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Developing well-calibrated illness severity scores for decision
support in the critically ill
Christopher V. Cosgriff 1,2, Leo Anthony Celi 1,3, Stephanie Ko4, Tejas Sundaresan5, Miguel Ángel Armengol de la Hoz 1,6,7,8,
Aaron Russell Kaufman9, David J. Stone1,10, Omar Badawi 11 and Rodrigo Octavio Deliberato1,12,13

Illness severity scores are regularly employed for quality improvement and benchmarking in the intensive care unit, but poor
generalization performance, particularly with respect to probability calibration, has limited their use for decision support. These
models tend to perform worse in patients at a high risk for mortality. We hypothesized that a sequential modeling approach
wherein an initial regression model assigns risk and all patients deemed high risk then have their risk quantified by a second, high-
risk-specific, regression model would result in a model with superior calibration across the risk spectrum. We compared this
approach to a logistic regression model and a sophisticated machine learning approach, the gradient boosting machine. The
sequential approach did not have an effect on the receiver operating characteristic curve or the precision-recall curve but resulted
in improved reliability curves. The gradient boosting machine achieved a small improvement in discrimination performance and
was similarly calibrated to the sequential models.
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INTRODUCTION
Illness severity scores are regularly employed for quality improve-
ment and benchmarking in the intensive care unit (ICU) and as
covariates for risk adjustment in observational research of critically
ill patient cohorts.1,2 Common models for estimating severity of
illness scores include the Acute Physiology and Chronic Health
Evaluation (APACHE), the Simplified Acute Physiology Score, and
the Mortality Probability Model.3–6 Poor generalization and
inadequate model calibration have limited the use of these
models for clinical decision support.7–9 As medical data become
progressively digitized and hence readily analyzable, there is
increased interest in, and potential for, the use of this data to
develop useful clinical decision support tools.10 As accurate
quantification of patient mortality risk may inform goals of care
discussions and resource allocation, it is an area of clinical
predictive modeling that is ripe for improvement.
One of the key challenges has been developing models that are

well calibrated.11–13 Although prior models have often achieved
acceptable observed-to-predicted mortality ratios (OPRs), they
frequently under- or over-predict risk across the risk spectrum; in
particular, the models tend to be most poorly calibrated in the
sickest patients. Critically ill patients represent a heterogeneous
risk population with only a minority (about 1/3) of patients
constituting what may be defined as high mortality risk, i.e.,

≥10%.14 The effect of this heterogeneity on predictive models may
be best understood in the context of the bias–variance tradeoff.
Although logistic regression allows for the modeling of non-

linearities (e.g., polynomial terms, restricted cubic splines) and the
manual specification of interactions, complex interactions have
been overlooked in the development of prior severity score
models. Therefore, the contribution of a feature, for example, the
worst heart rate over the first 24 h of hospitalization, to the risk of
mortality is considered equal and constant across the spectrum of
illness severity. While ensuring less variance and simplifying the
models, intuitively, this also results in the creation of a biased
model of the underlying data generating process.
More sophisticated machine learning approaches do not

require as much input from the modeler and automatically learn
relationships directly from the data. This extra flexibility allows
these approaches to model non-linearity and feature interactions
at the cost of higher variance. Excitement over the power and
promise of these methods has continued to swell, but recent work
from Christodoulo et al. has challenged the usefulness of machine
learning in the development of clinical prediction models.15 Their
review did not consider logistic regression, penalized or otherwise,
technically to be a form of machine learning and did not consider
perceptual tasks where the performance of deep learning is
uncontested. However, their critique of the state of machine
learning in the development of clinical prediction models
remains apt.
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We hypothesized that, while high-risk patients in ICU cohorts
represent a distinct and identifiable group of patients, prior
severity scores have been built with methods that are too simple
and inflexible to learn to forecast mortality accurately across such
heterogeneous groups. While the aforementioned sophisticated
machine learning approaches may offer the flexibility to
automatically overcome this, these data-hungry methods can be
bested by aptly including domain knowledge, especially when
data are limited. Because we hypothesized that the model simply
needed to treat high-risk patients differently, we sought to explore
a sequential modeling approach wherein, after classification of
patients as high risk with an initial regression model, a high-risk-
specific regression model is then applied. We explored this
approach, as well as a sophisticated machine learning approach, in
a large, publicly available, multicenter critical care database.
As the electronic health record (EHR) has given rise to an

unprecedented abundance of highly granular clinical data, we
expect care centers to increasingly craft bespoke models for
severity scoring as well as clinical decision support. With the
known shortcomings of previous approaches to severity score
development, we hope to inform future model development
strategies so as to ensure accurate risk quantification across the
board in critically ill patients.

RESULTS
Cohort overview
Of the 200,859 ICU stays in the Phillips eICU Collaborative
Research Database (eICU-CRD), 148,532 had the required APACHE
IVa variables recorded, and 136,231 had the required APACHE IVa
variables and also met criteria for the calculation of an APACHE IVa
mortality prediction. After excluding patients who lacked at least
one recording of automatically captured vital sign data, l34,946
ICU stays remained. The cohort selection is summarized in Fig. 1.
Demographic variables and a subset of the features are
summarized in Table 1. After randomly splitting off 25% of the
initial cohort to form a validation cohort, 101,167 patients
remained for model training. All model evaluation metrics are
reported on the validation cohort, composed of the held out
33,779 patients who were never used in model training.

Linear models
Reliability curves for the APACHE IVa model and our logistic
regression model (Logit) applied to our validation cohort are
shown in Fig. 2. The older APACHE IVa model systematically over-
predicts mortality across the risk spectrum. The degradation of
model calibration in models like APACHE has been previously
attributed to changes in treatment efficacy over time, cultural
changes in propensity to forgo care, ICU utilization, and frequency
of early discharge.16 However, other work examining model
degradation attributed the phenomenon to changes in case mix
rather than changes in predictor outcome relationships or
outcome frequency.17 The Logit model appears better calibrated
in patients on the lower end of the predicted risk spectrum but
becomes less well calibrated as the predicted risk of mortality
increases. Despite this evident miscalibration, the OPR for the
Logit model is 0.99 [0.96, 1.02] as compared to 0.74 [0.72, 0.76] for
the APACHE IVa model. The Logit model also achieved superior
discrimination with an area under the receiver operating
characteristic curve (AUC) of 0.887 [0.882, 0.893] as compared to
an AUC of 0.864 [0.858, 0.871] for the APACHE IVa model. Similarly,
the Logit model had an average precision (AP) of 0.529 [0.512,
0.549] as compared to an AP of 0.460 [0.442, 0.480] for the
APACHE IVa model. Figure 3 displays the receiver operating
characteristic curves and precision-recall curves in the held-out
validation cohort for these models, as well as all models trained in
this study.

 200,859 

148,532 

136,231 

134,946 

52,327 No APACHE IVa data 
recorded (ins�tu�on may not 

calculate)

1. 8,270 Readmissions 
2. 620 From another ICU 
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4. 43 Lung or heart transplant 
5. 115 Age <16 
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7. 2,314 Score not calculated, 

unspecified 

1,285 Pa�ents lacking periodic vital 
recording 

Fig. 1 Fluxogram. Cohort selection process

Table 1. General overview of the cohort features

Variable Summary measure

Age 63.12 (17.32)

Gender Prop. 54.03% (72,875)

Caucasian ethnicity 77.08% (103,971)

Sepsis 13.32% (17,970)

Cardiac arrest 6.72% (9066)

GI bleed 5.36% (7230)

CVA 7.13% (9616)

Trauma 4.28% (5780)

Unit type: MICU 8.56% (11,545)

Unit type: SICU 6.42% (8664)

Unit type: mixed 55.18% (74,434)

Unit type: other 29.84% (40,247)

Mean HR 84.29 (16.42)

Mean MAP 77.83 (10.14)

Mean RR 19.34 (4.74)

Mean SpO2 97.02 (95.5, 98.42)

GCS motor 6 (6.0, 6.0)

GCS eyes 4 (3.0, 4.0)

GCS verbal 5 (4.0, 5.0)

Antibiotics 26.34% (29,785)

Vasopressors 12.06% (13,635)

Ventilatory support 32.96% (44,456)

APACHE IVa mortality probability 0.05 (0.02, 0.13)

Hospital mortality 8.84% (11,925)

APACHE Acute Physiology and Chronic Health Evaluation, CVA cerebrovas-
cular accident, GCS Glasgow coma scale, GI gastrointestinal, HR heart rate,
MAP mean arterial pressure, MICU medical intensive care unit, RR
respiratory rate, SICU surgical intensive care unit
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Sequential models
The OPR for SeqLogit-0.10 and SeqLogit-0.50 in the validation
cohort are 0.98 [0.95, 1.01] and 1.00 [0.97, 1.03], respectively,
indicating similar overall calibration performance, but the
reliability curves for these models shown in Fig. 4 suggest that
both sequential models are better calibrated than the baseline

Logit model alone at the higher end of the risk spectrum. As is
evident in Fig. 3, the AUC and AP of the sequential models is
equivalent to the Logit model. Inspection of the feature
importance of the Logit model and the high-risk components of
the sequential models provides support for the general intuition
of sequential approach. For example, in the Logit model, age was
the most important feature with a coefficient of 0.52 on the log

Fig. 2 Reliability curves for the APACHE IVa and Logit models

Fig. 3 Receiver operating characteristic and precision-recall curves. Receiver operating characteristic and precision-recall curves for all the
models. Area under the receiver operating characteristic curve (AUC) and average precision (AP) are provided for each model along with 95%
confidence intervals obtained from bootstrapping
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odds scale; it drops to fifth most important feature in the high-risk
component of the SeqLogit-0.10 model with a coefficient of 0.38
and eighth most important in the high-risk component of the
SeqLogit-0.50 model with a coefficient of 0.32. The different
contribution of these features can be understood in terms of the
change in distribution of the feature in data on which the model is
being trained as case mix necessarily shifts. The mean age in the
training cohort was 63 years with a standard deviation of 17.30,
but when we examine the high-risk cohort identified by the first
step of the SeqLogit-0.10 model, we see the mean age increase to
71 years with a decreased standard deviation of 14.78. In the
higher-risk subset, age is higher, but with lower variability, and
thus less informative for prediction. Similarly, the maximum
lactate level on the first day was a top 10 feature in the high-risk
component of the SeqLogit-0.50 model with a coefficient of 0.37
but only a coefficient of 0.16 in the Logit model. The intuition is
similar to that of age but in reverse. In the whole training cohort,
we expect a wide distribution of lactate and a normal to slightly
elevated average lactate, but in the higher-risk patients we expect
a higher average lactate and a broader spread. In fact, the mean of
the maximum lactate on day 1 for patients in the whole training
cohort was 3.11 with a standard deviation of 3.17, and this same
feature had a mean of 8.44 with a standard deviation of 5.90 in
patients stratified as high risk in the first step of the SeqLogit-0.50
model. The coefficients for each feature of the Logit model and
the high-risk components of the sequential models are provided
in full in Supplemental Materials.

Gradient boosting machine
A subset of the hyperparameters for the xgBoost (extreme
gradient boosting (XGB)) model as selected by ten-fold cross-
validation (CV) are summarized in Table 2. The best model was
chosen based on the optimal negative log-loss and is composed
of 1000 trees with a permitted maximum tree depth of 12. The

reliability curve for the XGB model is shown in Fig. 5: the model
appears well calibrated but varies between slight under- and over-
prediction as the predicted risk increases resulting in an overall
OPR of 1.04 [1.01, 1.07]. The AUC and AP were slightly superior to
all other models in this study at 0.907 [0.902, 0.913] and 0.596
[0.579, 0.615], respectively.

DISCUSSION
This work explores strategies for improving the calibration of
severity of illness models. We hypothesized that existing models
are too inflexible to adequately model the risk of mortality across
the full spectrum of illness severity. Furthermore, we postulated
that, at minimum, patients with a high risk of mortality signify a
distinct group of patients requiring a separate disease severity
model mapping their physiological data to the probability of
mortality. To examine this further, we developed an updated and
augmented severity score based off the APACHE IVa model using
multivariate logistic regression as a baseline and then developed
models composed of a combination of two logistic regression

Fig. 4 Reliability curves for sequential models

Table 2. XGB hyperparameters

Hyperparameter Value

Learning rate 0.01

Number of trees 1000

Max. tree depth 12

Row sampling 0.6

Column sampling 0.75

The XGB model hyperparameters as selected by ten-fold cross-validation
XGB extreme gradient boosting
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models, termed sequential models. The sequential models first
used the full cohort regression model to assign risk of mortality,
and when that risk exceeds a predefined cutoff, a second model
trained in only patients above that cutoff in the training set is then
employed to estimate risk. We examined this approach with a
cutoff of 0.10 and 0.50 risk of mortality. We compared this simple
approach to a sophisticated, state-of-the-art machine learning
method: the gradient boosting machine.
Inspection of the reliability curves suggests that the sequential

modeling approach results in an improvement in calibration in
higher-risk patients over the full cohort model alone, but with no
effect on AUC or AP, and minimal effect on the overall OPR. In
comparison, the XGB model slightly bests the linear models in
terms of AUC, with a larger advantage in terms of AP; the XGB
model appears well calibrated on inspection of the reliability curve
but varies between under- and over-prediction across the risk
spectrum resulting in an over-prediction of overall mortality by
4%. As would be expected, all models improve on APACHE IVa
given that they are trained and deployed in data from the same
generating source and thus are closer to the validation data both
temporally and spatially.
The fundamental premise of this work, that accurate risk

quantification with severity of illness models requires that the
model be able to quantify risk differently in patients with higher
disease severity, is supported by the improved calibration seen on
the reliability curves for the sequential models. In agreement with
our intuition, features that are important in discerning risk of
death across the whole cohort are less important in the highest-
risk patients, and the sequential approach allows a re-weighting
that supports improved risk quantification at the higher end of the
risk spectrum. While the XGB model allows for up to 12 levels of
interaction, the gain in discrimination is marginal at the cost of
increased variance, with slight overall over-prediction of mortality
in the validation cohort; furthermore, this complex model is harder

to interpret and developers will need to weigh this difficulty
against the small discriminative gains provided.
However, there are two other important conclusions to draw

from this work. Foremost, the worst performing model, APACHE
IVa, still demonstrated an AUC of 0.864 [0.858, 0.871], not
substantially lower than the XGB model that had the highest
AUC at 0.907 [0.902, 0.913], and yet it was very poorly calibrated.
Shah et al. highlighted this problem in the broader context of
clinical machine learning, referring to calibration as the “Achilles’
heel of prediction.” Proper calibration is crucial, especially for
informing care decisions, and even strong discrimination perfor-
mance alone is insufficient for this purpose. That is, while
thresholding risk at 50% can assign a label of survival or
expiration, for clinical decision support a 10% chance of mortality
is not the same as a 40% chance, just as a 95% chance differs from
a 55% chance. In addition, with respect to discrimination, the fact
that a sophisticated method capable of modeling complex
interactions did not substantially outperform less complex
methods, or even the out-of-date APACHE IVa model, suggests
to us that substantial gains are unlikely to be related to
algorithmic advancement alone, at least while we are reliant on
a small subset of structured clinical data. While complex methods
like xgBoost have led to performance gains in various task
domains, allowing models to capture non-linearity and interaction
directly from engineered features is less important than the
engineering of such features.18–20 Better quantification of
mortality risk with improved discriminative performance will likely
require the identification of other variables that explain more of
the variance observed. As a significant amount of patient data
reside in unstructured formats like images and clinical notes,
modeling approaches (such as deep learning) that can auto-
matically extract novel features from these sources represent an
emerging strategy for advancing the current state-of-the-art.21–23

However, we emphasize that it is these rich data sources that
demonstrate the usefulness of deep learning, and the application

Fig. 5 Reliability curves for the extreme gradient boosting model
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of deep learning to structured inputs traditionally used in clinical
models has not yielded performance gains. Extending the
intuition behind the sequential approach, we not only anticipate
that certain features will contribute more strongly in certain
subpopulations but also that the incorporation of new features
selectively within relevant subgroups will improve predictive
performance.
This work has several important limitations. Foremost, because

no other publicly available database (including MIMIC-III) provides
the variables used to derive the APACHE IVa score and we chose
to use this expansive feature set, we were unable to test the
sequential models on a truly external validation set as is expected
by the Transparent Reporting of a multivariable prediction model
for Individual Prognosis Or Diagnosis (TRIPOD) statement.24 We
have attempted to allay some of this shortcoming by selecting
hyperparameters with ten-fold CV, evaluating our final model on a
validation set that the model never encountered during training,
using data that is publicly available online, and making our code
publicly available online.25 However, the lack of another publicly
available database in which to test our models in full compliance
with the TRIPOD statement represents this work’s greatest
shortcoming.
Another important limitation of this work lies in the feature

engineering. Unlike the APACHE IVa system that uses the worst
value for vital sign parameters such as heart rate, the models we
developed automatically processed vital sign inputs from stream-
ing 5-min medians and averaged these data over the first 24 h.
Values curated to be the worst are not only used in the standard
APACHE score calculation and might be more predictive of
mortality than an average over the first day but are also more
subject to technical (artifacts, monitoring inaccuracies), user input,
and data storage and retrieval issues. In this current digital age,
perhaps precise definitions need to be modified so “worse” values
are better defined in terms of the data collected, which is often
stored as a median value of some kind such as ≥5min time
interval medians. In addition, average values may be more
representative of the physiological state as sustained over the
period of the APACHE day. However, the goal of this work was to
compare the sequential approach to the commonly used simple
linear modeling approach and a more complex machine learning
approach, and this type of feature selection was used in an
internally consistent manner across all of these methods. In fact,
our model performed as well or better than the standard APACHE
worse value method. As such, it is unlikely that it diminishes the
conclusion of this paper that sequential modeling improves
severity score calibration.
A further limitation is that arbitrary cutoffs for high risk of 0.10

and 0.50 were used, and in future work the cutoff point or points
should be considered a hyperparameter chosen via a CV
procedure in a data-driven manner. Selection bias also represents
an important shortcoming: a significant limitation of this study is
the number of patients for whom APACHE data were not present
and/or an APACHE IVa score was not calculated as they were
excluded. It is unlikely that these data were missing completely at
random (MCAR), and thus the missingness is likely informative.
Therefore, exclusion of these patients may have biased our
models and comparisons. While this does not specifically detract
from the goal of this study, it is important to note that models
developed in this manner would not be applicable to patients
who would have been inadvertently excluded by this selection
bias, and prospective analysis is crucial to safely developing and
deploying these tools.
As healthcare continues to digitize and EHR data continues to

proliferate, we expect that hospitals will increasingly craft bespoke
models in order to quantify the probability of outcomes relevant
to clinical decision-making. In the ICU setting, the quantification of
disease severity and the risk of hospital mortality can optimize
resource allocation; motivate goals of care conversations; and

allow clinicians, patients, and families prognostic insight. Because
of the wide spectrum of disease severity present in ICU cohorts,
we believe strategies for adequately calibrating models across the
risk spectrum are necessary. We demonstrate that a sequential
approach that combines two linear models is a valid strategy but
provides only a modest improvement, and further work is needed
to ultimately deliver models that accurately quantify risk in every
ICU patient.

METHODS
Data source
The eICU Collaborative Research Database (eICU-CRD) is a large, open
access, multicenter critical care database made available by Philips
Healthcare in partnership with the MIT Laboratory for Computational
Physiology.26 It holds data associated with 200,859 ICU admission for
139,367 unique patients across the United States; we employed data from
2014 and 2015. Version 2.0 of the database is publicly available at https://
eicu-crd.mit.edu/.

Ethical approval
This study was exempt from institutional review board approval due to the
retrospective design, lack of direct patient intervention, and the security
schema for which the re-identification risk was certified as meeting safe
harbor standards by Privacert (Cambridge, MA) (Health Insurance
Portability and Accountability Act Certification no. 1031219-2).

Cohort feature extraction
Patients were required to have the variables necessary to calculate the
APACHE IVa score as well as having a valid APACHE IVa result recorded in
the database. By requiring a valid APACHE IVa score, the following
exclusion criteria were implicitly imposed: age <16 years, readmissions, ICU
transfers, patients with ICU length of stay <4 h, patients with hospital
length of stay >365 days, and patients admitted for burns or non-renal,
non-hepatic transplant. In addition to these criteria, patients were also
required to have at least one recording of each of the following:
automated vital sign recording, laboratory result data, and treatment
documentation.
The models developed in this study were meant to recapitulate and

extend other well-known mortality models. They consist of a combination
of the original APACHE IVa features with features engineered from
routinely collected EHR vital signs, laboratory test results, diagnoses, and
administered treatments.
The APACHE IVa features included were: admission diagnoses, whether

thrombolytics were given, whether the patient was actively receiving any
of the certain predefined treatments, the components of the Glasgow
coma scale, whether or not the patient had an internal mammary graft,
whether or not the patient had a myocardial infarction within the past
6 months, and ventilation and intubation indicator variables. The
admission diagnoses were grouped into meaningful categories using a
special text string for describing a search pattern known as a regular
expression. In this approach, the presence or absence of a search string is
used to classify the strings into groups.
With respect to the vital sign data, the models we develop incorporate

the mean over all values in the first 24 h in the ICU; these mean values
were used for the following variables: heart rate, respiratory rate, oxygen
saturation, systolic, diastolic, and mean arterial pressure. Although the
APACHE IVa model uses the worst values, our new models pull data that are
derived from automatically captured signals, and these streaming systems
tend to have noise; thus the minimum and maximum values may reflect
artifact. Although the automatically captured temperature was extracted
for each patient, it was missing for a substantial majority and was excluded
from the analysis as its fidelity was considered suspect.
For laboratory data, the minimum and maximum values in the first 24 h

were initially extracted. For serum bicarbonate, chloride, calcium,
magnesium, base excess, platelets, hemoglobin, phosphate, fibrinogen,
pH, and hematocrit, the minimum value was selected. For serum
creatinine, blood urea nitrogen, bilirubin, lactate, troponin, amylase, lipase,
B-natriuretic peptide, creatinine phosphokinase and prothrombin time, the
maximum value was selected. For serum sodium and glucose, the most
abnormal value was defined as the value with the greatest deviation from
the normal range. For white blood cell and neutrophil counts, if any
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measurements were lower than the lower limit of the normal range, the
minimum value was used; if the minimum was within normal range, then
the maximum was used.
Treatment information from the first 24 h regarding the administration

of vasopressors, antiarrhythmic agents, antibiotics, sedatives, diuretics, and
blood products was also extracted and these data were included as binary
indicator variables.

Training and validation split
Following the extraction of the features from the database for all included
patients, 25% of the dataset was randomly sampled and held out for
derivation of a validation cohort. The remaining 75% of the data were then
used to develop the models.

Modeling procedures
Logistic regression (Logit) was chosen as the base model and for the
components of the sequential models as this approach is common in
clinical prediction and severity score development, is easily interpretable,
and often produces results as good, if not superior to, more complex
approaches.15 The sequential models were constructed using a cutoff
definition of 0.10 risk of mortality and 0.50 risk of mortality; they are titled
SeqLogit-0.10 and SeqLogit-0.50, respectively. In these models, the base
Logit model, which is fit on data from the entire training set, is used to
initially predict the risk of mortality and if that predicted risk is above the
cutoff, a second multivariate logistic regression model trained only in
patients above the cutoff is used to predict the mortality. When deployed
in the validation cohort, the base Logit model first predicts the risk and if
the risk is above the cutoff, the second model is used to predict the risk of
mortality.
In order to compare the Logit model and sequential models to the

current state-of-the-art approach for prediction with structured data, a
gradient boosting machine model was implemented. This approach has
recently gained traction in clinical predictive modeling with state-of-the-art
performance at predicting risk of readmission and risk of acute kidney
injury.19,20 We utilized the XGB implementation developed by Tianqi
Chen.27 The gradient boosting approach allows for the development of a
strong learner from many weak learners. For the classification task,
classification trees of a specified complexity are trained iteratively, each
tree being trained on the residual from the linear combination of all prior
trees (with the first tree trained on a pseudo-residual). The complexity of
the gradient boosting machine is controlled by various factors including
the number of trees to be fit, the size of the random sample of the data to
be used for each tree, the number of features to be randomly selected for
the construction of each tree, the tree depth, and the shrinkage factor
(learning rate). These hyperparameters allow for fine control of the model
flexibility and thus, if chosen correctly, allow for the development of a
model that is hypothetically close to the optima of the bias–variance
tradeoff and reduces overfitting.
All hyperparameters were selected via ten-fold CV using only the

training data. Because there are many hyperparameters to select with this
approach, and because fitting these models is computationally expensive,
the CV hyperparameter search was carried using a random search strategy:
a grid of possible hyperparameter combinations was randomly sampled
from 100 times for a total of 1000 model fits. This approach has been
shown to be highly successful and spares substantial wasted CPU time in
areas of the hyperparameter space that are far from optimal.
Because of the differences between Logit and XGB, different preproces-

sing steps were applied depending on which method was being applied.
Regression based methods are not capable of dealing with missing data,
and samples with any missing values are excluded, that is, missing data are
assumed to be MCAR unless adjustment for missingness is performed (e.g.,
inverse probability weighting to model the mechanism of missingness). To
overcome this, the fitting of regression models was carried out using a
pipeline that performed multiple imputation using Bayesian Ridge
Regression as implemented in the current development version of scikit-
learn.28 In addition, this pipeline also normalized the data using the mean
and standard deviation from the training data. In contrast, tree-based
methods are implemented such that they may automatically learn to
handle missing data directly from the data, and there is no need for
normalization. As such, no preprocessing was performed on the data used
to train the XGB models.
No model recalibration procedures were applied to either approach.

Logistic regression-based approaches maximize the likelihood estimator

and in turn, minimize the negative log loss given by:

�1
N

X
yi log pið Þ þ 1� yið Þlog 1� pið Þ

Minimization of this loss function directly optimizes the probabilities, pi,
produced by the model and therefore logistic regression produces
inherently well-calibrated probabilities. Although Niculescu-Mizil et al.
have demonstrated that gradient boosting classification tree-based
approaches do not produce well-calibrated probabilities, their work
specifically examined AdaBoost, a different implementation, which
minimizes the squared exponential loss function.29 In contrast, XGB can
be trained with its objective to minimize the log loss, and therefore, like
regression, can produce well-calibrated probabilities without recalibration
procedures. Eschewing this step allowed us to use all of the training data
to fit the models as re-calibration requires a second held out dataset.

Model performance evaluation
Calibration was examined graphically with the use of reliability curves; this
is recommended as the optimal way to assess calibration, and the
Hosmer–Lemeshow test was not performed as it offers minimal insight and
can be misleading in large samples.30 Although not an optimal measure of
calibration across the risk spectrum, the overall OPR was also calculated for
each model. Discrimination was examined graphically by plotting receiver
operating characteristic curves and quantitatively by calculating the AUC.
Precision-recall curves were also generated and AP was also assessed.
Uncertainty around AUC, AP, and observed-to-predicted mortality
estimates was quantified by the construction of 95% confidence intervals
obtained via bootstrapping: 2000 bootstrap samples were used for each
interval.

Statistical analysis
Normality was assessed by examination of variable distribution. Contin-
uous variables are presented as means and standard deviations if normally
distributed or medians with 25th and 75th percentiles otherwise.
Categorical variables are presented as the percentage of the whole and
sum total. As mentioned above, confidence intervals were derived via the
construction of 2000 bootstrap samples for estimated metrics and a null-
hypothesis testing framework was not applied.

Software
The data were extracted from the database with the use of structured
query language. This work was developed with Python 3.6. The scikit-learn
and xgBoost packages were used for model development, and graphics
were produced with the use of the matplotlib package.27,28

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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