70 and

SCD encoding an enzyme involved in fatty acid biosynthesis had

also increased expression in both analysis. Furthermore, genes

previously associated with ccRCC susceptibility or carcinogenesis,

apolipoprotein C-I (APOC1), vascular endothelial growth factor A

(VEGFA), scavenger receptor class B, member 1 (SCARB1) were

found to be highly overexpressed in tumour tissue in both analysis.

DNA Methylation Status in ccRCC (TCGA Series)
Based on the hypothesis that DNA methylation modulates an

important proportion of gene expression, we compared DNA

methylation patterns in ccRCC and adjacent non-tumour renal

tissues from 317 TCGA cases to identify which differentially

expressed genes were epigenetically regulated. A total of 188 pairs

had been analyzed on the Illumina Infinium Human Methylation

27K platform, and 129 non-overlapping pairs on the 450K

platform (File S1). Both series had the same sex distribution and

included 65% male and 35% female patients. A significant

difference of the age distribution between the 2 series was observed

(p = 0.001), with a mean of 57 and 62 years in males, and 64 and

65 years in females for the 27K and 450K series, respectively. In

both series approximately 80% of patients were diagnosed with

moderately (grade 2) or poorly (grade 3) differentiated tumours.

We first compared the DNA methylation patterns in ccRCC

versus corresponding non-tumour renal tissue using the following

thresholds: FC $2 and BH FDR-adjusted p-value ,0.05. A total

of 916 and 16,469 CpG sites were hypermethylated, and 895 and

19082 were hypomethylated in ccRCC in Illumina Infinium

Human Methylation 27K and 450K, respectively (Figure 4, Table

S6). Only CpG sites present in both platforms were used for the

downstream analysis. We further analyzed the group of significant

genes that overlapped with respect to differential DNA methyl-

ation (each platform separately) and mRNA expression (micro-

array). This analysis returned 36 significant genes common to both

platforms that were hypermethylated and transcriptionally down-

regulated (61 and 42 hypermethylated genes for 27K and 450K

platforms, respectively) and 60 genes that were hypomethylated

and transcriptionally upregulated (82 and 72 hypomethylated

genes for 27K and 450K platforms, respectively) (Figure 4). Only

5/96 genes of which expression was epigenetically regulated had

not been validated by RNA-Seq analysis. The genes that were

downregulated possibly due to hypermethylation events include

genes involved in cellular transport (AQP2, KCNJ1, CLCNKB,

SCNN1A, SLC12A3, ATP1A1, CEL, RAB25), homeostasis (PTH1R,

ATP6V0A4, CLDN16), cellular responses (ALDOB, MUC1, RBP4),

adhesion (CLDN8, CYFIP2, FBLN5, CLDN19), development

(SFRP1, PLXNB1, SEMA3B, ANK3) as well as cellular and

metabolic processes (SERPINA5, MT1E, TACSTD2, TSPAN8,

GGT6, HRG, CEL, CKMT2). The hypomethylated genes included

genes that have been previously reported to be associated with

ccRCC, such as CA9, NNMT, CAV1 and CCND1. However, to our

knowledge this is the first report on methylation status of CAV1 in

ccRCC. In addition, other upregulated and hypomethylated genes

encompass immune response genes (ENPP3, LCP1, HLA-DPA1,

HLA-DRA, HLA-DMA, TNFSF13B, GBP4, PAG1, SLA, AQP9,

CD37, IL7R), genes involved in signal transduction (RGS1, KSR1,

ITGAX, CD53, IFNGR2, S100A10), cell proliferation (CCND1,

ISG20, SPARC, RUNX3) and cell death (LGALS1, PLEK, IFI16,

NOL3, CD14, ADA, HSPB8, GZMH). This data could partly

explain the mechanisms leading to up and down regulation of

approximately 7% of differentially expressed genes.

Identification of Gene Signatures for ccRCC Grades (K2
and TCGA Series)

In many cancers grading is a measure of aggressiveness of the

disease and malignancy. The Fuhrman system is used for grading

renal cancer into four malignancy level (G1–G4) reflecting levels of

differentiation, namely well- (G1), moderately- (G2), poorly- (G3)

and un-differentiated (G4). To investigate whether there was a

grade specific transcriptional signature in ccRCC we compared

the expression levels in cancer tissue and the corresponding

adjacent non-tumour tissue for each grade separately based on the

microarray data. Out of the 101 K2 cases, 22 were well

differentiated (G1), 47 moderately differentiated (G2), 24 poorly

differentiated (G3) and 8 undifferentiated (G4). Overall, there were

710 and 484 probes that were commonly down- and upregulated

in all the four grades. The differential expression analysis for each

grade showed 6.8% (64/944) and 11.2% (93/830) probes uniquely

down- and upregulated in G1 grade, 0.8% (7/853) and 1.4% (10/

706) in G2, 2% (19/955) and 5.5% (46/835) in G3, and 18.2%

(220/1211) and 17.1% (165/967) in G4 (Figure 5, Table S7).

These include probes which expression levels show at least 2-fold

change and statistical significance of BH FDR-adjusted p-value

,0.05. Looking at the number of genes, we observed that there

was a general pattern for both down- and upregulated genes,

mainly the increased number of solely differentially expressed

genes in grades G1 and G4 relative to G2 and G3. This might

indicate that the subset of altered genes specific to well

differentiated tumours is lost during changes in differentiation.

As expected less differentiated cancers which are expected to be

more aggressive showed more differentially expressed genes

(Figure 5). Similar trends were observed in grade analysis of 65

TCGA cases; however, the majority of grade-specific differentially

expressed genes were non-overlapping in both datasets (data not

shown). This lack of overlap could be due to distinct grade

distribution in both datasets, as well as a poorly reproducible grade

assessment of renal tumours [25,26].

Gene Expression-based Survival Predictor
Survival data were available for 89 out of 101 ccRCC cases

from the K2 series (Czech Republic) and 464 out of 465 TCGA

(US) cases. There were significant differences in age and grade

distribution between both populations (Table 3). The TCGA series

had a longer follow-up duration and higher number of events

(deaths) than the K2 series.

We conducted survival analysis to model overall survival (OS,

all-cause mortality) against gene expression levels in tumour tissues

in the microarray data from K2 series. Gene expression data of 89

ccRCC cases were examined in an univariate (gene-by-gene) Cox

model after FCMS (filter, cluster and stepwise model selection)

method using SignS tool [27] to determine the prognostic value of

the gene expression status. The obtained model was tested on the

464 RNA-Seq ccRCC TCGA samples. Fifty-one genes correlated

positively or negatively with OS (p,0.001) across 10 cross-

validated runs. Both the K2 and TCGA series, comparing the

survival curves for two, three and four groups suggest that patients

fall into two groups (Figure 6). In addition, to evaluate whether

important features were missed in the smaller gene expression

microarray data, we built a separate model using only the TCGA

data, with significance assessed by cross-validation. Two hundred

forty six genes correlated positively or negatively with OS
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(p,0.001) across 10 cross-validated runs in TCGA dataset

resulting in 32 genes that were common to both analyses (File S2).

Individual Cox proportional-hazard analysis of selected 51

genes with adjustment for age, tumour grade, extent of primary

tumour (pathological assessment: pT) and sex revealed that 8 of

these genes were associated with survival independently of age,

grade and pT (Table S8). More comprehensive prognosis

predictive indexes, such as MSKCC risk score (known as Motzer

criteria [28]) for metastatic and UCLA Integrative staging system

[29] for localized disease, were not used due to scarcity of available

data (in particular ECOG performance status, Karnofsky perfor-

mance status, serum lactate dehydrogenase measurement, hemo-

globin measurement, and corrected serum calcium measurement).

The multivariate analysis carried out on the K2 and TCGA series

used the expression of the genes as a continuous variable with the

log values of intensity and RPKM for the two datasets,

respectively. Higher expression of these 8 genes resulted in a

significantly decreased risk of death (HR 0.16 to 0.41 for K2 series

and HR 0.68 to 0.84 for TCGA series). These included cysteine/

tyrosine-rich 1 (CYYR1) and LIM domain binding 2 (LDB2) genes

that have been recently reported as associated with disease-free

survival with higher expression in tumours that metastasized after

Figure 4. Analysis of ccRCC methylation profile. Flowchart representing analysis of ccRCC methylation profile for Illumina Infinium
HumanMethylation 27K (violet) and 450K (yellow) BeadChips showing the intersection of differentially methylated CpG sites (upper panel) and the
intersection of significantly (un)methylated genes common to both platforms with differentially expressed genes in the K2 series analysed with
Illumina HumanHT-12 v4 Expression BeadChips.
doi:10.1371/journal.pone.0057886.g004
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24 months vs. tumours that metastasized earlier [30]. Further-

more, expression of sphingosine-1-phosphate receptor 1 (S1PR1),

ephrin-B2 (EFNB2), G protein-coupled receptor 116 (GPR116),

SNF related kinase (SNRK), transmembrane protein 204

(TMEM204), C-type lectin domain family 1, member A (CLEC1A)

and C-type lectin domain family 14, member A (CLEC14A) was

associated with increased survival time (Table 4). Finally, taking

into consideration high correlation of genes (correlation .0.7 for

K2 and TCGA datasets) the final list of genes was included

together with the other covariates (age, tumour grade, pT and sex)

in a multivariate Cox model and tested separately on each of the

two datasets, with backwards step-wise selection to remove

redundant genes. In each step, gene with the highest p-value

was removed (significance level for removal from the model .0.2)

resulting in a model that included S1PR1 (for K2) and S1PR1 and

CLEC1A (for TCGA).

Discussion

Several microarray studies have been performed to detect gene

expression signatures in renal cancer that would provide diagnostic

and prognostic information [6,17,18,31,32,33,34,35,36,37,38].

However, most of the reports concentrate their efforts on a small

number of cases from the US, Japanese and Western European

populations while the highest incidence and mortality rates are

found in Central and Eastern Europe. In this study, we

investigated the gene expression and methylation profiles between

ccRCC tumours and adjacent non-tumour tissue in relation to

pathogenesis and clinical outcome of ccRCC in Czech Republic

(K2 study) and in the US (TCGA data). This work represents one

of the largest studies of gene expression using pairs of normal and

tumour tissue of the conventional ccRCC subtype and to our

knowledge the first report on molecular characterization of

ccRCC in the Czech Republic.

The unsupervised clustering analysis of 101 Czech patients did

not identify any clear molecular subgroups within tumour samples

indicating molecular homogeneity of ccRCC samples used in our

study. In recent years there has been an important development in

our knowledge of ccRCC biology mainly through emerging

molecular biology, genomic and transcriptomic techniques.

Mutations in the VHL gene, observed in up to 80% of cases

[39], resulting in overexpression of hypoxia-inducible factors (HIF)

have been shown to play a fundamental role in the development of

ccRCC. Animal studies have shown that activation of the HIF

pathway (particularly HIF-2a) mediates the phenotypes observed

in the context of VHL knock-out [40]. The HIF pathway further

activates a range of adaptive tumour response genes involved in

cell death, proliferation, cell differentiation, metabolism and

angiogenesis (VEGF). Our results were consistent with these

findings, with upregulation of both HIF-1a as well as HIF-2a
target genes being consistently observed, including the most

significant genes such as NADH dehydrogenase subcomplex

NDUFA4L2 [41], carbonic anhydrase 9 (CA9) [42] and vascular

endothelial growth factor A (VEGFA) indicating the activation of

HIF pathway. Moreover, we found other genes known to be

involved in vasculature development and angiogenesis to be

upregulated in ccRCC, comprising neuropilin 1 (NRP1), apolipo-

protein L domain containing 1 (APOLD1), endothelin 1 (EDN1),

notch 4 (NOTCH4), transforming growth factor, alpha (TGFA) and

angiopoietin-related proteins (ANGPT2, ANGPTL4). We also

identified significant increases in target genes specific to HIF-1a
such as glucose transporter SLC2A1 (GLUT1), lactate dehydroge-

nase A (LDHA) and mitochondrial protein encoding gene BNIP3 as

well as HIF-2a targeted genes: transforming growth factor, alpha

(TGFA) and cyclin D1 (CCND1). While both HIF-1a and HIF-2a
are key players in ccRCC pathogenesis, these two HIF-a isoforms

have been shown to have different (suppressive) properties in RCC

cells [43], with enhanced expression of HIF-2a suppressing HIF-

1a and vice-versa. In this context, two subtypes of ccRCC have

been proposed: a subtype distinguished by overexpression of both

HIF-1a and HIF-2a (H1H2) and another expressing HIF-2a (H2).

These classifications demonstrate different gene expression

patterns, varying clinical outcomes and possible distinct targeted

therapies needed to treat these tumours [44]. Furthermore, both

HIF-1a and its target -CA9 expression has been related to worse

survival and reported as independent prognostic factors in

metastatic ccRCC [42].

The HIF pathway also plays a role in the cellular response to

stress, such as metabolic, hypoxic, or inflammatory stress.

Figure 5. Venn diagrams representing relationship between ccRCC grades and the number of differentially expressed probes.
Downregulated (A) and upregulated (B) probes with fold-change (FC) $2 and FDR-adjusted p-value (BH) ,0.05 using paired sample information are
presented.
doi:10.1371/journal.pone.0057886.g005
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Inflammatory signalling and infiltration are key factors in tumour

progression. HIF-1a and HIF-2a with their opposing and

overlapping functions in tumour cells as well as in inflammatory

cells of the tumour microenvironment can crosstalk between these

populations and have clear effects on tumour metabolism,

inflammation, and progression [45]. Recent studies have also

shown a link between HIF signalling and pro-inflammatory

transcription factor nuclear factor kappa B (NF-kB) during

inflammation [46]. The NF-kB pathway plays a central role in

the regulation of immune responses and targets several inflam-

matory cytokines, such as TNF-a, IL-1, IL-6 and IL-8 and its

aberrant activation has been identified in many cancer types. In

our study several immune response and inflammatory genes were

found to be upregulated in ccRCC, including IL2RA, IL2RB,

IL7R, IL10RB as well as tumour necrosis factor family genes

TNFAIP3, TNFAIP6, TNFAIP8, TNFRSF4.

In addition, a panel of inflammation related genes has recently

been analyzed in ccRCC by Tan and colleagues and related to risk

of recurrence (GADD45G) and death (CARD9, CIITA and NCF2)

[15]. Only one report highlights the role of Toll-like receptors

(TLRs) in ccRCC. TLRs are molecules in the innate immune

system for which targeted immunotherapy is under development.

Overexpression of TLR3 in both primary and metastatic ccRCC

tissues has been described by Morikawa et al. [47] and has been

shown to induce type I IFN production and NF-kB activation.

Here we showed upregulation of both TLR3 and TLR7. These

indicate possible mutual interactions and regulation of TLRs-NF-

kB – HIF – VEGF pathways and their downstream targets in

ccRCC tumourigenesis. These pathways as well as innate and

adaptive immune responses demonstrated by T-cell activation

have become an area of active research, with antibodies against

CTLA-4 and PD-1 showing clinical efficacy and anti-tumour

activity. New therapies targeting molecular pathways involved in

ccRCC pathogenesis, such as agents targeting downstream genes

of the VHL/HIF pathway -tyrosine kinase and mTOR inhibitors,

have also shown encouraging effects. To complement search for

potential therapeutic targets, we performed Connectivity Map

analysis on the most differentially expressed genes (http://www.

broadinstitute.org/cmap/). Using this approach we identified

additional compounds with a potential for ccRCC targeted

therapy including carbonic anhydrase and topoisomerase inhib-

itors (data not shown).

Table 3. Characteristics of ccRCC patients in the K2 (Czech Republic) and TCGA (US) series included in survival analysis.

Characteristics K2 Series TCGA Series p-value*

N % N %

Total (N = 553) 89 464

Gender 0.215

Male 52 58.4 303 65.3

Female 37 41.6 161 34.7

Age 0.030

26–44 1 1.1 50 10.8

45–54 16 18.0 103 22.2

55–64 30 33.7 138 29.7

65–74 28 31.5 108 23.3

75–90 14 15.7 65 14.0

Age, Mean 6 SD 64.12 (69.2) 60.50 (612.1) 12.13 0.008

Grade **,0.001

Well-differentiated 18 20.2 7 1.5

Moderately differentiated 40 44.9 193 41.6

Poorly differentiated 23 25.8 172 37.1

Undifferentiated 8 9.0 67 14.4

Missing 0 0 25 5.4

Extent of primary tumour (pathological
assessment)

0.002

pT1: #7 cm and limited to kidney 55 61.8 228 49.1

pT2: .7 cm and limited to kidney 18 20.2 57 12.3

pT3: extends to major veins or perinephric tissues16 18.0 168 36.2

pT4: invades beyond Gerota’s fascia 0 0 11 2.37

Vital Status ,0.001

Alive 77 86.5 312 67.2

Dead 12 13.5 152 32.8

Follow-up duration, Range (years) 0.5–2.2 0.0–9.2

Person-years in follow-up 112.5 1431

*p value calculated using Pearson x2 testing for categorical variables and t-test for continuous variables.
**excluding missing category.
doi:10.1371/journal.pone.0057886.t003
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Based on the similarity in gene expression profiles between the

Czech and US population we conclude that the molecular features

of ccRCC in both locations are largely overlapping and share the

same molecular abnormalities. We also observed, as previously

reported [48], that the RNA-Seq platform was more sensitive in

identifying significantly differentially expressed genes than the

microarray platform as reflected in superior fold changes.

However, we found an overlap of more than 60% of differentially

expressed genes in two different populations whilst applying two

different high-throughput technologies.

Latest reports on recurrent mutations in genes encoding several

epigenetic regulators such as SWI/SNF complex gene PBRM1 [8],

methyltransferases SETD2 and MLL2, demethylases UTX

(KDM6A) and JARID1C (KDM5C) [6] suggest possible implications

Figure 6. Survival curves for K2 and TCGA series. Survival curves for K2 series (gene expression microarray data, upper panel) and TCGA series
(RNA-seq data, bottom panel) using SignS software splitting scores in two groups (first column), three groups (second column) and quartiles (third
column). Note: different scale for analysis time axis was used for K2 and TCGA series.
doi:10.1371/journal.pone.0057886.g006

Table 4. Association of genes with overall survival in K2 and TCGA series.

K2 Series–Czech Republic TCGA Series–US

Univariate Analysis Multivariate Analysis* Univariate Analysis Multivariate Analysis*

Gene HR 95% CI P value HR 95% CI P value HR 95% CI P value HR 95% CI P value

CLEC14A 0.26 0.14–0.52 ,0.001 0.41 0.19–0.9 0.025 0.72 0.64–0.81 ,0.001 0.81 0.71–0.93 0.002

CLEC1A 0.08 0.02–0.29 ,0.001 0.19 0.04–0.9 0.037 0.72 0.61–0.84 ,0.001 0.83 0.69–1 0.049

CYYR1 0.18 0.08–0.39 ,0.001 0.29 0.1–0.79 0.015 0.68 0.6–0.77 ,0.001 0.79 0.69–0.91 0.001

EFNB2 0.19 0.08–0.43 ,0.001 0.34 0.13–0.92 0.034 0.70 0.61–0.8 ,0.001 0.81 0.69–0.95 0.008

GPR116 0.17 0.07–0.39 ,0.001 0.30 0.11–0.8 0.016 0.69 0.61–0.78 ,0.001 0.81 0.7–0.93 0.004

LDB2 0.24 0.13–0.46 ,0.001 0.36 0.16–0.8 0.013 0.71 0.63–0.8 ,0.001 0.82 0.71–0.95 0.009

S1PR1 0.07 0.02–0.27 ,0.001 0.16 0.04–0.69 0.014 0.68 0.61–0.77 ,0.001 0.79 0.69–0.9 ,0.001

TMEM204 0.17 0.07–0.38 ,0.001 0.31 0.11–0.85 0.023 0.74 0.65–0.84 ,0.001 0.84 0.72–0.98 0.025

Results from univariate and multivariate Cox’s proportional hazard model analysis of prognostic factors for overall survival in K2 (expression microarrays) and TCGA
(RNA-Seq) populations for a selection of genes. Abbreviations used: HR – hazard ratio; CI – confidence interval.
*Adjusted for age (continuous), grade, pT, sex.
doi:10.1371/journal.pone.0057886.t004
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of epigenetic variation in ccRCC. The methylation status of

individual genes has been examined in normal and renal tumour

cells and, more recently, global profiles of gene methylation of

RCC have been studied in cell lines [49]. We analyzed 317

ccRCC and adjacent non-tumour renal tissues from genome-wide

DNA methylation data from TCGA and compared it to our gene

expression study. Our results confirmed hypomethylation of CA9

[50] and identified new, at the time of preparation of the

manuscript, hypomethylated genes known to be overexpressed in

ccRCC, including nicotinamide N-methyltransferase (NNMT),

caveolin 1 (CAV1) and cyclin D1 (CCND1). Thereafter, Girgis

and colleagues also reported on hypomethylation of NNMT and

CCND1 genes in ccRCC [51]. Furthermore, the increased mRNA

levels of immune response genes (ENPP3, LCP1, HLA-DPA1, HLA-

DRA, HLA-DMA, TNFSF13B, GBP4, PAG1, SLA, AQP9, CD37,

IL7R), genes involved in signal transduction (RGS1, KSR1, ITGAX,

CD53, IFNGR2, S100A10), cell proliferation (CCND1, ISG20,

SPARC, RUNX3) and cell death (LGALS1, PLEK, IFI16, NOL3,

CD14, ADA, HSPB8, GZMH) could be partially attributed to

changes in methylation status. Downregulated genes associated

with ccRCC AQP2 and SERPINA5 were found to be hypermethy-

lated. Other genes of which expression could be modulated by

hypermethylation events included cellular transport genes (AQP2,

KCNJ1, CLCNKB, SCNN1A, SLC12A3, ATP1A1, CEL, RAB25),

homeostasis (PTH1R, ATP6V0A4, CLDN16), cellular responses

(ALDOB, MUC1, RBP4), adhesion (CLDN8, CYFIP2, FBLN5,

CLDN19), development (SFRP1, PLXNB1, SEMA3B, ANK3) and

cellular and metabolic processes (SERPINA5, MT1E, TACSTD2,

TSPAN8, GGT6, HRG, CEL, CKMT2). To our knowledge this is

the first report on methylation status of these genes in ccRCC.

Another novel finding of this study is the identification of gene

expression levels independently associated with the overall

survival. Multivariate Cox proportional-hazard analysis with

adjustment for age, tumour grade, extension of primary tumour

and sex was employed to correlate gene expression with survival

time. Our study identified a signature of eight genes with highly

correlated expression that was associated with ccRCC prognosis.

Expression of each of the genes in this signature was associated

with prolonged survival in the K2 and TCGA sets. The signature

included CYYR1 and LDB2 genes that have been described to be

correlated with disease-free survival in synchronously vs. meta-

chronously metastasized primary ccRCC, and in synchronous vs.

metachronous metastases [30]. Downregulation of S1PR1 expres-

sion has been shown to increase proliferative activity resulting in

enhanced malignancy and poor survival of glioblastomas [52]

while high-level expression of transcripts encoding ephrin-B2 has

been reported as predictive of favourable disease outcome of

neuroblastoma [53]. The angiogenesis-related gene CLEC14A

(EGFR5) and immune response gene CLEC1A were found in our

study to be associated with longer survival. CLEC14A (EGFR5)

plays a role in cell-cell adhesion and angiogenesis, because of its

presence at higher levels in tumour endothelium it has been

considered to be a candidate for tumour vascular targeting [54].

Furthermore, GPR116 gene associated with overall survival in our

study have been already described to be overexpressed in lung

adenocarcinoma [55]. Finally, we identified TMEM204 (CLP24), a

hypoxically regulated intercellular junction protein [56], as

predictive of overall survival. In summary, if validated in

independent series and by further protein assays, some or all of

the 9 genes may represent potential candidate biomarkers that can

predict independently of grade the outcome in patients with

ccRCC. These results indicate that an algorithm based on

expression data from a subgroup of genes may form the basis of

a potential prognostic tool. Further definition and validation of

such an algorithm is required and other genes significant in the

TCGA dataset but not in the Czech data (Table S8, File S2)

including cyclins (A2, B2), BUB1, BIRC5, AURKB, EPAS1 among

others should not be discarded if validated in larger cohorts.

In summary, we confirmed alterations in HIF pathway (through

upregulation of HIF-1a and HIF-2a target genes) and in the

signalling pathways upstream and downstream of HIF in the

Czech Republic population. We also reported on the methylation

status of genes involved in ccRCC pathogenesis and identified new

genes potentially associated with prolonged survival.

Materials and Methods

Patient Population and Biosample Collection and
Processing

Patient recruitment and biosample collection. As part of

the ongoing case-control ‘‘K2 study’’, renal cancer patients have

been recruited in four areas of Czech Republic (Prague, Olomouc,

Ceske Budejovice and Brno) between 2008 and 2012. Interviewers

were trained in each centre to perform face-to-face interviews with

cases (at the hospital) using standard questionnaires that covered

tobacco use, alcohol consumption, body mass, medical history,

and family history of cancer. Clinical and pathological information

was abstracted from medical records, including clinical and

pathological stages, tumour size, grade, histological type, treat-

ment, tumour progression, relapse, and survival.

Tumour and adjacent non-tumour tissue samples were obtained

from newly diagnosed patients who underwent partial or radical

nephrectomy for a clinically diagnosed renal cancer. All samples

were preserved in RNAlaterH solution and stored frozen at 220uC
until tissue sectioning and RNA extraction. For this study, we

selected 148 patients with histologically confirmed diagnosis of

ccRCC, and with a complete set of samples, demographic and

lifestyle data.

Ethics statement. The study protocol was approved by the

institutional review boards of the International Agency for

Research on Cancer and all collaborating centres/institutions

(Regional Hospital (Ceske Budejovice), General Teaching Hospital

and University Hospital Motol (Prague), Masaryk Memorial

Cancer Institute (Brno), and Palacky University (Olomouc)) and

written informed consent was obtained for all participating

subjects.

Biosample processing and pathological

examination. Tissue samples were embedded in Optimal

Cutting Temperature (OCT) compound and processed to obtain

consecutively one 5 mm section placed on slide and stained with

haematoxylin and eosin (H&E), two 20 mm sections for RNA

extraction, two 20 mm sections as a backup, and another 5 mm

H&E stained section. For each tumour tissue, H&E sections were

examined by a pathologist (BAA) independent from the pathol-

ogist who established the initial diagnosis to (i) confirm the ccRCC

tumour type, and (ii) assess the tumour cell contents among viable

cells present in the tissue. Non-tumour tissue H&E sections were

also examined to confirm the non-tumour nature of collected

paired samples. This thorough pathological examination led to the

exclusion of 9 cases due to low tumour cell contents (,30%),

leaving 139 (94%) cases for the purpose of the study.

RNA extraction. Total RNA was extracted from fresh frozen

tumour and normal samples using Total RNA Isolation NucleoS-

pinH RNA II kit (Macherey Nagel) according to manufacturer’s

instructions. RNA integrity (RIN) was assessed on an Agilent 2100

Bioanalyzer using the Agilent RNA 6000 Nano Kit (Agilent

Technologies, Santa Clara, CA). Out of 139 sample pairs, we

excluded 26 (19%) pairs with RIN value,6 for RNA extracted
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from the tumour sample (N = 4), the non-tumour sample (N = 21),

or both (N = 1), leaving 103 cases for the analysis. On average,

RIN values for the included samples were 8.4 for tumour samples

and 7.3 for non-tumour samples.

Microarray Hybridization and Data Analysis
500ng of mRNA was amplified into cRNA and biotinylated

cRNA using IlluminaH TotalPrepTM-24 RNA Amplification Kit

(Life Technologies) for the first batch, and two IlluminaH
TotalPrepTM-96 RNA Amplification for the second and third

batches (batches 2 and 3 included 2 technical replicate pairs from

batch 1, and batch 3 included an additional technical replicate

from batch 2). Subsequent steps included hybridization of each

sample to Illumina HumanHT-12 v4 Expression BeadChips,

washing, blocking, and streptavidin-Cy3 staining.

Illumina’s GenomeStudio software was used to generate signal

intensity values from the scans and perform the initial quality

controls. We found high correlation coefficients within the 5

technical replicate pairs (Pearson correlation range: 0.96–0.98),

indicating a good repeatability of our experiments. The perfor-

mance of hybridizations was evaluated by assessing the presence of

outliers (very low or very high average signal intensity) and the

noise-to-signal ratios by calculating P95/P05 ratios for each

sample. An outlier was defined as a sample with P95/P05 ratio

,9.5 and array intensity distribution distant from the rest of the

data as identified by MDS plots (PC .50 and PC,250) and

density plots following samples normalization. One tumour and

one non-tumour samples were found to be outliers and the

corresponding pairs were excluded from the analysis. All samples

were found to show an acceptable noise-to-signal ratio (P95/

P05.9.6). Supplemental quality assessment (before and after

normalization) was conducted using arrayQualityMetrics package

[57] and reached similar conclusions. In total, 101 sample pairs

were then included in the analysis.

Table 1 summarizes the clinical and demographic characteris-

tics of this K2 series of 101 patients, which included 59 men and

42 women. The majority of cases were between 55 and 74 years of

age and no significant differences were observed between male

and female individuals for known ccRCC risk factors.

All statistical analyses were performed using R Bioconductor

software, with the addition of the BRBArray tool for specific

applications. The raw signal intensities of all samples were

processed with lumi package applying variance-stabilizing trans-

formation (VST) and quantile normalization [58]. Linear Models

for Microarray Analysis (limma package) using the paired t-test

method was used for identification of differentially expressed

probes [59]. Significance levels (P values) were corrected using

Benjamini and Hochberg (BH) false discovery rate (FDR) method

to correct for multiple hypothesis testing. Probes with a FDR-

adjusted p-value of ,0.05 and probes with a minimum of 2-fold

change were considered significantly differentially expressed.

Unsupervised Hierarchical Clustering was performed with the

average linkage method while the differential gene expression was

measured using centered correlation technique implemented in

BRBArray tool. The Database for Annotation, Visualization and

Integrated Discovery (DAVID) v 6.7 was used for classification of

the differentially expressed genes according to biological and

molecular processes [60]. Gene Set Enrichment Analysis (GSEA)

(Broad Institute) was used to evaluate the combined significance of

sets of genes in ccRCC using annotations from a curated version of

Biocarta. Only gene sets represented by at least 15 genes were

retained. Genes were ranked based on the limma-moderated t

statistic. After Kolmogorov–Smirnoff testing, those gene sets

showing FDR ,0.25, a well-established cut-off for the identifica-

tion of biologically relevant gene sets [22] were considered

enriched between classes under comparison. The microarray

experiments are MIAME compliant and have been deposited at

the NCBI Gene Expression Omnibus (GEO) database (http://

www.ncbi.nlm.nih.gov/geo) under accession GSE40435.

Secondary Analysis of Data from the Cancer Genome
Atlas (TCGA)

TCGA RNA-Seq (Level 3), methylation (Level 1) and corre-

sponding clinical data were downloaded from TCGA website

https://tcga-data.nci.nih.gov/tcga/following approval of this

project by the consortium. RNA-Seq analysis used data from 65

tumour/non-tumour tissue pairs and 400 unpaired tumour tissue

samples. Methylation analysis were based on data from 188

tumour/non-tumour tissue pairs analyzed on the Illumina

Infinium HumanMethylation 27K BeadChip assay and 129

additional pairs analyzed on the Infinium HumanMethylation

450K BeadChip assay. A description of the TCGA cases used in

this study is available in File S1.

RNA-Seq data analysis. For RNA-Seq analysis, TMM

normalization [24] available in EdgeR package was applied to

RPKM values and the voom function was used to convert the

values to log2-cpm, with associated weights. Differential expres-

sion analysis between tumour and non-tumour tissue (paired t-test)

was performed with the limma package implemented in

Bioconductor [61] using uniquely mapped RPKM per gene as

input. Only transcripts that were found to be differentially

expressed with an FDR-adjusted p-value ,0.05 (adjusted using

a BH method for multiple testing [62]) and with a minimum of 2-

fold change were considered significant and used for downstream

analysis. Up -and down -regulated genes were considered

independently and comparison with microarray-based results

from the Czech data was illustrated with Venn diagrams

(http://bioinfogp.cnb.csic.es/tools/venny/index.html).

Methylation data analysis. Raw data were imported with

methylumi package and Bioconductor lumi package was used to

process both Illumina Infinium HumanMethylation 27K and

450K DNA methylation data. The data was first subjected to a

QA/QC step (boxplot, density plot of M-values, principal

component analysis). Following removal of outliers (defined by

array intensity distribution distant from the rest of the data as

identified by MDS plots (PC .50 and PC,250) and density plots

following samples normalization), we performed a colour balance

adjustment of methylated and unmethylated probe intensities

between the two colour channels using a smooth quantile

normalization method. The methylation M-value (log2 ratio of

methylated and unmethylated probes) was calculated to estimate

the methylation level of the measured CpG sites [63]. The follow-

up analysis was then based on the M-value. We used a stringent

quantile normalization method. The assumption of ‘‘quantile’’

normalization is that the intensity distribution of the pooled

methylated and unmethylated probes is similar for different

samples. Following this pre-processing, the differential analysis of

methylation data was similar to that used for expression

microarray data. To compare the differences in methylation

between tumour and adjacent non-tumour tissues, we performed

differential analyses using routines implemented in the limma

package (paired t-test). To ensure both statistical significance and

strong biological effects, we required that the differentially

methylated CpG sites had an FDR ,0.05 and a minimum of 2-

fold change (based on M-value). Using this approach, 1811 CpG

sites (916 up, 895 down) and 35552 CpG sites (16469 up, 19083

down) were identified for Illumina Infinium HumanMethylation

27 k and 450 k, respectively. The differentially methylated CpG
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sites common to both platforms were mapped to differentially

expressed genes.

Survival Analysis
To identify sets of genes related to ccRCC prognosis, the

‘‘Filter, cluster, and stepwise model selection’’ (FCMS) method

[64] implemented in the web tool SignS (http://signs.bioinfo.cnio.

es) [27] was used. Briefly, individual genes were tested for

association with prognosis using a univariate Cox regression. Only

genes with a nominal p-value ,0.001 were retained for further

analyses. Genes were then divided into two groups, those with a

positive and negative coefficient in the Cox model and clustered

separately. A cluster was restricted to contain between 10 and 100

genes with minimum correlation coefficient of 0.8. All possible

pairs of signatures were then jointly fitted with a Cox model.

Stepwise variable selection using the best two-signature model was

performed using the AIC criterion. Final assessment of the

significance of association was performed by splitting the samples

into several (2, 3 or 4) groups based on their predicted scores, and

comparing survival functions of these groups (better vs. worse

prognosis, tertiles, quartiles). The predicted scores were obtained

from a 10-fold cross validation. Since the gene expression

microarray K2 series was smaller (89 ccRCC cases), had better

survival (12 deaths) and shorter follow-up time, reducing the

power of tests based on this data alone, the performance of the

final model was evaluated against the larger TCGA series (464

ccRCC cases). In this analysis the TCGA series was used to assess

predictive performance, and not to build the model. In addition, to

evaluate whether important features were missed in the smaller

gene expression microarray K2 series, we build a separate model

using only the TCGA series, with significance assessed by cross-

validation, and examined the overlap of the sets of selected genes.

Finally, the genes selected in the FCMS method were individually

tested in a further Cox model (using STATA v 11 statistical

software), where additional covariates (age, sex, tumour grade and

extent of primary tumour) were included, to guard against possible

confounding. Those genes not significantly associated (p.0.05) in

this test were discarded from the model. Finally, the list of

significant genes was then included together with the other

covariates in a final multivariate Cox model and tested separately

on each of the two datasets, with backwards step-wise selection

used to remove redundant genes.

Supporting Information

Figure S1 Unsupervised Hierarchical Clustering of
tumour and non-tumour samples separately following
quantile normalization showing no identifiable cluster.

(TIF)

Figure S2 Detailed workflow for RNA-Sequencing data
analysis including data processing prior to download (A)
and data normalization and transformation (B).

(TIF)

Table S1 Complete list of statistically significant dif-
ferentially expressed probes (FDR-adjusted p-value
(BH) ,0.05, FC $2) in ccRCC as compared with adjacent
non-tumour tissues in Czech Republic (K2 series)–
whole-genome expression profiling using microarrays.

(XLS)

Table S2 Enriched GO categories among the tran-
scripts significantly differentially expressed between

ccRCC tumour and adjacent non-tumour tissues in
microarray analysis of K2 series using DAVID tools.
(XLS)

Table S3 List of pathways enriched in ccRCC pheno-
type identified in gene set enrichment analysis (GSEA).
All gene sets are derived from Biocarta pathway database.

(XLSX)

Table S4 Complete list of statistically significant dif-
ferentially expressed genes (FDR-adjusted p-value (BH)
,0.05, FC $2) in ccRCC as compared with adjacent non-
tumour tissues in US population (TCGA series) – RNA-
Sequencing analysis.
(XLS)

Table S5 Enriched GO categories among the tran-
scripts significantly differentially expressed between
ccRCC tumour and adjacent non-tumour tissues in
RNA-Sequencing analysis of TCGA series using DAVID
tools.
(XLS)

Table S6 Complete list of statistically significant dif-
ferentially hypermethylated and hypomethylated CpG
sites (FDR-adjusted p-value (BH) ,0.05, FC $2) in
ccRCC as compared with adjacent non-tumour tissues
in US population (TCGA series) using Illumina Infinium
HumanMethylation 27K and 450K BeadChip assays.
(XLSX)

Table S7 Complete list of statistically significant dif-
ferentially expressed probes (FDR-adjusted p-value
(BH) ,0.05, FC $2) in grades 1–4 separately for ccRCC
as compared with adjacent non-tumour tissues in Czech
Republic (K2 series) – whole-genome expression profil-
ing using microarrays.
(XLSX)

Table S8 Results from univariate and multivariate
Cox’s proportional hazard model analysis of all prog-
nostic factors for overall survival in K2 (expression
microarrays) and TCGA (RNA-Seq) populations identi-
fied in SignS analysis.
(DOCX)

File S1 List of the Cancer Genome Atlas (TCGA) project
cases used for the analysis.
(XLS)

File S2 List of genes identified as associated with
overall survival in both K2 (Czech Republic) and TCGA
(US) datasets or TCGA dataset alone using SignS
software.
(XLS)
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