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The aims of the present paper were to ascertain whether the heat-induced ischemia and oxidative damage to the hypothalamus and
lethality in mice could be ameliorated by hyperbaric oxygen therapy. When normobaric air-treated mice underwent heat treatment,
the fractional survival and core temperature at 4 hours after heat stress were found to be 0 of 12 and 34°C + 0.3°C, respectively. In
hyperbaric oxygen-treated mice, when exposed to the same treatment, both fractional survival and core temperature values were
significantly increased to new values of 12/12 and 37.3°C + 0.3°C, respectively. Compared to normobaric air-treated heatstroke
mice, hyperbaric oxygen-treated mice displayed lower hypothalamic values of cellular ischemia and damage markers, prooxidant
enzymes, proinflammatory cytokines, inducible nitric oxide synthase-dependent nitric oxide, and neuronal damage score. The data
indicate that hyperbaric oxygen may improve outcomes of heatstroke by normalization of hypothalamic and thermoregulatory

function in mice.

1. Introduction

Hyperbaric oxygen (HBO) therapy is a noninvasive medical
strategy in which a person breathes 100% oxygen at a pres-
sure greater than normal [1]. We have previously demon-
strated that HBO therapy may resuscitate anesthetized rats
that had a heatstroke by reducing multiple organ dysfunction
or failure [2—4]. A heatstroke patient with multiple organ
dysfunction has also been successfully treated with HBO [5].
Although, HBO is beneficial in treating heatstroke, however,
the mechanisms underlying the beneficial effects of HBO in
heatstroke remain unclear.

It is well-known that glutamate and lactate-to-pyruvate
ratio are cellular ischemia markers, whereas glycerol is
a cellular damage marker [6]. Heatstroke mice display
increased production of glutamate, lactate-to-pyruvate
ratio, and glycerol in hypothalamus [7, 8]. The ther-
moregulatory deficits (e.g., hypothermia occurred during

room temperature exposure) that occurred after heat-
stroke formation in mice [7-10] may have resulted from
hypothalamic ischemia and neuronal damage. Because
the hypothalamus regulates body temperature [11], it is
possible that thermoregulatory deficits are induced dur-
ing heatstroke. Multiple organ dysfunction or failure that
occurred during heatstroke may be related to alteration of
hypothalamic-pituitary-adrenalaxis-mechanisms [12, 13]. It
is not known whether the heat-induced hypothalamic dys-
function and mortality in mice can be ameliorated by HBO
therapy.

To deal with the question, the aim of the present
study was attempted to assess the effects of HBO on the
heat-induced hypothermia and lethality in unanesthetized,
unrestrained mice. In addition, the temporal profiles of
cellular ischemia and oxidative damage markers as well as
inflammatory cytokines in the hypothalamus were assessed
in heatstroke mice with or without HBO therapy.
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2. Materials and Methods

2.1. Animals. All the experiments were performed in accor-
dance with the ethical guidelines laid down by the committee
for the purpose of control and supervision of experiments
on animals of Chi Mei Medical Center (Tainan, Taiwan).
Institute of Cancer Research (ICR) inbred male mice were
given food and water ad libitum and acclimatized to room
temperature at 24°C, relative humidity of 50 + 8%, and
a 12-hour dark/light cycle for 1week before starting the
experiment. These ICR strain mice were purchased from
National Taiwan University (Taipei, Taiwan, ROC).

2.2. The Mouse Model of Heatstroke. Institute of Cancer
Research inbred male mice, aged 8 to 10 weeks and weighing
23 to 25g, were exposed to heat stress treatment (42.4°C;
relative humidity, 50%-55%; 1hour) in an environment-
controlled chamber. The time at which mice were removed
from the environmental chamber was called 0hours. The
heat-stressed mice were returned to normal room tem-
perature (24°C) at the end of the heat treatment. Mice
that survived on day 4 of heat treatment were considered
survivors, and the data were used for analysis of the results.
Core temperatures were measured every 5minutes with a
copper constantan thermocouple inspected into the rectum
and connected to a thermometer (HR1300; Yokogawa,
Tokyo, Japan). After the 1-hour heating period, animals were
fed properly and hydrated. Heatstroke resembles sepsis in
many aspects. Similar to many sepsis studies, in this study,
we used death as an end point in conscious mice. The
murine model of heatstroke has been detailed previously
by several investigators [7—10]. As demonstrated in our
previous study [7, 8], all heat-stressed mice survived 4 hours
after whole body heating (WBH). Therefore, in the present
study, physiologic parameter measurements and histologic
verification were performed at 4 hours after heat treatment.

2.3. Hyperbaric Oxygen Therapy. Three groups of animals
were designated for the experiment. In the normothermic
(NT) groups, their core temperatures were found to be
37.1°C to 37.5°C at a room temperature of 24°C as well as
a room oxygen content in air of 21%. The PO2 of inspired
oxygen (partial pressure of oxygen = 20kpa) was calculated
by multiplying 101 kPa by 21%. In the hyperbaric oxygen
(HBO)-treated heatstroke group, mice were resuscitated
directly after instrumentation with 100% oxygen at 253 kpa
(oxygen content in hyperbaric oxygen air) for 2 hours. The
chamber filled with pure oxygen (100%) was pressurized
to 253kpa at a rate of 51kpa/min for 2hours and was
terminated at the decompression rate of 20 kpa/min. In
the untreated heatstroke group, mice were exposed to
normobaric air (NBA) (21%; 101 kpa).

2.4. Experimental Groups

Experiment 1 (effect of heat on percent survival and core
temperature). A dose of NBA or HBO (n = 12 for
each group) was randomly administered to mice 1hour
post-WBH, and its effects on percent survival and core
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temperature were assessed 4 days post-WBH and 4 hours
post-WBH, respectively. Heatstroke mice were exposed to
42.4°C for 1hour and then allowed to recover at room
temperature (24°C). Core temperatures were measured at
4 hours post-WBH and percent survivals were counted on 4
days post-WBH.

Experiment 2 (effect of heat on hypothalamic neuronal
damage score). A dose of NBA or HBO (n = 8 for each
group) was randomly administered to mice 1 hour post-
WBH, and its effects on neuronal damage score in the
hypothalamus were assessed 4 hours post-WBH.

Experiment 3 (effect of heat on hypothalamic levels of
ischemia and neuronal damage markers). a dose of NBA or
HBO (n = 8 for each group) was randomly administered to
mice 1 hour post-WBH, and its effects on nitric oxide (NO),
dihydroxybenzoic acid (DHBA), and cellular ischemia (eg.,
glutamate and lactate-to-pyruvate ratio) and damage (eg.,
glycerol) markers of the hypothalamus were assessed 4 hours
post-WBH.

Experiment 4 (effect of heat on hypothalamic levels of
cytokines). A dose of NBA or HBO was randomly admin-
istered to mice 1 hour post-WBH, and its effects on
hypothalamic levels of tumor necrosis factor-a (TNF-«),
interleukin-1f (IL-1p), IL-10, and myeloperoxidase (MPO)
were assessed 4 hours post-WBH.

Experiment 5 (effect of heat on hypothalamic levels of
pro-oxidant enzymes (eg, malondialdehyde, GSSG) and
anti-oxidant enzymes (eg, GSH, glutathione peroxidase,
glutathione reductase)). a dose of NBA was randomly
administered to mice 1 hour post-WBH, and its effects on
hypothalamic levels of these pro-oxidant and anti-oxidant
enzymes were assessed 4 hours post-WBH.

2.5. Histological Verification. At the end of 4 hour post-
WBH, animals were sacrificed and their brains were
removed, fixed in 10% neutral buffered formalin, and
embedded in paraffin blocks. Serial (10 ym) sections through
the hypothalamus were stained with hematoxylin and eosin
for microscopic examination. The extent of hypothalamic
neuronal damage was scored on a scale of 0-3, modified
from the grading system of Pulsinelli et al. [14], in which 0
is normal, 1 means that ~30% of the neurons are damage,
2 means that ~60% of the neurons are damaged, and 3
means that 100% of neurons are damaged. Each hemisphere
was evaluated independently without knowledge of the
experimental conditions.

2.6. Determination of Stable Nitric Oxide Metabolites (NOx).
Samples of extracellular fluids of hypothalamus were col-
lected, immediately separated, and stored at —80°C until
they could be assayed. The NOx concentrations in the
hypothalamic dialysates were measured with the Eicom
ENO-20 NO, ™~ analysis system (Eicom, Kyoto, Japan) [15].
In the Eicom ENO-20 NO, ™ analysis system, after the NO,~
and NO;™ in the sample have been separated by the column,
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the NO,™ reacts in the acidic solution with the primary
aromatic amine to produce an azo compound. After this,
the addition of aromatic amines to the azo compound
results in a coupling that produces a diazo compound, and
the absorbance rate of the red color of this compound
is then measured. The dialysates were injected onto a
CMA600 microdialysis analyzer (Carnegie Medicine, Stock-
holm, Sweden) for measuring lactate, pyruvate, glycerol, and
glutamate.

2.7. Measurement of Cytokines and DHBA. Samples of
extracellular fluids of hypothalamus were collected, imme-
diately separated, and stored at —80°C until they could be
assayed. We used commercially available ELISA kits for the
determination of levels of TNF-a, IL-1p3, or IL-10, according
to the manufacture’s instructions (Quantikine, R&D System,
MN, USA). The concentration of DHBA were measured by
a modified procedure based on the hydroxylation of sodium
salicylate by hydroxyl radicals, leading to the production of
DHBA [16].

2.8. Biochemical Determination. Lipid peroxidation was
assessed by measuring the levels of malondialdehyde (MDA)
with 2-thiobarbituric acid (TBA) to form a chromospheres
absorbing at 532 nm [17]. About 0.1 g of tissue was homog-
enized with 1.5mL of 0.1 M phosphate buffer at pH3.5.
The reaction mixture (0.2mL of sample, 1.5mL of 20%
acetic acid, 0.2mL of 8.1% sodium dodecyl sulfate, and
1.5mL of aqueous solution of 0.8% TBA, up to 4 mL with
distilled water) was heated to 95°C for 1hour, and then
5mL of N-butanol and pyridine (15.1vol/vol) was added.
The mixture was vortexed vigorously, centrifuged at 1500 g
for 10 minutes, and the absorbance of the organic phose
was measured at 532nm. The values were expressed as
nanomoles of TBA-reactive substance (MDA equivalent) per
milligram of protein.

Tissues were homogenized in 5% 5-sulfosalicylic acid
(1:10wt/vol) at 0°C, and the supernatants were used for
analysis of total and oxidized glutathione. Total glutathione
[reduced-form glutathione (GSH) + oxidized-form glu-
tathione (GSSG)] was analyzed according to the Tietze
method [18] and GSSG was determined as described by
Griffith [19]. The recycling assay for total glutathione is
oxidized by 5,5-Dithiosis [2 acid] (DTNB) to give GSSG with
stoichiometric formation of 5-thio-2-nitro-benzoic acid.
GSSG is reduced to GSH by the action of the highly specific
glutathione reductase (GR) and nicotinamide adenine din-
ucleotide phosphate (reduced form; NADPH). The rate of
5-thio-2-nitro-benzoic acid formation is followed at 412 nm
and is proportional to the sum of GSH and GSSG present.

2.9. Determination of Inducible Nitric Oxide Synthase (inos)-
Positive Cells. Mice were sacrificed with overdose of an
anesthetic and were transcardially perfused with heparinized
0.05-M phosphate-buffered saline (PBS), followed by ice-
cold 15% sucrose in PBS. The brains were rapidly removed
and frozen in liquid nitrogen. Coronal brain sections (5-
pum thick) were cut in a cryostat and were thaw-mounted
on gelatin-coated slides. Sections were incubated with

commercially available rabbit anti-NOS antiserum (1 :50)
diluted in 0.2% Triton X-100 1% azide (Sigma, St. Louis,
MO)/PBS at 4°C overnight then rinsed with PBS for
30 minutes and incubated in biotinylated goat anti rabbit
immunoglobulin G (1:500) for 1 to 2 hours. The iNOS-
positive cells were counted in each section through the
hypothalamus.

2.10. Mpyelo-Peroxidase Activity. Myeloperoxidase (MPO)
activity, an indicator of polymorphonuclear leukocyte accu-
mulation, was determined in the hypothalamus as described
previously [20] at 4hours after heat stress. MPO activity
was defined as the quantity of enzyme degrading 1 ymol of
peroxide of min~" at 37°C and was expressed in milliunits
grams™! of wet tissue.

2.11. Statistics. Statistical significance of survival was
assessed using a X* method and followed by Fisher exact
probability test. Core temperature, levels of cytokines,
nitric oxide, glutamate, glycerol, dihydroxybenzoic acid, and
lactate-to-pyruvate ratio were analyzed using the Kruskal-
Wallis H test, followed by several post hoc comparisons with
Dunn method. The Wilcoxon’s signed rank test was used
to compare the neuronal damage across two groups. The
Wilcoxon tests convert scores to ranks, a sum of the ranks
is calculated, and critical values of the sum are provided
to test the null hypothesis at a given significant level. The
data were given as “median’, first quartile, and third quartile.
A P value of less than .05 was considered as statistically
significant.

3. Results

3.1. Physiologic Variables. As summarized in Table 1, percent
survival value of NBA-treated heatstroke mice for 4 days
post-WBH is 0% (n = 12). The core temperature value
of NBA-treated heatstroke mice for 4 hours post-WBH is
33.6 +0.52°C (n = 12; Table 2). When compared with those
of NBA-treated heatstroke mice, HBO-treated heatstroke
mice had higher values of both percent-survival (100%, n =
12; Table 1) and core temperature (36.8°C, n = 12; Table 2).
When the heat stress was terminated in the heatstroke
group, they displayed body wet with salivary spreading and
stagger.

3.2. Neuronal Damage Scores. As summarized in Table 3,
the neuronal damage scores in the hypothalamus of NBA-
treated heatstroke mice were significantly higher than those
of NT mice. Photographs of neurodegenerative cells in
the hypothalamus of NBA-treated heatstroke mouse were
shown in Figure 1. In HBO-treated heatstroke mice, HBO
therapy adopted 1-hour post-whole body heating (WBH)
significantly reduced the increased neuronal damage scores
in the hypothalamus obtained at 4 hours post-WBH (Table 3;
Figure 1).

The values of neuronal damage scores in the hypotha-
lamus of HBO-treated normothermic (NT) mice were
indistinguishable from those of NT mice that received NBA
(Table 3).



Journal of Biomedicine and Biotechnology

TABLE 1: Mean (£SE) of percent survival or fraction survival values for different groups of mice.

Treatment groups Survival, % Fraction survival P

(1) Normothermic (NT) mice received normobaric air (NBA) 100 12/12

(2) NT mice received hyperbaric oxygen (HBO) 100 12/12

(3) Heatstroke (HS) mice received NBA 0 0/12 P <.001*
(4) HS mice received HBO 100 12/12 P <.001"

When exactly 4 days post-HS, the percent survival values were measured.
*Compared with group 1.
tCompared with group 3.

TaBLE 2: Mean (=SE) of core temperature values for different groups of mice (n = 8 per group).

Treatment groups Core temperature, °C P

(1) Normothermic (NT) mice received normobaric air (NBA) 37.1 +0.07

(2) NT mice received hyperbaric oxygen (HBO) 36.9 +0.09

(3) Heatstroke (HS) mice received NBA 33.6 £0.22 P<.001*
(4) HS mice received HBO 36.8 + 0.08 P <.001t

When exactly 4 hours post-HS, the core temperature values were measured.
*Compared with group 1.
TCompared with group 3.

3.3. Ischemic and Oxidative Damage to the Hypothalamus.
Figure 2 depicts the effects of heat exposure (42.4°C for 1
hour) on cellular levels of glutamate, glycerol, lactate-to-
pyruvate ratio, nitrite, and DHBA in the hypothalamus in
NT mice that received NBA, NT mice that received HBO,
NBA-treated heatstroke mice, and HBO-treated heatstroke
mice. In NBA-treated heatstroke groups, the cellular levels
of glutamate, glycerol, lactate-to-pyruvate ratio, nitrite, and
DHBA in the hypothalamus were all significantly higher at
4 hours after the termination of heat exposure than those of
NTs. Resuscitation with HBO 1 hour post-WBH significantly
attenuated the heat-induced increased levels of glutamate,
glycerol, lactate-to-pyruvate ratio, nitrite, and DHBA in
the hypothalamus. The basal levels of those biochemical
parameters in NTs treated with HBO were indistinguishable
from those of N'Ts that received HBO.

3.4. Overproduction of Proinflammatory Cytokines. As sum-
marized in Figure 3, the values of hypothalamic TNF-q«,
IL-1B3, and MPO activity of NBA-treated heatstroke mice
obtained at 4 hours post-WBH were significantly higher
than those of NCs. In HBO-treated heatstroke mice, HBO
therapy adopted 1-hour post-WBH significantly suppressed
the increased levels of hypothalamic TNF-q«, IL-1f3, and MPO
activity obtained at 4 hours post-WBH. On the other hand,
as compared to those of NBA-treated heatstroke mice, HBO-
treated heatstroke mice had higher values of IL-10 in their
hypothalamus obtained at 4 hours post-WBH.

3.5. Oxidative Damage to the Hypothalamus. As summarized
in Figure 4, the values of pro-oxidant enzymes (eg, MDA and
GSSG) and anti-oxidant enzymes (eg, GSH, GP, and GR)
of NBA-treated heatstroke mice obtained at 4 hours post-
WBH were significantly higher and lower, respectively, than
those of NTs. In HBO-treated mice, HBO therapy adopted
1-hour post-WBH significantly reversed the increased levels

of both MDA and GSSG and decreased levels of GSH, GP,
and GR in the hypothalamus. The basal levels of these
parameters in the hypothalamus of HBO-treated NT mice
were indistinguishable from those of NTs that received NBA
(Figure 4).

3.6. Overexpression of iNOS. As demonstrated in Table 4, the
numbers of INOS-positive cells in the hypothalamus of NBA-
treated heatstroke mice obtained at 4 hours post-WBH were
higher than those of NT groups. Photomicrographs of iNOS-
positive cells in the hypothalamus of a NBA-treated HS
mouse were shown in Figure 5. The heat-induced increased
numbers of iNOS-positive cells were reduced significantly by
HBO therapy (Table 4 and Figure 5).

4. Discussion

Our previous [7] and present results demonstrated that when
exposed the unanesthetized, unrestrained mice to a hot envi-
ronment (42.4°C) for 1 hour, profound thermoregulatory
deficit as well as mortality were observed. Our current results
further showed that the heat-induced thermoregulatory
deficit (evidenced by hypothermia occurrence during room
temperature exposure) and mortality could be resulted from
ischemia and oxidative damage to their hypothalamus (the
essential thermoregulatory center in mammalian brain) in
the mouse. Compared to normothermic mice, heatstroke
mice had significantly higher levels of cellular ischemia
(e.g., glutamate and lactate-to-pyruvate ratio) and damage
(e.g., glycerol) markers in their hypothalamus [21-26].
These heatstroke mice also displayed significantly higher
hypothalamic levels of reactive nitrogen species (e.g., iNOS-
dependent NO metabolites), reactive oxygen species (e.g.,
DHBA and superoxide anions), lipid peroxidation (e.g.,
MDA), and enzymatic pro-oxidants (e.g., GSSG/GSH),
but lower hypothalamic levels of enzymatic anti-oxidant
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FiGURrE 1: Photomicrographs of HE staining of the hypothalamus of normothermic (NT) mouse received normobaric air (NBA) (NT+NBA),
NT mouse received hyperbaric oxygen (HBO) (NT+HBO), heatstroke (HS) mouse received NBA (HS+NBA), and heatstroke mouse received
HBO (HS+HBO). The animals were killed at 4 hours after the termination of 1-hour heat exposure or the equivalent time for the NT mouse.

TaBLE 3: Hypothalamic neuronal damage score values for different groups of mice (n = 8 per group).

Neuronal damage scores

Treatment groups p
(Range, 0-3)

(1) Normothermic (NT) mice received normobaric air (NBA) 0(0,0)

(2) NT mice received hyperbaric oxygen (HBO) 0(0,0)

(3) Heatstroke (HS) mice received NBA 2(2,2)* P<.001*

(4) HS mice received HBO 0 (0, 0)f P <.001"

When exactly 4 hours post-HS, the neuronal damage scores were obtained.
*P < .01 Compared with group 1.
TP < .01 Compared with group 3.

defences (e.g., activity of both GR and GPx). Increased
production of reactive oxygen and nitrogen species has been
reported to be directly involved in oxidative damage with
cellular macromolecules in ischemic brain tissues, which lead
to cell death [27].

Our previous experiments have demonstrated that HBO
improves survival in anesthetized rats during heatstroke by
reducing multiorgan dysfunction [2, 5]. The present results
further shows that HBO therapy effectively protects against
heat-induced hypothalamic ischemia and oxidative damage,
thermoregulatory dysfunction, and mortality in unanes-
thetized, unrestrained mice during heatstroke. The current
findings are consistent with a previous study concerning with
middle cerebral artery ligation-induced stroke [28]. They
also observe that the outcomes of the conventional stroke
in the rats can be improved by HBO. Conversely, the results
are not supported by several investigations. For example,
hyperbaric oxygen itself is able to induce acute cerebral

toxicity in rats [29]. The cardiac arrest-induced neurologic
deficit could be exacerbated by HBO therapy in dogs [30].
Increased lipid peroxidation and mortality in gerbilis after
global ischemia could be exacerbated by HBO therapy [31].
In anesthetized rats, heat-induced hyperthermia, hypot-
ension, and cerebral ischemia and damage occurred during
heatstroke were associated with increased production of
free radicals (specifically hydroxyl radicals and superoxide
anions), higher lipid peroxidation, lower enzymatic antiox-
idant defenses, and higher pro-oxidants in the brain of
heatstroke-effected rats [32]. Pretreatment with conventional
hydroxyl radical scavengers (e.g., mannitol or a-tocopherol)
prevented the brain oxidative stress and increased subse-
quent survival time. The present results further demon-
strated that in unanesthetized, unrestrained mice, HBO
therapy was able to rescue mice from heat-induced unortality
by reducing hypothalamic ischemia and oxidative damage.
It should be mentioned that unanesthetized, unrestrained
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FiGure 2: Effects of heat exposure (42.4°C for 1 hour) on extracellular levels of glutamate, lactate-to-pyruvate ratio, glycerol,
dihydroxybenzoic acid, and nitric oxide in the hypothalamus of normothermic mice received normobaric air (A), normothermic mice
received hyperbaric oxygen (B), heatstroke mice received normobaric air (C), and heatstroke mice received hyperbaric oxygen (D). Bars are
mean + SE of eight mice per group. Samples were obtained at 4 hours after the termination of 1-hour heat exposure or the equivalent time
for the normothermic controls. *P < .01 compared with corresponding control values in group (A). TP < .01 compared with corresponding

values in group (C).

mice also displayed hyperthermia during heat stress but
hypothermia 4 hours after heat stress. The heat-induced
hypothermia may be due to hypothalamic dysfunction.

In the rodents, environmental heat stress increased
cutaneous blood flow and metabolism and progressively
decreased splanchnic blood flow. It was shown that ischemia
and hypoxia led to elevation of nitric oxide level in the blood
stream in anesthetized [32—34] or unanesthetized [35] rats.

Heat-induced multiple organ dysfunction could be greatly
reduced by inducible or neuronal nitric oxide synthase
inhibitors in anesthetized rat during heatstroke [33, 36].
In the present study, when exposed the unanesthetized and
unrestrained mice to high ambient temperature, overpro-
duction of iNOS-dependent NO in their hypothalamus was
also noted after the onset of heatstroke, which could be
ameliorated by HBO therapy. It should be stressed that, in
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FiGure 3: Effects of heat exposure (42.4°C for 1 hour) on hypothalamic levels of tumor necrosis factor-a (TNF-«), interleukin-1,
interleukin-10 and myeloperoxidase (MPO) of normothermic mice received normobaric air (A), normothermic mice received hyperbaric
oxygen (B), heatstroke mice received normobaric air (C), and heatstroke mice received hyperbaric oxygen (D). *P < .01 compared with
corresponding control values in group (A). TP < .01 compared with corresponding control values in group (C). Bars are mean + SE of eight
mice per group. Samples were obtained at 4 hours after the termination of 1-hour heat exposure or the equivalent time for the normothermic

controls.

TABLE 4: Mean (+SE) number of iNOS-positive cells per hypothalamic section for different groups of mice (n = 8 per group).

Treatment groups iNOS-positive cells P
(1) Normothermic (NT) mice received normobaric oxygen (NBA) 0

(2) NT mice received hyperbaric oxygen (HBO) 0

(3) Heatstroke (HS) mice received NBA 184 + 7% P<.01*
(4) HS mice received HBO 35+ 3t pP<.01f

When exactly 4 hours post-HS, the iNOS staining were obtained.
*Compared with group 1.
TCompared with group 3.

the current experiment, we measured only the hypothalamic
levels of iNOS-dependent NOx. It is reasonable to assume
that both iNOS-dependent and n-NOS-dependent NOx
overproduction in different tissues following the onset of
heatstroke can be ameliorated by HBO therapy.

In anesthetized rats, overproduction of both TNF-«a and
IL-1p in both the peripheral blood stream and the brain was
noted during heatstroke [37, 38]. The same phenomenon
was also observed in the hypothalamus of unanesthetized,
unrestrained mice attendant with heatstroke, as shown
in the present results. HBO therapy greatly reduced the

heat-induced overproduction of hypothalamic MPO, TNEF-
a and IL-1p3, but enhanced the production of IL-10 in
the hypothalamus. In fact, exogenous administration f
recombinant IL-10 was shown to protect mice from lethal
endotoxemia by reducing TNF-« release [39]. In endotox-
emic mice, neutralization of endogenous produced IL-10
resulted in an increased production of proinflammatory
cytokines and an enhanced mortality [40]. IL-10 knockout
mice had an increased extent of inflammatory illness [41]
and higher mortality rates after experimental sepsis [39].
These observations imply that HBO may improve outcomes
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FiGure 4: Effects of heat exposure (42.4°C for 1 hour) on hypothalamic levels of malondialdehyde, reduced form glutathione (GSH),
oxidized form glutathione (GSSG), glutathione peroxidase, and glutathione reductase of normothermic mice received normobaric air (A)
normothermic mice received hyperbaric oxygen (B) heatstroke mice received normobaric air (C), and heatstroke mice received hyperbaric
oxygen (D). Bars are mean + SE of eight mice per group. *P < .01 compared with corresponding control values in group (A). TP < .01

compared with corresponding values in group (C).

of heatstroke by increasing IL-10 but decreasing MPO, TNF-
a and IL-1p production in multiple organs (including the
hypothalamus).

It has been previously demonstrated that, in anesthetized
rats, the heatstroke-induced arterial hypotension, decreased
arterial levels of pH, PaO,, and SO,%, and increased brain
levels of pro-inflammatory cytokines, cellular ischemia and
damage markers were all significantly reduced by HBO

and, to some extent, by normobaric hyperoxia adopted
immediately after the onset of heatstroke for 1 hour resus-
citation [3]. In the current study, the heatstroke-induced
ischemic and oxidative damage to the hypothalamus in
unanesthetized mice could also be reduced by HBO therapy
adopted 1 hour after termination of heat stress for 2
hours. Additionally, HBO therapy was used successfully
treating a heatstroke patient with multiple organ dysfunction
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FiGURE 5: Photomicrographs of inducible nitric oxide synthase (iNOS) staining of the hypothalamus of normothermic (NT) mouse received
normobaric air (NBA) (NT+NBA), NT mouse received hyperbaric oxygen (HBO) (NT+HBO), heatstroke (HS) mouse received NBA
(HS+NBA), or HS mouse received HBO (HS+HBO). The animals were killed at 4 hours after the termination of 1-hour heat exposure

or the equivalent time for the normothermic mouse.

[5]. Because the hypothalamus was believed to be the
essential thermoregulatory center in brain [42], it is likely
that thermoregulatory dysfunction could be resulted from
hypothalamic ischemia and neuronal damage after the onset
of heatstroke. Altering hypothalamic-pituitary-adrenal axis
mechanisms would lead to multiorgan dysfunction or failure
[43, 44]. Thus, it appears that HBO may improve outcomes
of heatstroke via normalization of the hypothalamic and
thermoregulatory functions. Our data indicate that HBO is
a promising strategy for treatment of heatstroke.

In the present study, the HBO was applied 1 hour after
the induction of heatstroke for 2 hours. The time point
was considered between 2-3 hours after the induction of
heatstroke, when the mice were alive. If we considered a time
point much later, this would help in translating the idea in
human trials. In fact, hyperbaric air therapy or normobaric
pure oxygen was also found to be beneficial in treating
heatstroke in rats to some extents [3]. This may be easier to
administer to patients in case it also helps in the recovery
from heatstroke. We should further evaluate the basis of
selection of the time of HBO therapy and duration of therapy
in future studies.

Finally, it should be mentioned the heat shock precondi-
tioning induced overproduction of heat shock protein (HSP)
72 and protected against heat-induced cerebral ischemia
and damage [16, 17]. Again, future studies are required
to ascertain whether HBO therapy improves outcomes of
heatstroke through induction of HSP72 in multiple organs.
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