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Crataegi Fructus, a medicinal and edible herb in China, has been considered a popular
dietary supplement globally. It is used for the treatment of dyspepsia and chronic heart
failure according to the Chinese Pharmacopoeia (2020). However, fungal contamination
in Crataegi Fructus affects its quality and safety, thus preventing its global promotion. In
this study, we comprehensively studied the fungal community in processed products
of Crataegi Fructus by high-throughput sequencing. A total of 21 Crataegi Fructus
samples were collected from five provinces in China, and the samples were divided
into five groups based on collection areas, as well as into three groups based on
processing methods. We then targeted the internal transcribed spacer 2 sequence
through the Illumina Miseq PE300 platform to investigate fungal composition and
diversity. Results showed that all 21 samples were detected with fungal contamination,
and Ascomycota was dominant at the phylum level. In the groups based on collection
areas, Dothideomycetes, Pleosporaceae, and Alternaria were dominant at the class,
family, and genus levels, respectively. In the groups based on processing methods,
Dothideomycetes, Aspergillaceae, and Alternaria were the most abundant at the class,
family, and genus levels, respectively. Differences in fungal communities between various
groups were also observed. Furthermore, a total of 115 species were identified,
among which seven were potential toxigenic, namely, Trichothecium roseum, Alternaria
tenuissima, Aspergillus carbonarius, Penicillium brevicompactum, Aspergillus fumigatus,
Rhizopus microspores, and Pichia fermentans. In conclusion, this study reveals great
fungal richness and diversity of Crataegi Fructus, providing references for the prevention
and control of fungal contamination of Crataegi Fructus in practical production.
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INTRODUCTION

As a popular dietary supplement, hawthorn has been consumed
worldwide. Hawthorn is a universal name, which represents all
species in the Crataegus genus (1). This supplement is distributed
widely in Asia, Europe, and North America. In Europe, it is made
into canned fruits, jams, and jellies. Furthermore, based on the
European Pharmacopeia (2017), hawthorn herbal materials are
derived from Crataegus monogyna Jacq. (Lindm.) and Crataegus
laevigata (Poir.) DC (syn. C. oxyacantha L.) (2). Hawthorn is
also a medicinal and edible herb in China, and its products
have been made into beverages and snacks. This herb was first
recorded as Shan Zha (in Chinese) in Ben Cao Jing Ji Zhu in
536 AD (3). According to the recommendation of the Chinese
Pharmacopoeia (2020), Crataegi Fructus (CF) can be mainly
formulated using dried, roasted, and charred products, which
are derived from Crataegus pinnatifida Bge. var. major N.E. and
Crataegus pinnatifida Bge (4). Modern pharmacological studies
have demonstrated that its extract is useful for the treatment
of chronic heart failure (5). It also shows the treatment effect
on high-calorie-diet-induced dyspepsia. Interestingly, compared
with the effect of dried products, roasted and charred products
have been demonstrated to possess a stronger curative effect (6).
However, mycotoxin contamination in CF has been reported
in recent years. Li et al. investigated the patulin contamination
in hawthorn products, and results showed that six of 43
samples were detected to be positive, with contamination levels
ranging from 19.8 to 206.88 microg/L. Meanwhile, the level
of patulin in four samples exceeded the Chinese legal limit
(50 microg/L) (7). Similarly, Zhou et al. also observed patulin
contamination in one of 13 hawthorn samples by HPLC (8).
Therefore, the quality and safety of CF have received extensive
attention worldwide.

Fungal contamination in herbal materials is derived from the
whole production chain, including cultivation, harvest, transport,
processing, and storage. Among these procedures, processing
is a crucial factor that affects the quality and safety of herbs.
In order to enhance the curative effect or decrease toxicity,
many herbs are processed before clinical application. Shen et al.
compared the effect of stir-frying with sand and stir-frying on
carbonized ginger. The result showed that the sand-fried ginger
samples exhibited greater adsorption capacity than the stir-fried
samples (9). Liu et al. indicated that processing methods, such
as heating and water-washing, reduced the toxicity of Aconitum
roots (10). In addition, processing procedures remarkably affect
the fungal communities in herbs. He et al. studied the variation in
fungal communities during the processing of Polygala tenuifolia
roots. The result showed that the processing methods decreased
the level of most fungal genera excluding Penicillium (11).
Odongo et al. determined the influence of processing on the
growth of fungi, indicating that cooking and fermentation
methods inhibited fungal growth (12). A study performed by
Guo et al. investigated the fungal community in raw and roasted
Cassiae Semen samples. In comparison with raw samples, roasted
samples had higher numbers of Penicillium and Periconia (13).
Therefore, it is essential to assess the effect of processing methods
on fungal contamination in herbs.

The development of high-throughput sequencing (HTS)
provides new insights for revealing the role of microorganisms
in human daily life. This method has been applied in different
areas to analyze the diversity, composition, and function of
microorganisms (14–16). The application of HTS for the
investigation of fungal contamination in herbs exhibits some
irreplaceable advantages. For example, overall fungal diversity
and composition can be analyzed efficiently. In addition, some
strains that cannot grow in a synthetic medium can be identified
through HTS. It can also be applied to monitor the dynamic
change of fungal communities in practical production (17–19).
Thus, the analysis of fungal communities by HTS has become
increasingly prevalent.

In this study, we firstly studied the fungal community in
processed CF products using the HTS method and analyzed
the differences in the fungal community between groups based
on processing methods, as well as between groups based on
collection areas. This study provides an efficient method for the
analysis of fungal contamination in CF, thereby providing the
scientific basis for its safe utilization.

MATERIALS AND METHODS

Sampling and Treatments
In this study, we collected 21 CF samples from herbal markets
in Shandong, Hebei, Anhui, Guangxi, and Sichuan provinces in
China (Figure 1). Among the 21 samples, 15 dried samples were
divided into five groups, namely, the SD, HB, GX, AH, and SC
groups based on collection areas. Meanwhile, nine samples from
Shandong province were divided into three groups, namely, the
SDD (dried), SDR (roasted), and SDC (charred) groups based on
processing methods.

The CF samples were processed as described by Chinese
Pharmacopoeia (2020). Samples in the SDD group were dried
with hot air or under the sun. The CF samples in the SDR group
were processed by low-temperature heating (150◦C) until they
became brown. The CF samples in the SDC group were processed
by medium-temperature heating (180◦C) until they became
brown and black. Each sample was collected with 500 g, and
placed into 21 sterile paper bags,respectively. All the samples were
assigned with voucher numbers and deposited in the Institute
of Medicinal Plant Development, Chinese Academy of Medical
Sciences (Table 1).

Total DNA Extraction and Polymerase
Chain Reaction Amplification
Total community DNA was extracted from 2.7 g CF samples
using an EZNA R© soil DNA kit (Omega Bio-tek., Inc., Norcross,
GA, United States) based on the manufacturer’s protocol. All the
CF samples were transferred into a 50-ml sterilized centrifuge
tube with 30 ml 1 × phosphate-buffered saline (PBS) (Beijing
Solarbio Science and Technology Co., Ltd), and shaken with
a cortex mixer for 5 min. In order to remove impurities, the
mixture was filtered through double layers of sterile gauze. All
filtrates were centrifugated at 12,000 rpm for 28 min to collect
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FIGURE 1 | Overview of sampling in this study. A total of 21 Crataegi Fructus (CF) samples were collected from five provinces in China: Shandong (n = 9), Hebei
(n = 3), Anhui (n = 3), Guangxi (n = 3), and Sichuan (n = 3) provinces.

TABLE 1 | Information for the Crataegi Fructus samples in this study.

Voucher No. Sampling location Collection time Collection temperature Group 1 Group 2 Processing method Genbank accession No.

CF1-1 Shandong 2020.9 35◦C SD SDD Dried SAMN18864574

CF2-1 Shandong 2020.9 35◦C SD SDD Dried SAMN18864575

CF3-1 Shandong 2020.9 35◦C SD SDD Dried SAMN18864576

CF1-2 Shandong 2020.9 35◦C / SDR Roasted SAMN18864577

CF2-2 Shandong 2020.9 35◦C / SDR Roasted SAMN18864578

CF3-2 Shandong 2020.9 35◦C / SDR Roasted SAMN18864579

CF1-3 Shandong 2020.9 35◦C / SDC Charred SAMN18864580

CF2-3 Shandong 2020.9 35◦C / SDC Charred SAMN18864581

CF3-3 Shandong 2020.9 35◦C / SDC Charred SAMN18864582

CF4 Hebei 2020.9 30◦C HB / Dried SAMN18864583

CF5 Hebei 2020.9 30◦C HB / Dried SAMN18864584

CF6 Hebei 2020.9 30◦C HB / Dried SAMN18864585

CF7 Guangxi 2020.9 33◦C GX / Dried SAMN18864586

CF8 Guangxi 2020.9 33◦C GX / Dried SAMN18864587

CF9 Guangxi 2020.9 33◦C GX / Dried SAMN18864588

CF10 Anhui 2020.9 33◦C AH / Dried SAMN18864589

CF11 Anhui 2020.9 33◦C AH / Dried SAMN18864590

CF12 Anhui 2020.9 33◦C AH / Dried SAMN18864591

CF13 Sichuan 2020.9 32◦C SC / Dried SAMN18864592

CF14 Sichuan 2020.9 32◦C SC / Dried SAMN18864593

CF15 Sichuan 2020.9 32◦C SC / Dried SAMN18864594

fungal strains for total DNA extraction. The DNA was stored at
−20◦C.

The ITS2 sequence was amplified using the universal primers
of ITS3 (5′-GCATCGATGAAGAACGCAGC- 3′) and ITS4

(5′ -TCCTCCGCTTATTGATATGC-3′) (20). The Polymerase
Chain Reaction (PCR) conditions were as follows: initial
denaturation at 95◦C for 3 min, 37 cycles of denaturation at
95◦C for 30 s, annealing at 53◦C for 20 s, elongation at 72◦C
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for 45 s, and final extension at 72◦C for 10 min. The integrity
and concentration of PCR products were verified by agarose (2%,
W/V) gel electrophoresis.

High-Throughput Sequencing and
Bioinformatics Analysis
Purified ITS2 amplicons were sequenced with an Illumina
Miseq PE300 platform (Illumina, San Diego, CA, United States).
Raw sequences were uploaded to the National Center for
Biotechnology Information Sequence Read Archive database
with accession numbers SAMN18864574- SAMN18864594.

The quality of demultiplexed reads was checked using Fastp
software (v. 0.19.6).1 The reads were truncated with a minimum
overlap of 10 bp and a PHRED score of at least 20 over a 50-
bp sliding window. The reads were clustered into operational
taxonomic units (OTUs, 97% similarity) using UPARSE (version
7.0.1090, http://www.drive5.com/uparse/) against the UNITE
database (v. 8.0)2 in Quantitative Insights Into Microbial Ecology
(QIIME, V. 1.9.1)3 (21, 22). Then, chimeric sequences were
detected and removed by USEARCH (V. 7.0, 7.0).4 To ensure
the accuracy of OTU annotation, we verified the taxonomical
classification of all the OTUs by manual BLAST search in the
International Nucleotide Sequence Database Collaboration. We
constructed a rarefaction curve for normalization to even depths
across samples in QIIME. All the OTUs were denominated at
the kingdom, phylum, class, order, family, genus, and species
levels. Alpha diversity indices involving Chao1, Good’s coverage,
Simpson, ACE, and Shannon were measured through MOTHUR
(v. 1.30.2).5 In order to estimate beta diversity, weighted
UniFrac distance was visualized by principal coordinates analysis
(PCoA) and non-metric multidimensional scaling (NMDS).
Furthermore, the CF samples were hierarchically clustered by
UPGMA. Partial least squares discriminant analysis (PLS-DA)
was performed to study the differences between groups using
the mixOmics package in the R software. We utilized the linear
discriminant analysis effect size (LEFSe) algorithm to analyze
the differences in fungal composition between various groups.
A Circos graph was constructed using Circos software (23). Venn
analysis, community barplot analysis, and heat mapping were
conducted using the R software (24). Co-occurrence analysis was
applied to reveal interactions among fungal communities at the
genus level between different groups with the NetworkX package
in Python (25).

RESULTS

Diversity of Fungal Community in
Crataegi Fructus Samples
A total of 1,525,316 ITS2 sequences were obtained from 21 CF
samples after quality filtering. Rarefaction analysis revealed that

1https://github.com/OpenGene/fastp
2https://unite.ut.ee/
3http://qiime.org/install/index.html
4http://www.drive5.com/usearch/
5https://www.mothur.org/wiki/Download_mothur

the data to determine the depth for each sample was sufficient
to estimate the fungal microbiome (Supplementary Figure 1).
A total of 925 OTUs were obtained from the 21 CF samples.
The distribution of OTUs in the 21 CF samples is listed in
Supplementary Table 1. Based on Venn analysis (Figure 2),
there were 421 shared OTUs between groups based on various
collection areas. The numbers of OTUs in groups based on
various collection areas are as follows: AH group 509 OTUs, SD
group 378 OTUs, SC group 370 OTUs, HB group 255 OTUs,
and GX group247 OTUs. Among the groups based on processing
methods, 158 OTUs were shared between different products.
The number of OTUs in the SDD group (378 OTUs) was the
highest, followed by the SDR (222 OTUs) and SDC (95 OTUs)
groups. Five alpha diversity indices, Chao1, Good’s coverage,
Simpson, ACE, and Shannon, were measured to estimate the
richness and diversity of the fungal community (Supplementary
Table 2). High indices of Chao1 and ACE represent a large
variation among species. Furthermore, the low Simpson and high
Shannon indices demonstrate the high diversity of the fungal
community in the samples. The result of Good’s coverage in all
samples collected from various areas yielded an estimate of over
99.9%, indicating good overall sampling. Compared with those
in the other samples, the Chao1 and ACE indices in the CF11
sample were highest, demonstrating the largest variation in it.
In contrast, the highest index of Shannon was observed in the
CF15 sample. Among the groups based on processing methods,
the index of Good’s coverage in nine samples also yielded an
estimate of over 99.9%. The Chao1, Shannon, and ACE indices in
the CF3-1 sample were the highest, whereas the Chao1 and ACE
indices in the CF1-3 sample were the lowest. Hence, the highest
and lowest fungal diversity was observed in the CF3-1 and CF1-3
samples, respectively.

Composition of Fungal Community in
Crataegi Fructus Samples
All the 925 OTUs taxonomically spanned at least three phyla;
some of the OTUs were classified as unclassified fungi or
others. Ascomycota was dominant at the phylum level in all
the samples that were collected from different areas, with a
relative abundance of 64.25–98.09%. The relative abundance
of Basidiomycota was 1.45–34.41% (Figure 3A). At the class
level, Dothideomycetes (36.70–91.81%) was the most dominant
among all the classes (Figure 3B). Furthermore, taxonomical
classification at the family level showed that Pleosporaceae
(9.35–67.17%) predominated among other families, followed
by Didymellaceae (3.34–33.93%) and Cladosporiaceae (5.58–
32.46%, Figure 3C). At the genus level, the three most abundant
genera were Alternaria, Nothophoma, and Cladosporium, with
relative abundances of 9.35–66.92%, 3.35–33.93%, and 5.57–
32.46%, respectively (Figure 3D).

As for the groups based on processing methods, Ascomycota
(69.44–98.09%) was also dominant at the phylum level in
the SDD and SDR groups. However, the relative abundance
of Basidiomycota (10.36–64.18%) was higher than that of
Ascomycota (27.35–48.61%) in the SDC group (Figure 4A).
Dothideomycetes (0–91.81%) was the most abundant at the class
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FIGURE 2 | Venn diagram of operational taxonomic units (OTUs) in (A) samples from different collection areas and (B) samples based on processing methods.

FIGURE 3 | Fungal composition in CF samples from different collection areas at the (A) phylum level, (B) class level, (C) family level, and (D) genus level.

level (Figure 4B). Moreover, the abundances of Aspergillaceae,
Pleosporaceae, and Microascaceae were highest at the family
level, accounting for 1.29–29.74%, 0–67.17%, and 1.67–82.68%

(Figure 4C). At the genus level, the relative abundance of
Alternaria (0–66.92%) was highest among the 207 identifiable
genera (Figure 4D).
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FIGURE 4 | Fungal composition in various processed CF samples at the (A) phylum level, (B) class level, (C) family level, and (D) genus level.

In addition, among all the 925 OTUs, 135 could be identified
at the species level by manual BLAST search. Seven potential
mycotoxin-producing fungi were detected, T. roseum (detected
in CF10, CF2-2, CF11, CF12, CF1-1, CF15, CF2-1, CF3-1,
CF14, CF13, CF7, CF5, CF9, CF6, CF4, CF8, CF3-3, CF2-3,
CF1-2, and CF1-3), A. tenuissima (detected in CF10, CF2-
2, CF11, CF12, CF1-1, CF15, CF3-1, CF14, CF13, CF7, CF5,
CF6, CF4, and CF8), A. carbonarius (detected in CF10, CF2-2,
CF11, CF12, CF15, CF2-1, CF3-1, CF13, CF7, CF6, CF8, and
CF2-3), P. brevicompactum (detected in CF2-2, CF12, CF15,
and CF3-1), A. fumigatus (detected in CF11, CF15, and CF6),
R. microspores (detected in CF2-2 and CF3-1), and P. fermentans
(detected in CF3-1).

Comparison of Fungal Community in
Crataegi Fructus From Different
Collection Areas
We divided the 15 samples into five groups according to
collection areas and compared the differences in fungal diversity
and composition between different groups. For alpha diversity,
the highest Shannon index was detected in the GX group,
representing the greatest diversity of the fungal community in
this group. Meanwhile, the highest indices of Chao 1 and Ace
were observed in the AH group, indicating that this group
had the greatest richnes. For beta diversity, we analyzed the
diversity of fungal community by PCoA and NMDS analysis.

The PCoA result showed that the SC, AH, and SD groups were
significantly distinguishable with the exception of the GX and
HB groups (ANOSIM, R = 0.5467, P = 0.001) (Figure 5A).
However, differences between the AH and GX groups, and
between the SD and HB groups were low based on the NMDS
analysis (Figure 5B). Similarly, the PLS-DA result demonstrated
that the difference in fungal composition between the SD and
HB groups was low (Figure 5C). Furthermore, we compared
the differences in fungal communities at various levels between
groups (Figure 6A). At the phylum level, the relative abundance
of Basidiomycota in the GX group was higher than that in
the other groups. At the class level, some unclassified classes
belonging to Ascomycota had the highest average percentage
of community abundance in the AH group among the five
groups. In comparison with the other groups, the average relative
abundances of Teratosphaeriaceae, Coniothyriaceae, and some
unclassified families belonging to Ascomycota in the AH group
were higher. At the genus level, the relative abundance of
Xeromyces in the SD group was higher than that in the other
groups, while the relative abundance of Sphaerulina in the HB
group was highest among all the groups. Meanwhile, the relative
abundances of Coniothyrium, Fusicolla, and some unclassified
genera belonging to Ascomycota were highest in the AH group.
In addition, Figures 7A,B show the distribution and differences
of the dominant genera with a relative abundance >5% in groups
based on collection areas. The relative abundance of Alternaria,
which was a dominant genus in CF, was higher in the SD and SC
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FIGURE 5 | Analysis of the beta diversity of the fungal community in groups based on collection areas. (A) Principal coordinates analysis (PCoA) plot on OTU level,
(B) non-metric multidimensional scaling (NMDS) plot on genus level, (C) Partial least squares discriminant analysis (PLS-DA) plot on genus level, and (D) typing
analysis on genus level.

groups than in the other groups. We conducted a typing analysis
at the genus level (Figure 5D), and the result showed that the
relative abundance of Alternaria was the main factor that divided
the 15 samples into two types, namely, type 1 (AH group, GX
group, and CF4) and type 2 (SD group, SC group, CF5, and CF6).

Comparison of Fungal Community in
Groups Based on Processing Methods
We collected nine samples and divided them into three groups
(SDD, SDR, and SDC) based on processing methods. For alpha
diversity, the average indices of Chao 1, Shannon, and ACE
were observed to be highest in the SDD group, indicating its
high richness and diversity. We also observed that the three
groups showed various degrees of clustering based on the result
of hierarchical clustering analysis (Figure 8A). Except for the
SDR group, the two other groups were clustered into two
branches. The results of NMDS analysis and PCoA were also
consistent with hierarchical clustering analysis and showed that
the SDR samples were assigned to other groups (Figures 8B,C).

Based on the PLS-DA result, only the SDC group could be
distinguished from the SDD and SDR groups (Figure 8D). With
the exception of the SDC group, Ascomycota was the most
abundant phylum in the SDD and SDR groups. However, the
relative abundance of Basidiomycota was higher than that of
Ascomycota in the SDC group. At the class level, the relative
abundance of Dothideomycetes was highest in the SDD group,
while Eurotiomycetes was the most abundant class in the SDC
group. The relative abundance of Pezizales was higher in the
SDD group than in the SDR and SDC groups. Based on
LEfSe analysis (Figure 6B), the SDD group exhibited higher
numbers of Pezizales at the order level and of Pleosporaceae
and Periconiaceae at the family level than those in the SDR
and SDC group. Meanwhile, Alternaria, Pseudopithomyces,
Phaeosphaeriopsis, Septoria, Botryosphareia, and Phaeosphaeria
were more common in the SDD group than in the SDR and
SDC groups. The fungal composition in various groups showed
differences at the genus level. Alternaria was dominant in the
SDD group, while the relative abundance of Alternaria was low
in the SDC group. On the contrary, the relative abundance of
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FIGURE 6 | Fungal taxa with different abundances by linear discriminant analysis effect size (LEFSe) analysis in (A) groups based on collection areas and (B) groups
based on processing methods.

Xeromyces was higher in the SDC group than in the SDD and
SDR groups (Figures 7C,D).

Co-occurrence Analysis
As a result of the diversity of fungal microbiome in different
groups based on processing methods, we further analyzed the
interactions of fungal genera among various groups. The top
20 genera were selected to reveal the microbiome relationship.
The co-occurrence network analysis showed that the difference
was distinguishable depending on different processing methods
(Figure 9). A total of 55 positive and 14 negative correlations
were recorded in the SDD group, while 51 positive and
11 negative correlations were recorded in the SDR group.
Meanwhile, the SDC group had 63 positive and 7 negative

correlations. The result showed that Alternaria, which was the
dominant genus, was positively correlated with Pseudopithomyces
but negatively correlated with Naganishia in the SDD group,
while Alternaria was negatively correlated with Xeromyces
and positively correlated with Aureobasidium, Nothophoma,
Ciliophora, and Acremonium in the SDR group. Except for
Alternaria, the correlations of Xeromyces differed among the
three groups. In the SDD group, Xeromyces showed positive
correlations with Wallemia, Aspergillus, Talaromyces, and
some unclassified genera belonging to the Saccharomycetaceae
family. However, Xeromyces exhibited negative correlations with
Aureobasidium, Nothophoma, Ciliophora, Acremonium, and
Alternaria. Furthermore, this genus was negatively correlated
with Aspergillus and positively correlated with Lophotrichus,
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FIGURE 7 | Distribution of fungal community at the genus level in (A) samples from different collection areas visualized by Circos, (B) a heatmap of the top 20 genera
in samples from different collection areas, (C) in various processed CF samples, (D) a heatmap of the top 20 genera in samples based on processing methods.

Itersonilia, Cutaneotrichosporon, Chaetomium, Xerochrysium,
Apiotrichum, and Dearyomyces. In addition, Aspergillus exhibited
the most correlations (10 correlations) in the SDC group,
followed by the SDR (eight correlations) and SDD (six
correlations) groups. For Wallemia, more correlations (eight
correlations) were detected in the SDR group than in the
SDC (seven correlations) and SDD (five correlations) groups.
However, Cladosporium had a higher number of correlations in
the SDD and SDC groups (nine correlations) than in the SDR
group (four correlations).

DISCUSSION

Fungal Contamination in Crataegi
Fructus
Crataegi Fructus is considered a popular dietary supplement
that has attracted global attention as a result of its edible
and medicinal effects. However, exogenous contaminations,

especially fungal contamination, in CF are inevitable. In this
study, we detected fungal contamination in 21 CF samples that
were collected in China. The result showed that all the samples
were contaminated with fungi. At the phylum level, Ascomycota
was dominant among most of the samples (except for CF1-3
and CF2-3). It is a common phylum that has high metabolite
diversity (26). Meanwhile, this phylum also includes a wide range
of plant and animal pathogens such as species from Alternaria,
Aspergillus, Penicillium, and Fusarium. Contamination of foods
and herbs by Ascomycota has been reported continuously.
Zang et al. studied the dynamics of microbial community
during fermentation of Suan yu (fermented fish) and found
that Ascomycota was the predominant phylum in all stages
of fermentation (27). In Saudi Arabia, Hashem and Alamri
isolated 520 fungal strains from 15 spices, indicating that most
of the species belonged to Ascomycota (28). In addition, it was
observed that Alternaria contamination was detected in 16 out
of 21 CF samples in this study, showing that Alternaria was the
main fungal genus in the CF samples. According to a relevant
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FIGURE 8 | Analysis of the beta diversity of the fungal community in groups based on processing methods. (A) Hierarchical clustering tree on genus level, (B) NMDS
plot on species level, (C) PCoA plot on genus level, and (D) PLS-DA plot on OTU level.

study, Alternaria is a common and important fungal genus that
is widely distributed worldwide. It is divided into 24 sections
based on morphological and molecular identification (29). Many
species in this genus have been considered as plant and post-
harvest pathogens such as Alternaria bataticola, Alterneria porri,
and Alterneria solani (30, 31). A previous study has reported
that contamination by Alternaria species caused damage in
Crataegus sp. tree leaves (32), while few studies focused on the
contamination by Alternaria in CF fruits. Our result indicated
that Alternaria was the most abundant genus among all the
genera that contaminated CF. Similarly, Alternaria has also
been reported as the main contaminated fungal genus in other
herbs. The study performed by Pickova et al. showed that the
quality of Milk Thistle, which is an herb used for treatment
of liver disease, was affected by fungi in Alternaria and their
mycotoxins (33). Zhao et al. also indicated that fungal strains
in Alternaria severely threatened the industry of Dendrobium
officinale (34). Furthermore, several Alternaria species were not
only considered as spoilage agents for herbs but were also capable
of synthesizing some mycotoxins such as alternariol, alternariol

monomethyl ether, and altenuene, causing damage to human
health (35). Thus, in order to identify the fungi in Alternaria
efficiently and accurately, an identification method deserves to
be developed. HTS provides an efficient method for the efficient
identification of fungi that contaminate CF, guaranteeing safe
utilization of CF.

Effect of Processing Method on the
Fungal Community in Herb and Food
In order to improve efficacy and decrease toxicity, many herbs
are processed before being distributed to the market. However,
the processing methods also affect the fungal contamination
in herbs. According to the Chinese Pharmacopoeia (2020), CF
can be processed into dried, roasted, and charred products, and
their efficacy shows degrees of differences in clinics. Moreover,
few studies reported a comparison of the fungal microbiome
in these products. In this study, we compared the difference
in fungal composition and diversity between processed CF
products. The result showed differences in the fungal community
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FIGURE 9 | Network analysis of fungal taxa in (A) SDD group, (B) SDR group,
and (C) SDC group.

in the three groups. At the phylum level, Ascomycota was
dominant in the SDD and SDR groups, while the relative
abundance of Basidiomycota was highest in the SDC group.
Furthermore, remarkable differences were observed at the genus
level. According to the fungal composition analysis, the relative
abundances of Aspergillus and Xeromyces were highest in the SDC
group, followed by the SDR and SDD groups, and the relative
abundances of Alternaria and Aureobasidium were highest in the
SDD group, followed by the SDR and SDC groups. It can be
concluded that the fungal community in the CF samples changes
as the effect of processing temperature increases. Some fungal
genera such as Aspergillus and Xeromyces become dominant

from low abundance, while others such as Alternaria and
Aureobasidium decrease significantly or are not even detected in
the samples. During the CF processing procedure, temperature is
an important factor that may affect the fungal community. Based
on previous studies, temperature has a significant impact on
fungal growth and mycotoxin production. Mellon et al. assessed
the effect of temperature on the growth and aflatoxin production
of A. flavus and A. parasiticus. The results showed that high
temperature exhibited more inhibitory effect on the growth and
aflatoxin production of these fungi than low temperature (36).
Similarly, Cibelli et al. observed that the growth of A. alternata
was remarkably inhibited under high-temperature conditions
(37). Moreover, many studies have reported the impact of other
processing methods on the fungal community. Cao et al. analyzed
the variation of microbial community during the fermentation of
Huafeng Dan Yaomu and found that the dominant fungal genera
changed from Millerozyma and Saccharomycopsis to Pichia after
14 days of fermentation (38). In Nigeria, Omohimi et al. collected
yam samples (including raw samples, chips, flakes, and flour)
to compare the difference in fungal contamination. The result
showed that the frequency of some strains in Aspergillus and
Fusarium in processed samples was higher than that in dried
samples (39). In addition to herbs, many foods will be processed
to improve their taste or extend shelf life, such as hams. Mu
et al. observed that the fungal community in Panxian Ham
changed during the processing procedure (selection, salting,
resting, and drying-ripening) (40), and this result was similar
to the studies performed by Zhang et al. (41). In conclusion,
the processing procedure influences the fungal community in
herbs and foods significantly. Thus, it is important to study
the relationship between processing methods and the fungal
community, providing references for industrial processors to
construct standard quality parameters.

Molecular Identification of Toxigenic and
Non-toxigenic Strains
In this study, seven potential mycotoxin-producing fungi were
detected in the CF samples, including T. roseum, A. tenuissima,
A. carbonarius, P. brevicompactum, A. fumigatus, R. microspores,
and P. fermentans. Previous studies reported that all these fungi
were capable of producing mycotoxins, such as zearalenone,
T-2 toxin, and deoxynivalenol (42–47). However, these fungi
exhibit mycotoxin-producing ability inconsistently and are
often non-toxigenic under some conditions. Both external and
internal factors may influence the synthesis of mycotoxin (48–
50). Therefore, the molecular identification of toxigenic and
non-toxigenic fungi has attracted the attention of researchers.
Kim et al. applied multiplex PCR to detect aflatoxigenic
and non-aflatoxigenic fungi by designing two primer sets,
primer set I (omtB/alfR/omtA) and primer set II (alfR/ver-
1/omtA), indicating that only aflatoxigenic Aspergillus species
could show three patterns in both primer sets (51). Similarly,
Davari et al. characterized the aflatoxigenic A. flavus and
Aspergillus parasiticus strains successfully using four sets of
primers (specifically for nor1, ver1, omtA, and aflR) (52).
Norlia et al. observed that all aflatoxin biosynthesis genes (aflR,
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aflP, aflD, aflM, and pksA) were amplified in aflatoxigenic
A. flavus, and that at least one of these genes could not be
amplified in non-aflatoxigenic A. flavus (53). Thus, a molecular
method for efficient and accurate detection of toxigenic fungi
should be developed to provide early warning and ensure the
microbiological safety of herbs.

CONCLUSION

In this study, fungal contamination in CF was investigated using
ITS2 amplicon sequencing. All the samples were detected to be
positive for fungal contamination. A total of 115 fungal species
were identified, among which seven were potential mycotoxin-
producing fungi. Moreover, HTS has been demonstrated as a
feasible method for efficient detection of fungal contamination in
CF, serving as a consolidate reference for its safe application and
quality improvement.
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