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Abstract: Fusarium graminearum is a devasting mycotoxin-producing pathogen of grain crops.
F. graminearum has been extensively studied to understand its pathogenicity and virulence factors.
These studies gained momentum with the advent of next-generation sequencing (NGS) technologies
and proteomics. NGS and proteomics have enabled the discovery of a multitude of pathogenicity and
virulence factors of F. graminearum. This current review aimed to trace progress made in discovering
F. graminearum pathogenicity and virulence factors in general, as well as pathogenicity and virulence
factors discovered using NGS, and to some extent, using proteomics. We present more than 100
discovered pathogenicity or virulence factors and conclude that although a multitude of pathogenicity
and virulence factors have already been discovered, more work needs to be done to take advantage
of NGS and its companion applications of proteomics.
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1. Introduction

Plant pathogens have developed sophisticated penetration, infection, and colonization strategies
to suppress plant defense mechanisms of susceptible hosts and cause disease. The display of minor
symptoms by the plant is of least concern but excessive tissue damage and crop loss result in serious
economic losses with adverse implications for society, especially in poor countries. To gain insights
into how these plant pathogens develop the sophisticated strategies of attack, platforms such as
next-generation sequencing (NGS), and its companion applications like proteomics, are currently
being exploited. Pertinent scientific inquiry of pathogenicity and virulence processes of pathogens,
comprehensive and integrated investigations remain imperative and must take advantage of such
high-tech platforms as NGS to generate multitudes of useful datasets. Among microbes associated
with the plant are fungi which encounter plants, penetrate and colonize plant tissue to either cause
disease or live within the colonized plant in a symbiotic relationship with the host. Fungi which cause
diseases are called fungal pathogens and their adverse effects can range from tiny spots on the plant
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surface to significant symptom expression and tissue collapse. In causing diseases, fungi employ
various strategies. They can penetrate the host using penetration structures and develop a large
network of hyphae within the intercellular spaces. Through the hyphae, these fungi draw nutrients
from the living plant cells. This mode of attack is called biotrophy. Alternatively, fungal pathogens kill
the host tissue and derive nutrients from the dead tissue. This mode of attack is called necrotrophy.
In the hemi-biotrophic mode of attack, the fungus successively adopts a necrotrophic lifestyle after
biotrophy. The invasion of the plant by the pathogen is usually carried out through the production
of factors used for plant tissue manipulation to gain physical access into the tissues as well as draw
nutrients. These factors enable the plant to cause disease as well as advance the infection within the
interior of the tissue, ultimately worsening the disease condition. The ability of a fungus to cause
disease is termed pathogenicity, and the ability to worsen the disease is called virulence. The terms
pathogenicity factors and virulence factors are loosely used to refer to any substance a pathogen uses to
parasitize the plant. We will also use these concepts jointly and will not attempt to classify the various
disease-causing factors as either pathogenicity or virulence factors. As a necrotrophic fungus, the
wheat pathogen Fusarium graminearum Schwabe (teleomorph Gibberellae zeae) produces, among other
things, cell wall-degrading enzymes (CWDEs) and toxins. Plant tissue exposed to the CWDEs and the
toxins loses firmness, macerates and cell contents leak. As the cell contents provide nourishment to the
fungus, it grows and advances into the inner tissues. The disease spreads and eventually, depending
on other factors, the affected part dies. With its ability to produce toxins, F. graminearum, a homothallic
(self-fertile) ascomycetous fungus, of the Order: Sordariomycetes and Family: Nectriaceae causes
Fusarium head blight (FHB), one of the most economically important diseases of wheat, barley, rice and
other grain crops worldwide [1–5]. Also known as scab, this devastating disease was first described
in 1884 in England and since then, its prominence has increased worldwide with outbreaks reported
in temperate and semitropical areas globally [1,6–9]. Under favorable conditions, FHB can advance
from initial infection to the destruction of the entire crop within a few weeks [1]. A combination of
factors, global warming, increase in wheat production under irrigation and the concomitant increase
in no-till practices is the likely cause of the recent resurgence of FHB. F. graminearum is favored by
high temperatures and irrigation splash disseminates its propagules. Wheat spikes infected by F.
graminearum have a bleached appearance and grain infected with this fungus is shriveled with pale grey
color and an occasional pinkish discoloration. Over and above these undesirable qualities, ingestion of
significant amounts of mycotoxin-contaminated grain may cause vomiting, headache, and dizziness in
humans. Animals may lose weight and suffer anorexia. Serious effects of ingestion of large amounts of
mycotoxins include leukoencephalomalacia in horses, pulmonary edema in swine, and kidney and liver
cancers in mice (mentioned in Proctor et al. [10]), and a plethora of records link mycotoxin consumption
to cancer in humans. However, some of these sicknesses are linked to mycotoxins produced by other
Fusarium species, and not F. graminearum. The primary mycotoxin produced by F. graminearum is the
trichothecene deoxynivalenol (DON) (see Figure 1 for the classification of DON) and other toxins
produced include zearalenone, nivalenol (NIV), 4-acetylnivalenol (4-ANIV), and DON derivatives
3- and 15-acetyldeoxynivalenol (3-ADON and 15-ADON) [2,11–14]. The serious effects of crop
infection by F. graminearum require in-depth studies on the pathogen, primarily its pathogenicity and
virulence factors which can be comprehensively studied using, among other techniques, whole-genome
sequencing, transcriptomics using the convenient, reliable, and large data-generating tools of NGS and
proteomics. Recently, a multitude of data has been generated for F. graminearum either to understand its
genome organization or its gene composition as well as genes involved in plant attack. Although more
work is still required, the pace at which this information is generated is too high to allow sufficient time
for synthesis, organization, and communication. Meanwhile, with the dynamics of climate change, the
relations between the pathogen and the plant require active and rapid utilization of the data which is
generated for use to ensure plant health and ultimately good human livelihood. Given this background,
it remains important to reflect on the work which has been undertaken in F. graminearum research and
collate it as a useful resource for various F. graminearum workers. Furthermore, the work to understand



Microorganisms 2020, 8, 305 3 of 29

the genome of F. graminearum and its pathogenicity and virulence factors requires acceleration taking
advantage of NGS technologies and its supplementing proteomics applications. This is the purpose of
this current review, which aimed to trace progress made in discovering pathogenicity and virulence
factors, in general, as well as using NGS, and to some extent, proteomics. We present more than
100 F. graminearum factors which either directly perform pathogenicity and virulence functions or
are indirectly linked to pathogenicity and virulence. We conclude that a multitude of pathogenicity
and virulence factors have been discovered, however, more work needs to be done taking advantage
of NGS and its companion applications of proteomics. This review article is organized as follows:
We provide a narrative background of pathogenicity and virulence, information on F. graminearum
and information on NGS. We then discuss in detail the various pathogenicity and virulence factors
of F. graminearum and elaborate on the pathogenicity and virulence factors discovered using NGS
(see Figure 2 for the thought process and article organization) and, to some extent, those discovered
using proteomics. We collated information from various recent scientific publications to uniquely
reflect the pathogenicity and virulence factors. We conclude that a multitude of pathogenicity and
virulence factors have been discovered, however, more work needs to be done taking advantage of
NGS and its companion applications of proteomics.
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Figure 1. The classification of the major toxin produced by Fusarium graminearum, DON. The major
toxins produced by Fusarium species are fumonisins, trichothecenes, and zearalenone. DON is a type B
trichothecene which has derivatives 3-ADON and 15-ADON.
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2. Next-Generation Sequencing, Its Relevance in Studying Plant Pathogenic Fungi and
Fusarium graminearum

Nucleic acid sequencing has evolved from determining a few nucleotides of a nucleic acid
fragment to its current form of generating large datasets of millions of reads which cover significant
genomes of organisms. The generation of these large genomic and RNA datasets has been exploited by
researchers to unravel various complexities of genome organization and function in many organisms.
Nucleic acid sequencing is the establishment of the order of nucleotides of a given DNA or RNA
fragment [15,16]. Earlier efforts to sequence nucleic acids, such as Sanger sequencing, would determine
a stretch of a few nucleotides. These earlier sequencing efforts were slow and costly and the need for
cheaper and faster sequencing methods grew. This demand drove the development of NGS. NGS, also
termed high-throughput or massively parallel sequencing, is a genre of technologies that allow for
thousands to billions of DNA fragments to be sequenced simultaneously and independently [17,18].
Although different platforms are commercially available, the NGS workflow features are generally
similar, with four major steps: (i) DNA library preparation, (ii) clonal amplification, (iii) massive
parallel sequencing, and (iv) data analysis [19,20]. In just the past five years, a number of instruments
have been invented. The NGS platform Illumina NextSeq was invented in 2014, followed by the Ion
Torrent S5/S5XL 540 in 2015. These were followed by Pacific Biosciences PacBio Sequel in 2016 [21].
These are among the instruments which have been recently invented and utilized to generate large
datasets for organisms. One of the first inventions was the 454 GS FLX (454 Life Sciences, Branford, CT,
USA). It utilizes an amplicon-based technology to create libraries from genetic regions selected with
pairs of multiple primers [18,22,23]. On the contrary, Ion Torrent utilizes the pH variation sequencing
method [18,24], whereas the modern platforms, such as Illumina MiSeq and Gene Reader System, utilize
the fluorescence emission sequencing method [24,25]. NGS technologies have impressively accelerated
research and are becoming employed routinely to seek solutions in different areas of research, as well
as provide insights into pathogenicity and virulence of various plant pathogens [26–34]. Although
NGS is more affordable than first-generation sequencing (considering time and money), it is still not
within the reach of many laboratories in undeveloped countries [16]. However, sequencing services
are offered by many sequencing companies at relatively low prices, and therefore, the need to buy the
sequencers is less compelling for many. Despite the many challenges associated with NGS, such as
inaccurate sequencing of homopolymer regions on certain NGS platforms which can lead to sequencing
errors [16], as well as the lack of expertise in downstream processes such as data analysis, there is still
success in the generation of sequences. NGS has been exploited to uncover genome organization and
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sequence for various plant pathogenic fungi. Plant pathogenic fungi were identified as important
in some of the ambitious earlier projects in the area of characterization of fungi, such as the Fungal
Genome Initiative [35,36], the Fungal Genomics Program [37,38] and its extension, the 1000 Fungal
Genomes (1KFG) Project [39]. By extension, the plant pathogenic fungus F. graminearum has benefited
tremendously and still does so from the various sequencing initiatives. The genome of F. graminearum
has been sequenced completely and published for the benefit of Fusarium workers worldwide. This is
in addition to the numerous gene sequences available in various databases. The complete genome and
sequence resources have provided useful information on the biology, pathogenicity, and virulence of
F. graminearum. A multitude of genes coding for pathogenicity and virulence factors of F. graminearum
has been uncovered and the valuable information analyzed by researchers to deduce the much-needed
insight into this devastating plant pathogen. We trace the important pathogenicity and virulence factors
discovered and focus our attention on those which were discovered using NGS, and to some extent
those which were discovered using proteomics. Within the context of this review article, pathogenicity
factors and virulence factors are any substances produced by the fungus to gain access into the plant,
manipulate it for its benefit, thus causing disease, as well as advance pathogenicity, thus causing the
severity of the disease. Genes encoding these pathogenicity and virulence factors are themselves called
pathogenicity and virulence factors. The terms pathogenicity and virulence are used jointly in this
article. There does not seem to be clarity on the distinction between pathogenicity factors and virulence
factors, and therefore, many publications seem to utilize these terms loosely. There is great justification
to generate genome sequence information on F. graminearum. In order to offset the serious pathogenic
problems caused by F. graminearum and to develop insights into the virulence and antagonistic defense
mechanisms in host plants, it appears imperative to undertake the identification of the pathogenicity
and virulence factors which make up the attack arsenal of F. graminearum. For this reason, the MIPS
Fusarium graminearum Genome Database (FGDB) with an updated set with an estimated 14,000 genes
and downstream analysis in a live gene validation process was established to provide a comprehensive
genomic and molecular analysis [40]. Because Fusarium species, including F. graminearum, are among
the most important phytopathogenic and toxigenic fungi, it is essential to understand the molecular
underpinnings of their pathogenicity and virulence. Based on the comparative genomic analysis
conducted on three phenotypically diverse species that include F. graminearum, it was revealed that
among others, this particular homothallic fungal species, F. graminearum, has shown a relatively narrow
host range that includes important crops like wheat (mentioned in Ma et al. [41]). Before discussing
pathogenicity and virulence factors of F. graminearum, we look at pathogenicity and virulence factors
of plant pathogens generally.

3. Pathogenicity and Virulence Factors of Plant Pathogens

Pathogenicity is the ability of an organism to cause disease, virulence, on the other hand, refers to
the magnitude of the disease caused. There are three modes of attack by fungi. One mode requires
‘cooperation’ from the plant and living plant tissues. The fungus forms structures for penetration and a
network of hyphae intertwined within the colonized plant tissues. Nutrients in the plants are extracted
by this mass of hyphal structures formed in the intercellular spaces of the plant. This mode is called
biotrophy (Figure 3). Other fungi release a barrage of degradative enzymes and toxins to lyse plant
tissues and in so doing feed on the leaking cell contents and degraded tissue. This is called necrotrophy
(Figure 4). Hemi-biotrophy is a hybrid mode between biotrophy and necrotrophy. Biotrophs produce
proteins which circumvent the defense responses of the plant. These secreted proteins may have a
counteracting effect on the plant’s defense proteins. This protein interaction in a match-match situation
plays out as gene-for-gene interaction. This was found to be the case with flax rust of wheat caused by
Melampsora lini and wheat rusts caused by the Puccinias. This gene-for-gene interaction is evidence
of co-evolution between the plant and its pathogen. The mechanism of attack is less systematic in
necrotrophs in which toxin production can be unspecific. Necrotrophs flood the plant with CWDEs
and toxins which “chew up” the tissue. The hard physical defense structures of the plant, such as
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pectin, lignin, and glucans, crumble and the cells collapse. Pathogenicity and virulence-associated
with plant pathogens are made possible by the secretion of pathogenicity and virulence factors which
are molecules that help the pathogen colonize the plant [42,43]. For the purpose of this review, genes
which are involved in the production of pathogenicity and virulence factors produced are themselves
called pathogenicity and virulence factors.
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Figure 4. An illustration of necrotrophy between a plant pathogenic fungus and a plant. The grey circle
represents a fungal spore, the orange arrows represent secreted pathogenicity and virulence factors.
The green rectangles represent plant cells, the plant cells become deformed, ripped, and cell contents
leak. Finally, symptoms are expressed.

Decades of research have disclosed that plant pathogens have used a notable assortment of
proteins and toxins as virulence factors [44]. Several categories of pathogenicity genes, namely (i)
gene signals, (ii) genes generating or detoxifying toxins, (iii) metabolic enzymes, (iv) genes involved
in the generation of particular infection structures, and (v) CWDEs, can be identified (mentioned
in Duyvesteijn et al. [45]). Vadlapudi and Naidu [46] have identified several fungal processes and
molecules which contribute to fungal pathogenicity or virulence which have the ability to harm the
plants, and these include cell-wall-degrading proteins and toxins. Reception and transduction of signals
in the early phase of plant infection play a vital role in triggering development and morphogenesis
mechanisms involved in the penetration of the plant host. Several plant pathogens produce toxins that
can harm the tissues of plants. Toxins may be either non-specific or host selective. The link between
host selective toxin (HST) secretion and pathogenicity in plant pathogens and between sensitivity to
toxins and susceptibility to disease in plants provides convincing proof that HSTs can be accountable for
host-selective infection and disease growth [47]. Non-specific toxins harm phylogenetically unrelated
plant cells, while HSTs are both pathogenicity determinants on various hosts and their genetic varieties.
Loculoascomycetes produce the most recognized fungal HSTs. Trichothecenes are also compounds that
are toxic to plants, and they are believed to be pathogenicity and/or virulence factors. The protein region
of the oomycete Phytophthora family of the phytotoxin-like scr74 gene, the C-terminal of Phytophthora
RXLR effector paralogues and a single amino acid polymorphism in the Phytophthora EPIC1 effector
were related to the capacity to specialize in a fresh host [48–50]. Stukenbrock and McDonald [51]
also reported polymorphism data showing the spread of two codons in the host-specific necrotrophic
effector ToxA produced by Pyrenophora tritici-repentis and Stagonospora nodorum. Various fungi are
models for studying plant-directed toxins. These include Alternaria alternata, Sclerotinia sclerotiorum,
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Botrytis cineria, and Fusarium. Certain plant species can also be used as models to study the effect of
toxins on plants as it was demonstrated with trichothecenes on the unicellular plant Chlamydomonas
reinhardtii [52]. The production of CWDEs (e.g., cellulases, hemicellulases, xylanases, and pectinases) is
one of the processes used by fungi to invade plants. CWDEs degrade the complex polymers, cellulose,
hemicellulose, xylan, and pectin to gain access to the contents of the plant cell. The enzymatic action of
the CWDEs crumbles the cell wall, its integrity is weakened and eventually it collapses. Coupled with
toxin production, the production of CWDEs is part of the infection process of F. graminearum when it
attacks wheat spikelets. These compounds have been reported to help the infection spread to other
tissues [53]. Several pathogenicity factors identified in Fusarium are also part of preserved complexes
or pathways, such as mitogen-activated protein kinases. However, specific genes of Fusarium involved
in host-pathogen interactions such as HST, elicitors, or Avr genes are mainly undefined, apart from the
effectors secreted in xylem. For the purposes of this review article, attention is focused on pathogenicity
and virulence factors which are produced by F. graminearum when it infects its various hosts which are
primarily grain crops.

3.1. Pathogenicity and Virulence Factors of Fusarium graminearum

F. graminearum causes FHB, a devastating disease of wheat and other crops which include maize
(Zea mays L.) and barley (Hordeum vulgare L.) [1,54] (mentioned in Desjardins et al. [54]). The rate at
which this fungus attacks and infects its host plant is dependent on different mechanisms involving
the secretion of extracellular enzymes and mycotoxins. Wanjiru and colleagues [53] show that the
pathogenicity of F. graminearum is dependent on the extracellular enzymes secreted. The fungus
enters the host via the epidermal cell walls with the help of infection-hyphae, leading to the reduction
of the host plant’s cellulose, pectin, and xylan. Upon gaining access into the plant, F. graminearum
produces various depolymerase enzymes such as CWDEs that macerate plant tissue. Jenczmionka
and Schäfer [55] showed that the production of CWDEs such as pectinases, amylases, cellulases,
xylanases, proteases, and lipases by F. graminearum enhances its penetration and proliferation in the
attacked plant. The production of CWDEs is systematic, regulated, and programmed by the pathogen
during attack. To prove regulation and co-ordination, Jenczmionka and Schäfer [55] showed that
the F. graminearum Gpmk1 MAP kinase regulates the ability of the fungus to induce extracellular
endoglucanase, xylanolytic as well as proteolytic activities.

With the disruption of the cell wall, F. graminearum uses the polysaccharides in the plant cell wall
as a source of nutrients when advancing infection into the deeper underlying tissue [56]. These CWDEs
have also been reported to elicit primary immune responses in plants [57–61]. According to Kikot and
colleagues [62], various studies have shown a link between the presence of pectic enzymes, disease
symptoms, and virulence, indicating CWDEs as decisive factors in the process of phytopathogenic
fungi. Plant defense requires the pathogen to engage in a more sophisticated attack mode to overcome
this defense. The production of CWDEs alone does not suffice, and therefore, other pathogenicity and
virulence factors must come into play. Over and above CWDEs, F. graminearum attacks host plants
through the release of mycotoxins which include primarily the trichothecene DON, also known as
vomitoxin [63]. Sella and colleagues [64] reported that F. graminearum secretes lipase, DON, OS-2
(a stress-activated kinase) and Gpmk1 MAP kinases as essential pathogenicity and virulent factors
necessary for the development of full disease symptoms in soybean seedlings, and OS-2 is involved in
overcoming the resistance possessed by the soybean phytoalexin. Voigt and colleagues [65] observed
that the lipase secreted by F. graminearum encoded by the FGL1 gene is a virulent factor that enhances the
fungal pathogenicity against wheat and maize. Through functional annotation by gene deletion, Zhang
and colleagues [66] also discovered the involvement of FgNoxR in conidiation, germination, sexual
development and pathogenicity of F. graminearum. In another study, Jia and colleagues [67], through
gene deletion and mutant analysis, identified a putative secondary metabolite biosynthesis gene cluster
fg3_54 responsible for cell-to-cell penetration. The invasiveness of the fg3_54-deleted F. graminearum
strains is restored by fusaoctaxin A (an octapeptide), leading to the conclusion that fusaoctaxin A
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is a virulence factor necessary for cell-to-cell invasion of wheat by F. graminearum. Gardiner and
colleagues [68] point out that DON is associated with fungal virulence in wheat and barley and plays a
crucial role in the spread of FHB. Moreover, DON elicits various defense responses in wheat which
include hydrogen peroxide production, programmed cell death [69]. Trichothecenes are secondary
metabolites secreted by many fungi belonging to the genera Fusarium, Myrothecium, Stachybotrys, and
Trichoderma. Ueno [70] classifies trichothecenes into four types based on the unique characteristics of
their chemical structures. Fusarium spp. secrete mostly type A and type B trichothecenes and not type
C and type D [71]. These two types are characterized by the presence of a carbonyl group attached
to C-8 of the sequiterpenoid backbone of trichothecenes. The presence of additional 7, 8 epoxides
differentiates type C from the other types. Type D contains a macrocyclic ring that connects C-4
and C-15 of the sequiterpenoid backbone. Not a matter of discussion in the current review is the
formation of toxin glycosides, also called masked mycotoxins, which are formed by cereal crops which
are infected with mycotoxins. Toxin glycosides may be converted to toxins during digestion by the
consumers of grain. Of great concern is the fact that toxin glycosides may escape detection by routine
laboratory procedures (taken from McCormick et al. [72]. F. graminearum secretes type B trichothecenes
DON, 15-ADON and 3-ADON or NIV. Lanoseth and Elen [73] reported the presence of DON, 3-ADON
and NIV in infected oats. In F. graminearum-infected barley, wheat and corn, DON is the most common
toxin produced by the fungus [74]. Ueno [70] indicates that the mechanism of action of trichothecenes
involves binding the toxin to the ribosomes and inhibiting the synthesis of proteins.

A wide variety of proteins plays essential roles in the synthesis of trichothecenes, and most are
encoded by genes within a trichothecene biosynthetic cluster (Tri cluster) [75,76]. The Tri cluster
encodes 13 proteins that are responsible for the secretion of toxins in F. graminearum. Jenczmionka and
colleagues [77] reported the role of MAP kinase Gpmk1/MAP1 in the production of F. graminearum
conidia, which implies that the removal of the enzyme could result in a reduction in conidia production
and eventually disease spread and pathogenicity. Urban and colleagues [78] observed that in their
study the mutants of ∆gpmk1/map1 did not cause any disease to wheat, although they were able
to produce DON in the infected plant. It was further discovered that Gpmk1 was involved in
the regulation of CWDEs (endo-1,4-b-glucanase and other proteolytic, xylanolytic, and lipolytic
enzymes) expression [55]. Ochiai and colleagues [79] reported the activities of a protein kinase
cascade in trichothecene biosynthesis. According to the authors, the protein kinases are actively
involved in histidine kinase signal transduction. Alteration of the genes leads to the reduction in the
expression of Tri6, Tri4 and NIV production in rice cultures. Perithecia, ascospore, conidia formation
and spore germination are impacted by the activities of the serine/threonine-protein kinase gene
(GzSNF1) [80]. GzSNF1 is also involved in the expression of F. graminearum genes which encode
for endo-1,4-ß-xylanase 1 precursor (GzXYL1), an endo-1,4-ß-xylanase 2 precursor (GzXYL2) and
an extracellular ß-xylosidase (GzXLP) which are involved in depolymerization and plant cell wall
degradation. Lee and colleagues [80] also report a reduction in the virulence of ∆gzsnf1 mutants on
barley, proving the importance of the GzSNF1 gene in pathogenicity and virulence. The docking and
fusion of secretory vesicles are required for vegetative and sexual growth in fungi. In the process of
docking and fusion, v-SNARE proteins are fused with cargo proteins into vesicles. SNARE proteins
are soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein receptors.

Hong [81] reports that the fusion of the apposing membranes which belong to the transport
intermediate together with the target compartment is sped up by the interaction between the
membrane-integrated t-SNARE protein and v-SNARE protein. In F. graminearum, syntaxin-like
t-SNARE proteins are encoded by GzSYN1 and GzSYN2 and the deletion of these genes results
in decreased virulence of the fungus on barley [82]. Syntaxin a is a multidomain protein with a
globular amino terminal domain, a SNARE domain, and a carboxyl terminal transmembrane domain.
In ∆gzsyn1 mutants, perithecia were found to be unevenly distributed despite retaining reproductive
ability with a decrease in the radial hyphal growth in culture. The ∆gzsyn2 mutants are sterile females
that could act like males in outcrosses with ∆mat1-2 strains, resulting in the normal formation of
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perithecia. Radial hyphal growth of ∆gzsyn2 mutants looks like the wild-type strains although the
mycelia of both ∆gzsyn1 and ∆gzsyn2 mutants are generally thinner compared to those of wild-type
strains [82].

Secreted lipase in F. graminearum is encoded by Fgl1 genes and the alteration of these genes in the
fungus can reduce the virulence of the fungus in wheat with symptoms not spreading beyond the
spikelets adjacent to inoculated spikelets [65]. Voigt and colleagues [65] further reported that in their
study the maize plant infected with ∆fgl1 mutants showed slight symptoms and the disease severity
estimation was lower in the cobs infected with the mutant compared to the wild-type. The ability of
fungi to colonize plants and initiate disease formation is dependent on the transmembrane transport
proteins. These protein transporters can also exhibit virulence activities via the provision of protection
from poisonous secondary metabolites secreted by host plants or even the fungus itself [83]. Many
studies have indicated the roles of multiple ATP-binding cassette transporters or major facilitator
superfamily (MFS) proteins in virulence activities of the fungi such as Botrytis cinerea, Cochliobolus
carbonum, Cercospora kikuchii, Fusaria, Magnaporthe grisea, Mycosphaerella graminicola and Penicillium
digitatum [83–92]. The same applies to F. graminearum, ATP-Binding Cassette Transporter Gene
FgABCC9 was found to be involved in the fungus’s pathogenicity towards wheat [93]. F. graminearum
attacks its host plant through the secretion of mycotoxins characterized as virulence factors. These
secreted virulence factors and the level of secretion depend on the presence of the relevant genes
that facilitate their secretion. Presently, trichothecene mycotoxins have been identified as the major
virulence factors associated with F. graminearum [94,95]. The trichothecene gene cluster has diverse
allelic genes with some of the genes found outside of the main cluster [95]. The allelic variations in fgTri8
are responsible for producing the DON derivatives [96]. Furthermore, allelic differences in fgTri1 are
linked to the formation of the alternate trichothecene NX-2, whereas fgTri13 and fgTri7 are responsible
for the trichothecene NIV [97,98]. The genes associated with the trichothecene production are not
the only genes discovered to be responsible for the pathogenicity and virulence of F. graminearum.
FGSG_04694, a gene-encoding polyketide synthase (PKS2) responsible for mycelial growth and fungi
virulence, was found in F. graminearum [99]. Gaffoor and colleagues [100] confirm the function of PKS2
as they observed decreased mycelial growth and virulence in a mutant PKS2 found in F. graminearum.
PKS2 is an accessory gene with irregular patterns of conservation that is also found in F. graminearum
responsible for secondary metabolism and virulence [101,102]. The genes within these accessory
gene clusters include terpene synthase-encoding genes FGSG_08181, FGSG_08182, which encode a
putative transcription factor and three putative cytochrome P450 genes FGSG_17088, FGSG_08183
and FGSG_08187 [101,102]. Harris and colleagues [103] observed the expression of these accessory
genes in cereals when infected by the fungus, which implies that they are involved in the virulence of
the fungus.

ZIF1 that is conserved in filamentous ascomycetes encodes a bZIP (basic leucine zipper)
transcription factor. The absence of FgZIF1 affects the virulence and reproduction ability of
F. graminearum. Expression of FgZIF1 in mozif1 of M. oryzae mutants shows clearly that this transcription
factor is functionally conserved in F. graminearum and M. oryzae [104]. Topoisomerase I encoded by
TOP1 is another enzyme involved in the pathogenicity and conidia formation of fungi. The removal of
TOP1 in F. graminearum was found to reduce disease expression in infected spikelets and abolition of
spore formation [105]. FGSG_10057 encodes a Zn(II)2Cys6-type transcription factor in F. graminearum
that enhances radial growth and virulence activity of the fungus in wheat [106]. Most of these factors
that enhance virulence are proteins and these proteins need to be transported to the areas in the
host plant where disease symptoms are expressed. Most recently, it was found that F. graminearum
FgCWM1 encodes a cell wall mannoprotein which plays a role in pathogenicity. FgCWM1 mutants
exhibit reduced pathogenicity in wheat [107]. Another recent discovery is that of a SNARE gene
FgSec22 which was found to be required for vegetative growth, pathogenesis and DON biosynthesis in
F. graminearum [108]. Similarly, an F. graminearum mitochondrial gene mitochondrial gene FgEch1 was
found to be important for conidiation, DON production, and plant infection [109]. Another recently
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discovered pathogenicity and virulence factor is FgPEX4, which is important for development, cell wall
integrity and pathogenicity [110]. Elucidation and complete delineation of the pathogenicity and
virulence factors of F. graminearum must still be done by increasing efforts in whole-genome sequencing
of strains from various parts of the world and by conducting in planta gene expression studies to assess
genes which are differently expressed during the infection of a host plant by F. graminearum. Nowadays
these can be conveniently done using NGS. The pathogenicity and virulence factors of F. graminearum
can be conveniently summed under CWDEs, toxins, toxin biosynthesis genes, and other pathogenicity
and virulence determinants. In this section, an elaborate explanation of the different pathogenicity
and virulence factors was provided. Below we provide a convenient list of these pathogenicity and
virulence factors under different topics, namely, CWDEs, toxins, toxin biosynthesis genes and other
pathogenicity and virulence determinants (Table 1). The pathogenicity and virulence factors are
therefore summarized under their respective headings. In trying to categorize pathogenicity and
virulence factors there may be some ambiguities which may lead to unclear categorizations.
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Table 1. List of pathogenicity and virulence factors of Fusarium graminearum.

Cell Wall Degrading Enzymes

Category/Type/Classification Function At Least One Reference
Where Mentioned

Depolymerase enzyme Degradative enzyme Catalyses depolymerization reactions [53]

Pectinase Degradative enzyme Breaks down pectin [55]

Cellulase Degradative enzyme Breaks down cellulose [55]

Extracellular endoglucanase Degradative enzyme Breaks down glucan [55]

Endo-1,4-b-glucanase Degradative enzyme Breaks down glucan [55]

Proteolytic enzyme Degradative enzyme Breaks down proteins [55]

Xylanolytic enzyme Degradative enzyme Breaks down xylan [55]

Lipolytic enzyme Degradative enzyme Breaks down lipids [55]

Toxins

Trichothecene NX-2 Type A trichothecene (toxin) Toxicity [97]

Deoxynivalenol (DON) Type B trichothecene (toxin) Toxicity [2]

3-acetyldeoxynivalenol (3-ADON) Type B trichothecene (toxin) Toxicity [11]

15-ADON Type B trichothecene (toxin) Toxicity [11]

Nivalenol (NIV) Type B trichothecene (toxin) Toxicity [11]

Fusaoctaxin A Toxin Responsible for cell-to-cell invasion of wheat by F. graminearum [67]

Toxin biosynthesis genes

Tri cluster genomic region Trichothecene biosynthesis genes Involved in the synthesis of trichothecene mycotoxins [75]

Other pathogenicity and virulence determinants

Gpmk1 MAP kinase MAP kinase Involved in mating, conidiation, and pathogenicity [77]

OS-2 Stress activated kinase Involved in conferring resistance to a soybean phytoalexin [64]

FGL1 Lipase gene Enhances the fungal pathogenicity against wheat and maize [65]

FgNoxR A regulatory subunit of NADPH
oxidase

Involved in conidiation, sexual development and pathogenicity of
F. graminearum [66]
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Table 1. Cont.

Cell Wall Degrading Enzymes

Category/Type/Classification Function At Least One Reference
Where Mentioned

fg3_54 Putative secondary metabolite
biosynthesis gene cluster Responsible for cell-to-cell invasiveness [67]

Protein kinase Kinase cascade in trichothecene
biosynthesis Involved in trichothecene production [79]

Histidine kinase Kinase Involved in trichothecene production [79]

GzSNF1 Serine/threonine-protein kinase Responsible sexual, asexual development, and virulence [80]

GzXYL1 Endo-1,4-ß-xylanase 1 precursor
gene Involved in plant cell wall degradation [80]

GzXYL2 Endo-1,4-ß-xylanase 2 precursor
gene Involved in plant cell wall degradation [80]

GzXLP Extracellular ß-xylosidase gene Involved in depolymerization and plant cell wall degradation [80]

v-SNARE protein Vesicle related proteins SNARE
Interacts with t-SNARE to catalyze the fusion of the apposing
membranes of the transport intermediate and the target
compartment)

[82]

t-SNARE protein Target membrane-related SNARE
Interacts with v-SNARE to catalyze the fusion of the apposing
membranes of the transport intermediate and the target
compartment

[82]

Syntaxin-like t-SNARE protein Syntaxin-like
membrane-integrated protein

Required for vegetative growth, sexual reproduction, and
virulence in Gibberella zeae. Proteins are also encoded by GzSYN1
and GzSYN2 in F. graminearum that enhanced virulence of the
fungus on barley

[82]

GzSYN1 Syntaxin-like SNARE gene Enhances perithecia and radial hyphal growth [82]

GzSYN2 Syntaxin-like SNARE gene Enhances perithecia and radial hyphal growth [82]

Multiple ATP-binding cassette
transporter

Major facilitator superfamily of
membrane transporter Involved in virulence [83]

FgABCC9 ATP-binding cassette transporter
gene involved in the fungal pathogenicity towards wheat [93]
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Table 1. Cont.

Cell Wall Degrading Enzymes

Category/Type/Classification Function At Least One Reference
Where Mentioned

FGSG_04694 Gene-encoding polyketide
synthase PKS2 Responsible for mycelial growth and fungi virulence [99]

PKS2 Polyketide synthase gene Responsible for secondary metabolism and virulence [101]

FGSG_08181 Terpene synthase-encoding gene Involved in the virulence of the fungus [99]

FGSG_08182 Terpene synthase-encoding gene Involved in the virulence of the fungus [103]

FGSG_17088 Putative cytochrome P450 gene Responsible for the expression of disease in fungus-infected cereals [99]

FGSG_08183 Putative cytochrome P450 gene Responsible for the expression of disease in fungus-infected cereals [99]

FGSG_08187 Putative cytochrome P450 gene Responsible for the expression of disease in fungus-infected cereals [99]

ZIF1 Encodes bZIP transcription factor Involved in virulence and reproduction ability of F. graminearum [104]

bZIP transcription factor Transcription factor Enhances the virulence of F. graminearum in infected plants [104]

TOP1 I Enzyme Involved in sporulation and pathogenicity [105]

FGSG_10057 Conserved hypothetical protein Involved in growth and virulence [106]

Zn(II)2Cys6-type transcription factor Transcription factor Regulates fungal reproduction and pathogenicity [106]
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3.2. Comparative Genomics and Molecular Basis of Pathogenicity and Virulence in Fusarium graminearum

In order to offset the serious pathogenic problems caused by F. graminearum and to develop
insights into the virulence and antagonistic defense mechanisms in host plants, it appears imperative
to undertake the identification of fungal pathogenicity and virulence factors which make up the arsenal
of this fungal plant pathogen. Presently this is conveniently done using the high-throughput genome
sequencing technologies which generate large datasets to reveal genome organization and the various
genes present in F. graminearum. The information generated from genome sequencing and RNA
sequencing projects can be utilized to understand the mechanisms employed by F. graminearum to gain
entry into plant tissue as well as advance with the plant. Various commendable projects have been
launched in the previous years and have advanced our understanding of pathogenicity and virulence
of F. graminearum. Among these significant projects was the MIPS Fusarium graminearum Genome
Database (FGDB) with an estimated 14,000 genes and downstream analysis in a live gene validation
process was established to provide a comprehensive genomic and molecular analysis [40]. Because
Fusarium species are among the most important phytopathogenic and toxigenic fungi, it is essential
to understand the molecular underpinnings of their pathogenicity. In addition, the production of
mycotoxins by these fungi put animals and humans who consume the crop product at risk. Given this
alarming situation, aggressive research in F. graminearum is imperative and it must take advantage of
the presence of convenient tools to generate a multitude of data to elucidate the various pathogenicity
and virulence processes of F. graminearum. Based on the comparative genomic analysis conducted on
three phenotypically diverse species that include F. graminearum, it was revealed that among others
this particular homothallic fungal species, F. graminearum, has shown a relatively narrow host range
which includes important cereals [41]. It is therefore important to note that this pathogen is particularly
notorious on wheat, barley, rice, oats by causing head blight or ‘scab’ and on maize causing mainly
stalk and ear rot disease [2]. However, genomic analysis shows that this fungus may also infect
other plant species without causing disease symptoms. Further genome analysis revealed that 67
gene clusters with significant enrichment of predicted secondary metabolites and with functional
enzymes were shown to be expressed among which 30% with gene overexpression were likely in
virulence [102]. While the exchange of genes between the core and supernumerary genomes bestows
significant opportunities for adaptation and evolution on the organism, it appears reminiscent in
F. graminearum, to the compartmentalization of genetic material where non-conserved regions are found
at various places on the four core chromosomes [111]. Studies from comparative genomics indicate that
these mobile pathogenicity chromosomes exist in most Fusarium species with lineage-specific genomic
regions [41], nevertheless, the molecular foundation of pathogenicity in F. graminearum was shown to be
closely associated with the MAP1 gene which is also responsible for the development of perithecia in the
same fungal species [78]. Furthermore, 29 F. graminearum genes are rapidly evolving, in planta-induced
and encode secreted proteins, strongly pointing toward effector function [112], implicating genomic
footprints that can be used in predicting gene sets likely to be involved in host–pathogen interactions.
In association with this, as forward and reverse genetics have improved our understanding of molecular
mechanisms involved in pathogenesis, it was revealed that mitogen-activated protein kinase and cyclic
AMP-protein kinase A cascades both regulate virulence in Fusarium species and it has been postulated
that cell wall integrity might be necessary for invasive growth and/or resistance to plant defense
compounds [113]. These snippets which have been discovered to give clues on the pathogenicity and
virulence of F. graminearum necessitated a deeper and comprehensive interrogation of the genome of
this fungal pathogen to uncover all pathogenicity and virulence genes. NGS was conveniently used to
unravel various pathogenicity and virulence factors of F. graminearum to the benefit of F. graminearum
researchers worldwide.
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3.3. Pathogenicity and Virulence Factors of Fusarium graminearum Discovered Using NGS Technologies

Understanding the molecular mechanisms involved in fungal pathogens in plants has been
accelerated over the past decade. Notably, NGS has contributed immensely towards the generation
of vast datasets of genomes and transcriptomes. The availability of fungal genome sequences from
a majority of plant fungal pathogens has contributed to these discoveries [28,29,114,115]. Genomics,
transcriptomics, proteomics, and metabolomics approaches were introduced, allowing possible
identification of genes, proteins, and metabolites of fungi in various artificial cultures and during
infection of plants under different experimental conditions [116,117]. Fungal pathogens cause diseases
in plants, resulting in tissue damage and disease due to pathogenicity and virulence factors which assist
fungal pathogen survival and persistence [118]. The pathogens affect their host by adapting to their
environment and secreting/producing pathogenicity-related toxins, pectic enzymes, and hormone-like
compounds. These products can have devastating effects on the quality and yield of crops in the field
and can also cause postharvest diseases [119]. The mechanisms involved in fungal pathogenesis in
plants are therefore being studied broadly, to protect plants against diseases of economic importance.
F. graminearum is one of the plant pathogens that affect grain cereal crops globally, causing different
diseases in different crops [80,120,121]. The pathogen produces metabolites that are toxic or non-toxic,
which enables it to manipulate the plant to acquire nutrition. Inhibition of pathogenicity and
virulence factors enhanced by the pathogenic fungus results in the development of diseases in plants.
Pathogenicity factors involved in plant-pathogen interactions have been investigated extensively in
different plants, and genes, proteins, and metabolites have been identified [81,97,122–125], including
those involved in response to F. graminearum infections [55,104,113,120,126,127]. Pathogenicity and
virulence genes that have been largely identified belong to the trichothecene biosynthesis gene cluster,
as described by Proctor and colleagues [95]. For F. graminearum, it is largely known that pathogenicity
and virulence follow a path of germ tube emergence from conidia, production of cell wall-degrading
enzymes and the production of trichothecene mycotoxins [53,94,95,128].

However, complete delineation of the infection process of F. graminearum requires sequencing and
analysis of the entire fungal genome, conveniently and preferably using NGS. From the various efforts to
study pathogenicity and virulence factors of F. graminearum using NGS, a few studies are worth noting.
The first is the study of King and colleagues [115] (sequencing was done using the Illumina HiSeq
2000 sequencing platform) which provided a complete genome sequence from a combined genome
analysis from various sources which had F. graminearum genome sequence information. Through the
modification the gene model set, the FGRRES_17235_M gene was identified to be of particular interest
because it is a virulence factor, it encodes for a cysteine-rich secretory protein, allergen V5/Tpx-1-related
with CAP and signal peptide domains, with a previous link with plant pathogenesis proteins of the
PR-1 family [129] and had been identified in the highly virulent F. graminearum strain CS3005 (gene
ID: FG05_09548). Another gene 15917_M was identified as an endo-1,4-beta-xylanase enzyme, which
hydrolyzes (1- > 4)-beta-D-xylosidic linkages in xylans, of the cell walls. The second study by Wang
and colleagues [130] identified eight genes responsible for F. graminearum-wheat interactions. Three of
the genes had already been identified in various studies [112,131]. Their gene annotation revealed
largely polymer degrading function i.e., xylanase, catalase, protease and lipase. The third study was by
Cuomo and colleagues [114], who identified a variety of pathogenicity and virulence factors belonging
to the gene classes cutinases, pectate lyases, pectin lyases and other genes encoding secreted proteins.
The fourth study reports, among the findings, the presence of 616 potential effector genes, 126 of
which are expressed in a host-specific manner. This same study by Laurent and colleagues [132] which
utilized the Illumina HiSeq 2000 identified 252 variants within the genic sequences and the intergenic
sequences of Tri genes. Tri genes are involved in the production of type B trichothecenes. Given
the mammoth task of elucidating pathogenicity and virulence factors of F. graminearum, increasing
efforts in whole-genome sequencing of strains from various parts of the world is necessary. These
efforts must be coupled with in planta gene expression studies to assess genes which are differently
expressed during the infection of a host plant by F. graminearum. Traditionally, common techniques for
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gene expression studies included northern blotting, real-time PCR and microarrays. Nowadays most
studies which could be done using northern blotting, real-time PCR and microarrays can be conducted
conveniently using NGS. However, these relatively old techniques paved the way for NGS.

3.3.1. Notable Studies Which Paved Way for NGS

Before NGS technologies were commonplace, Northern blotting, real-time PCR, and microarrays
were used to discover pathogenicity and virulence factors of fungi including F. graminearum. These
studies paved the way for studies based on NGS. Some of the studies (reviewed in this section, none
of which were performed in the past two years) utilized proteomic approaches and metabolomics.
F. graminearum genome analysis reports that the pathogen consists of 1250 genes that encode secreted
protein effectors [133]. These genes associated with fungal pathogenesis in vitro and in planta have
been identified, and a large number are activated during infection. The F. graminearum classes of genes
overlap with other plant-microbe interaction studies. These genes include the trichothecene gene
cluster [95], bZIP transcription factor [104], syntaxin-like t-SNARE proteins [81], PKS [134], lipase [65],
EBR1 [127], FgATG15 [135], among others. These genes play different roles in fungal pathogenesis.
Among these types of genes, the Tri gene cluster has been characterized in the F. graminearum species
complex, with the type B cluster being the most studied, due to their ability to cause diseases in
both animals and humans [136]. In addition, proteins such as the five TRI proteins TRI1, FG00071;
TRI3, FG03534; TRI4, FG03535; TRI14, FG03543; TRI101, FG07896 [137]; kinases [138] and FG00028,
metallopeptidase MEP1; FG00060, KP4 killer toxin; FG00150, NADP-dependent oxidoreductase
(COG2130); FG00192, peptidase S8 (pfam00082); FG00237, O-acyltransferase (pfam02458), among
others [139], were found to be involved in F. graminearum pathogenesis [124,140,141]. The study by
Dhokane et al. [124] demonstrates the interface between metabolomics and NGS. The role of the genes
found to be involved in F. graminearum pathogenesis [124,140,141] has been identified and characterized
using high throughput sequencing approaches, confirming their roles in fungal pathogenesis. NGS
studies can employ either studying the genome or gene expression by means of transcriptomics. Both
have been instrumental in discovering pathogenicity and virulence factors of F. graminearum.

3.3.2. Fusarium graminearum Pathogenesis-Related Genes Discovered Using RNA-Seq Transcriptomics

Many technologies have been employed for the detection, identification, and quantification of
mycotoxins secreted by F. graminearum infections in grain cereals. A few studies, including those
by Pasquali and Migheli [136], report the most important fungal mycotoxins belonging to the type
B trichothecenes that are produced by the Fusarium spp. Identification of differentially expressed
genes regulated by mycotoxins using transcriptomics is one of the approaches to identify and catalog
pathogenicity and virulence factors in response to F. graminearum in grain cereals. Using comparative
transcriptomic analysis, Walkowiak and colleagues [142] identified 1500 differentially expressed
genes of two F. graminearum strains with 3-ADON and 15-ADON trichothecene toxin chemotypes.
Furthermore, a whole-genome sequencing and comparative genomics study investigated four Fusarium
strains and reported few pathogenicity and virulence genes [99]. These included the g8968 gene, which
was predicted to contain the Tri5 domain. The Tri5 is a terpene synthase gene that catalyzes the first
step of trichothecene biosynthesis in F. graminearum [95]. Furthermore, Tri8 was also identified in this
study, and was reported to have exhibited a high frequency of SNPs and indels. The importance of Tri5
in pathogenicity and virulence was also supported in non-NGS studies. Boddu and colleagues [143]
report Tri5 encoding a DON enzyme and revealed that loss-of-function F. graminearum tri5 mutants
were unable to produce DON in wheat and barley. Similar results of the importance of Tri5 were also
observed in a study by Jonkers and colleagues [144] whereby the Wor1-like Protein Fgp1 regulated
pathogenicity, toxin synthesis and reproduction in F. graminearum. The study predicted that the loss of
mycotoxin accumulation alone may be enough to explain the associated loss of pathogenicity to wheat.
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Using transcriptomic analyses, differentially expressed genes (DEGs) were identified in infected
spikelets and rachis wheat samples following F. graminearum infections [145]. From the list of the
DEGs identified, a few trichothecene biosynthesis genes of the F. graminearum Tri cluster were mostly
upregulated in the pathogen when infecting the resistant near isogeneic lines (NILs). Interestingly,
another transcriptomic study was conducted between three host plants infected with F. graminearum
strain to identify DEGs during colonization [103]. The study discovered that some genes were only
expressed in a specific host, and there was also a difference in the genes’ functional categories identified
in each host. In summary, the pathogenicity and virulence factors (listed in Section 3.3) of F. graminearum
discovered using NGS technologies are provided in Table 2 below:
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Table 2. List of pathogenicity and virulence factors of Fusarium graminearum, including genes discovered using comparative genomics methods.

Cell Wall Degrading Enzymes

Category/Type/Classification Function At Least One Reference
Where Mentioned

15917_M Endo-1,4-beta-xylanase enzyme Hydrolyses (1- > 4)-beta-D-xylosidic linkages in xylans of the cell walls [115]

Xylanase Degradative enzyme Bring about the disintegration of xylan and cell wall penetration [55]

Protease Degradative enzyme Responsible for the breakdown of protein [55]

Lipase Degradative enzyme Responsible for the breakdown of lipids [55]

Cutinases Degradative enzyme Plays polymer degrading function [114]

Pectate lyases Degradative enzyme Plays polymer degrading function [114]

Pectin lyases Degradative enzyme Plays polymer degrading function [114]

β-amylase protein Degradative enzyme Involved in F. graminearum pathogenesis [138]

Metallopeptidase Degradative enzyme Involved in F. graminearum pathogenesis [139]

Peptidase Degradative enzyme Involved in F. graminearum pathogenesis [139]

Toxins

Type B trichothecenes Trichothecene mycotoxin Toxicity [2]

KP4 killer toxin Toxic polypeptide Toxicity [146]

Genes for toxin biosynthesis

TRI1 gene Tri cluster gene Involved in F. graminearum pathogenesis [137]

FGRRES_17235_M Virulence-related gene Encodes cysteine-rich secretory protein, allergen V5/Tpx-1-related with
CAP and PR-1 family [115]

15917_M Endo-1,4-beta-xylanase enzyme Hydrolyses (1- > 4)-beta-D-xylosidic linkages in xylans of the cell walls [115]

g8968 gene (predicted to
contain the Tri5 domain) Pathogenicity and virulence gene Predicted to contain the Tri5 domain [99]

Tri5 Tri cluster gene Involved in trichothecene biosynthesis [95]

Tri8 Tri cluster gene Involved Fusarium trichothecene phytotoxicity [96]
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Table 2. Cont.

Cell Wall Degrading Enzymes

Category/Type/Classification Function At Least One Reference
Where Mentioned

Pathogenicity and virulence proteins

TRI3 Trichothecene biosynthesis
protein Involved in F. graminearum pathogenesis [137]

TRI4 Trichothecene biosynthesis
protein Involved in F. graminearum pathogenesis [137]

TRI101 Trichothecene biosynthesis
protein Involved in F. graminearum pathogenesis [137]

Other pathogenicity and virulence determinants

Hormone-like compounds Compounds with hormone-like
properties Enhances the adaptation of the fungi to the host plant environment [119]

PR-1 family proteins Pathogenicity related protein Involved in pathogenicity [129]

Basic leucine zipper (bZIP)
transcription factor Transcription factor Enhances the virulence and reproduction ability of F. graminearum in

infected plants [104]

Syntaxin-like t-SNARE
proteins

Syntaxin-like
membrane-integrated proteins

Required for vegetative growth, sexual reproduction, and virulence in
G. zeae. Proteins are also encoded by GzSYN1 and GzSYN2 in F.
graminearum that enhanced virulence of the fungus on barley

[82]

Polyketide synthase (PKS)
gene Polyketide synthase gene Responsible for secondary metabolism and virulence [101]

Enhanced branching 1 (EBR1) Zn(2)Cys(6) transcription factor Involved in F. graminearum pathogenesis [127]

NADP-dependent
oxidoreductase Oxidoreductase enzyme Involved in F. graminearum pathogenesis [139]

O-acyltransferase Transferase enzyme Involved in F. graminearum pathogenesis [139]

Wor1-like Protein Fgp1 Regulatory protein Regulates pathogenicity, toxin synthesis, and reproduction in
F. graminearum [144]
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3.4. Fusarium Graminearum Pathogenesis Proteins Discovered Using Proteomics Approaches

Proteins are macromolecular machines which undertake various biochemical functions either
building blocks, transporters, enzymes, and other functions. Proteins functions are coordinated, they
are intertwined with other constituents of organisms like genes, RNA, and metabolites.

Proteomics is a large-scale study of sets of proteins produced by organisms. The set of total
proteins produced by organisms is termed the proteome. The proteome varies across cells, and to
some extent, it is defined by the underlying transcriptome. Traditionally, proteins were studied using
low-throughput methods which focus on a relatively small set of proteins and provide qualitative data
on structure, function, and interaction which other cell constituents. The small windows of knowledge
opened by these traditional techniques denied biochemists of a broader bigger of the entire proteome
of a cell. From the traditional methods of studying proteins emerged proteomics, a large-scale study
of the proteome which is able to provide a snapshot of total proteins in an organism. As opposed to
gel-based and antibody-based methods of studying proteins, mass spectrometry (MS) has been utilized
to produce large datasets on the proteome. The basic workflow followed in proteomics is the extraction
from the tissue of total proteins, followed by trypsin digestion, separation chromatography of short
peptides from the digestion, and mass analysis by MS. From then onwards is the identification of
proteins in the studied sample and the generation of the protein list. Similar to NGS, proteomic studies
have been accelerated by the invention of various instruments which perform both the separation of
the digested peptides, mass analysis, and other downstream applications. The instruments had to
meet a number of qualities which include high throughput and high confidence in the identification
of peptides, notably Orbitrap and time-of-flight mass analyzers [147–150]. The common trend in
improving the performance of the MSs was to create hybrid systems. The hybrid systems make
use of different ion analyzers or separators to enhance the capability, quality and usefulness of the
results obtained. The advent of a triple quadrupole instrument enhanced MS capability over a single
quadrupole. With the triple quadrupole, data on m/z values are combined with data on molecule
fragmentation patterns to improve accuracy. The fragmentation pattern data is made possible by the
presence of the second quadrupole which acts as a collision cell.

Fungi produce proteins for pathogenicity and virulence. Usually, some of these proteins are
secreted into the intercellular spaces of plant and may either degrade the cell wall or act as effectors to
perform various other pathogenicity and virulence functions. The secreted proteins are part of what is
called the secretome. For comprehensive studies of pathogenicity and virulence proteins, studying
the whole-organism proteome becomes necessary and it is made possible using high-throughput
proteomics instruments. Yang and colleagues [138] pointed out that the invention of “omics” and
bioinformatics tools has enhanced the proteome analysis of phytopathogenic fungi and their host
interactions. Paper and colleagues [139] identified 120 fungal proteins of F. graminearum which include
CWDEs from infected wheat heads through vacuum filtration. Among the identified proteins, about
56% controlled putative secretion signals. Transcriptomics data can be complemented with other omics
approaches such as proteomics. The functions of proteins expressed at a given time can be identified
and understood using proteomics approaches [138,151]. Although high throughput sequencing
technologies have been available for over a decade, identifying differentially expressed proteins
involved in fungal pathogenicity in cereals has not been widely investigated. Several proteins have
been identified and characterized in F. graminearum and associated infections. However, they focused
on the secretome and the impact of DON [137,139,152]. When the expression of F. graminearum proteins
was investigated in response to in vitro stimulation of biosynthesis of the mycotoxin, trichothecene,
130 F. graminearum proteins that showed changes in expression were reported [137]. Many of the
proteins identified were involved in fungal virulence. Moreover, investigation of a secretome of
F. graminearum annotated secreted pathogenesis proteins related to the KP4 killer toxin and gEgh
16 proteins, among others, which were associated with pathogenicity [146].

Recently, a study by Lu and Edwards [153] reported about 190 small secreted cysteine-rich proteins
(SSCPs) found in the genome of F. graminearum using genome-wide analysis. From the list of the SSCPs
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reported, five belonging to the cysteine-rich secretory proteins, Antigen 5 and pathogenesis-related
1 proteins were established. These SSCPs were observed to contain homologies to proteins that have
established crystal structures. The authors also maintained that previous studies had not reported these
SSCP associations with pathogenicity or virulence in plants. Moreover, in planta expression patterns
showed upregulation of nine proteins associated with pathogenesis. These proteins contain conserved
domains of Ecp-2-like panels 1 and 4, CFEM-like panel 3, Kp4-like panels 10, 14 and 9, PR-1-like panel
11, hydrophobin-like panel 12 and glycol_61 family panel 13, which are linked to fungal pathogenicity.
This is in line with a study by Paper and colleagues [137], who identified 229 in vitro and 120 in
planta proteins secreted by F. graminearum during infection of a wheat head using a high-throughput
MS/MS comparative study. The study reported that 49 in planta proteins were not present in vitro,
indicating that fungal lysis occurred during pathogenesis. Rampitsch and colleagues [154], on the
other hand, reported 29 proteins whose relative abundance was affected in their secretome following
infection by F. graminearum using a comparative secretome analysis. These proteins included metabolic
enzymes, proteins of unknown function and pathogenesis-related proteins. Other studies involved in
the identification of F. graminearum pathogenesis-related proteins in vitro and in planta also include the
PR-3 and PR-5 proteins [155]. Various forms of proteomics are significant in studying plant-pathogen
relations and other factors which include elicitors. An example of this is phosphoproteomics which
has to some extent been studied in necrotrophic pathogens like B. cinerea [156–158], Septoria tritici [159].
These studies need to be extended to F. graminearum to deepen the understanding of its pathogenicity
and virulence.

4. Summary and Conclusions

The infection mechanism of the plant pathogenic fungus F. graminearum is complex and intricate.
It involves the production of a germ tube from conidia, the production of CWDEs, and eventually, the
production of mycotoxins, chiefly type B trichothecene mycotoxins, DON, and NIV. Within the context
of this review article, we regarded the CWDEs and the mycotoxins as pathogenicity and virulence
factors which enable F. graminearum to gain entry into the plant and advance within the interior of the
infected tissue. Our focus was on pathogenicity and virulence factors so far discovered, and we also
devoted attention to those discovered using NGS and, to a limited extent, proteomics. We conclude that
a multitude of pathogenicity and virulence factors have been discovered, however, more work needs
to be done taking advantage of NGS and its companion applications of proteomics. Discovery of more
pathogenicity and virulence and factors may facilitate the newer methods of control of F. graminearum
infection of wheat and DON accumulation, for instance, as it has been shown by Machado et al. [160]
using RNAi. Progress on the use of RNAi may depend greatly on the discovery of more pathogenicity
and virulence factors of F. graminearum.
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