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We provide an overview of computational systems biology approaches as applied to
the study of chemical- and drug-induced toxicity. The concept of “toxicity pathways” is
described in the context of the 2007 US National Academies of Science report, “Toxic-
ity testing in the 21st Century: A Vision and A Strategy.” Pathway mapping and modeling
based on network biology concepts are a key component of the vision laid out in this
report for a more biologically based analysis of dose-response behavior and the safety of
chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity) – a complex phe-
notypic response with contributions from a number of different cell types and biological
processes. We describe three case studies of complementary multi-scale computational
modeling approaches to understand perturbation of toxicity pathways in the human liver
as a result of exposure to environmental contaminants and specific drugs. One approach
involves development of a spatial, multicellular “virtual tissue” model of the liver lobule
that combines molecular circuits in individual hepatocytes with cell–cell interactions and
blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative,
mechanistic prediction of hepatic dose-response for activation of the aryl hydrocarbon
receptor toxicity pathway. Simultaneously, methods are being developing to extract quan-
titative maps of intracellular signaling and transcriptional regulatory networks perturbed by
environmental contaminants, using a combination of gene expression and genome-wide
protein-DNA interaction data. A predictive physiological model (DILIsym™) to understand
drug-induced liver injury (DILI), the most common adverse event leading to termination
of clinical development programs and regulatory actions on drugs, is also described. The
model initially focuses on reactive metabolite-induced DILI in response to administration
of acetaminophen, and spans multiple biological scales.

Keywords: systems toxicology, toxicity pathways, virtual liver, multi-scale modeling, drug toxicity, chemical toxicity,
computational toxicology

INTRODUCTION
The 2007 report by the National Research Council (NRC) of the
U.S. National Academies of Science, titled “Toxicity testing in the
21st Century: A Vision and A Strategy” (NAS/NRC, 2007), laid
out a new path forward for the field of toxicology, envisioning an
approach where most toxicity testing will be carried out in vitro,
with a gradual reduction of reliance on high-dose animal studies.
The basis of this risk assessment paradigm would be perturba-
tion of cellular responses using a carefully selected suite of in vitro
assays. Central to this vision is the idea of “toxicity pathways” –
innate cellular signaling pathways that are perturbed by chemicals
and pharmaceuticals, and the determination of chemical concen-
tration ranges where those perturbations are likely to be excessive,
thereby leading to adverse health effects if present for a prolonged
duration in an organism. A key element of the proposed approach
is the use of computational systems biology models as a tool to
generate hypotheses about cellular level dose-response based on
existing data sets, and to identify data and knowledge gaps that can

help guide the design of in vitro assays, focused animal studies, and
improved in vitro – in vivo extrapolation (IVIVE) methods.

In 2009, the U.S. Environmental Protection Agency pub-
lished its Strategic Plan for Evaluating the Toxicity of Chemi-
cals (U.S.EPA, 2009), which also envisions dynamic mathematical
modeling as a key component of risk assessment linking toxic-
ity pathways to dose-response. This plan calls for computational
models that can predict organ injury from chemical exposure
through simulation of: (i) the dynamic characteristics of exposure
and dose; (ii) perturbations to molecular pathways; (iii) the link
between these perturbations and alterations to cell state; and (iv)
integration of molecular and cellular responses into a physiological
“virtual tissue” (U.S.EPA, 2009).

Here we provide an introduction to some concepts relevant to
developing computational systems biology models of intracellular
toxicity pathways for environmental chemicals and pharmaceuti-
cals, with specific relevance to toxicity of the liver. The peroxisome
proliferator-activated receptor (PPAR)-α nuclear receptor (NR)
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pathway in primary human hepatocytes is used as an example
for computational reconstruction of a toxicity pathway network
from genomic data. We then use the example of aryl hydrocar-
bon receptor (AhR) activation in the liver to outline the process of
developing a multi-scale spatial model of the liver lobule and inter-
actions among multiple hepatic cell types consequent to exposure
to toxic agents. Finally, we outline a predictive physiological model
(DILIsym™) to understand drug-induced liver injury (DILI) in
response to administration of acetaminophen, which spans multi-
ple scales from the organ/tissue-level to the molecular and cellular
levels. These varied modeling approaches, applied across differ-
ent pathways and tissues, will be pivotal in creating twenty-first
century in vitro toxicology testing strategies that are capable of
determining likely pathway targets for chemicals and pharma-
ceuticals, and the risks associated with specific exposure and use
conditions.

TOXICITY PATHWAYS UNDERLYING BIOLOGICAL RESPONSE
TO CHEMICALS
The biological effects of a drug or hazardous chemical (ligand)
in individual cells are mediated by cell-membrane or cytosolic
“receptor” molecules and downstream signaling and transcrip-
tional networks, which together comprise intracellular toxicity
pathways. Changes in the topology and dynamic behavior of
these pathways subsequent to recognition of the external ligand
account for the particular shape of the dose-response curve for
specific phenotypic end points. A finite number of core “stress
response pathways” mediate the response of cells to various chem-
ical stimuli to maintain homeostasis, or to make specific cell-fate
decisions such as proliferation, differentiation, or apoptosis (Sim-
mons et al., 2009). Examples of stress response pathways include
the oxidative stress response, heat-shock response, DNA-damage
response, hypoxia, and endoplasmic reticulum stress pathways,

all of which are present in all cell types of an organism, and
feature a common architecture consisting of a transcription
factor (TF), a “sensor,” and a “transducer” (Figure 1A; Sim-
mons et al., 2009). This suite of pathways is typically activated
at concentrations of chemicals significantly lower than those
that lead to adverse effects at the organism level, and can be
assayed as a group to serve as predictors of potential cell damage
(Kultz, 2005; Simmons et al., 2009). A second group of tox-
icity pathways is comprised of the signaling networks related
to activation of specific endogenous receptor pathways, such
as estrogen, androgen, and thyroid hormone signaling. Over-
stimulation or inhibition of these diverse pathways can lead to
toxic outcomes.

The canonical toxicity pathways discussed above are in turn
made up of a core set of functional regulatory network motifs that
underlie cellular homeostasis and fate decisions including phe-
notypic transitions (Alon, 2007). Each of these regulatory motifs,
originally discovered from detailed investigation of transcriptional
regulatory networks in the bacterium Escherichia coli (Shen-Orr
et al., 2002) and the budding yeast Saccharomyces cerevisiae (Lee
et al., 2002), has a characteristic structure and the capacity to
perform specific information-processing functions (Bhalla and
Iyengar, 1999; Tyson et al., 2003; Alon, 2007; Figure 1B). Some
examples of response motifs are:

(i) negative feedback, which enables homeostasis and accelera-
tion of response time in gene circuits (Rosenfeld et al., 2002;
Zhang and Andersen, 2007);

(ii) positive feedback, which generates switching behavior
between multiple phenotypic states (Ferrell, 2002);

(iii) the coherent feed-forward loop, which can introduce a time
delay in activation as well as detect persistence in the
activating signal (Mangan et al., 2003); and

FIGURE 1 | Stress response pathways and network response motifs. (A)
Typical structure of a stress response pathway (adapted from Simmons et al.,
2009). Canonical stress response pathways, conserved broadly across
eukaryotes, have a common structure for sensing damage and launching a
transcriptional response to counteract the stress. (B) Common network
motifs in intracellular response pathways. Three elements (genes/proteins) X,
Y, and Z, in a pathway can regulate each other to form: (a) a coherent

feed-forward loop where X activates Y, and both X and Y activate Z; (b) an
incoherent feed-forward loop where X activates both Y and Z, but Y
suppresses Z; (c) a positive feedback loop; and (d) a negative feedback loop.
Two transcription factors X and Y can regulate each other through, for
instance: (e) a double-negative feedback loop; or (f) a double-negative
feedback loop with positive autoregulation. Sharp arrows denote activation;
flat arrows denote suppression.
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(iv) the incoherent feed-forward loop,which can function as a pulse
generator and response accelerator (Mangan et al., 2003,
2006).

These motifs often occur in combination to generate more
complex regulatory patterns in transcriptional networks (Alon,
2007). Response motifs have been identified not just in unicellular
organisms but also in the cells of higher organisms – for example
in the circuits that control gene expression in the pancreas and the
liver (Odom et al., 2004) as well as the regulatory circuits of human
embryonic (Boyer et al., 2005) and hematopoietic (Swiers et al.,
2006; Rothenberg, 2007) stem cells. Perturbation of these regu-
latory motifs is likely to be a key element of toxic response, and
a better understanding of their organization and dynamic behav-
ior should lead to improved prediction of the cellular outcome of
specific perturbations introduced by various chemicals.

COMPUTATIONAL SYSTEMS BIOLOGY MODELS TO
UNDERSTAND PERTURBATIONS IN TOXICITY PATHWAYS
Detailed characterization of molecular signatures associated with
cellular perturbation of key toxicity pathways and disease states
has been made possible by the advent of the “-omics” era. How-
ever, these molecular signatures do not by themselves translate to
a clear causal network of pathway perturbation. Rigorous quan-
titative analysis of specific pathways and network motifs derived
from these large-scale molecular signatures will aid mechanistic
understanding of the underlying biological processes (Araujo et al.,
2007). In particular, understanding the dynamic, dose-dependent
behavior of toxicity pathways will require stimulation of these
pathways at a number of time points and at various concentra-
tions of the activating chemical, rather than static snapshots of the
molecular state (Danna and Nolan, 2006).

Computational systems biology pathway (CSBP) models can play
a key role in this process, allowing mechanistic prediction of the
dose-response based on pathway dynamics (Zhang et al., 2010a).
These models will have to be based on molecular circuits respon-
sible for the basal operation of normal cellular pathways in the
absence of an external chemical stressor, which sets up the back-
ground state from which additional perturbations will occur as
the stressor level increases. A properly implemented CSBP model
would take such changes into account to predict the range of
concentrations of stressors that would not produce appreciable
adversity. A key aspect of the applicability of such models is the
quantitative characterization of the underlying molecular circuits
from appropriately designed in vitro assays. CSBP models can also
allow the assessment of pathway components that display poly-
morphisms in the human population to help identify sensitive
subpopulations.

Deterministic simulations based on ordinary differential equa-
tions (ODEs) are a common approach to modeling dynamical
systems like intracellular signaling circuits. An assumption with
deterministic ODE models is that the molecular components of the
network of interest exist in a well-mixed volume such as the cytosol
or nucleus, and that the amounts or concentrations of all mole-
cular species in the network can be approximated by continuous
variables. A typical deterministic model consists of a set of coupled
ODEs, each describing the rate of change in the concentration or

abundance of a molecular component, and incorporating terms
that account for the known biochemical interactions among the
various molecular species (Aldridge et al., 2006). The numerical
values of parameters and initial conditions are assigned based on
existing literature and in vitro data, and the time course of the sys-
tem is simulated using one of a variety of numerical ODE solvers.
Parameter assignment is not always a straightforward exercise:
experimental data is often not available for the particular species or
cell type being modeled. In such cases, parameter estimation tech-
niques need to be applied (Swameye et al., 2003). Parameter uncer-
tainty, distinct from biological variability, can cause uncertainties
in prediction from a computational model (Vanlier et al., 2012).
Although this ODE-based approach does not take into account
either spatial diffusion or noise in gene expression, it is a valuable
computational tool that has provided many insights into the design
and function of molecular circuits underlying a number of biolog-
ical processes like cell cycle regulation, signal transduction, cell dif-
ferentiation, stress response, and biological rhythms (Carrier et al.,
1995; Bhalla et al., 2002; Forger and Peskin,2003; Novak and Tyson,
2003; El-Samad and Khammash, 2006; Bhattacharya et al., 2010).

Stochastic fluctuations in gene expression and levels of intra-
cellular molecular species, which are ignored in the ODE-based
deterministic modeling approach, can play an important role in
cellular response by generating non-genetic phenotypic variability
among an isogenic cell population (Kaern et al., 2005; Losick and
Desplan, 2008; Pearson, 2008). The random fluctuations in mRNA
and protein concentrations can be modeled by stochastic simula-
tion algorithms like Gillespie’s direct method and first-reaction
method (Gillespie, 1976, 1977). Gillespie’s algorithm is essentially
a Monte Carlo simulation technique where the number of reacting
molecules in the model system and the reaction rate constants are
used to generate two probability density functions, one of which
predicts the time interval between successive reaction events, and
the other identifies which one among all possible reactions is
likely to occur next. The time variable in the simulation is then
updated by the calculated time interval, and the copy numbers of
the reactants and products of the predicted reaction are updated
according to the reaction stoichiometry. Several modified versions
of the original Gillespie algorithm have been developed to improve
its computational efficiency, including the next reaction method,
tau-leaping, and hybrid models (Gibson and Bruck, 2000; Gille-
spie, 2000; Rathinam et al., 2003; Salis and Kaznessis, 2005). Most
of these are approximate methods that greatly reduce the sim-
ulation time. In some cases, stochastic simulations simply add
“white noise” terms to the most variable species in ODE equations.
Applications of stochastic modeling tools include investigation of
oscillatory patterns in protein levels (Proctor and Gray, 2008) and
cellular differentiation (Zhang et al., 2010b).

Developmental processes are usually driven by discrete, all-or-
none changes in the expression of lineage-specific genes belonging
to a large gene regulatory network. The Boolean network modeling
paradigm, where each variable (gene) is assumed to take either
of two values, 0 (off) and 1 (on), is often a good approxima-
tion of the gene expression patterns in these processes. The state
of each gene is updated according to its current state and that
of other regulatory genes it is connected to in the network, as
governed by a preset Boolean logical rule table. This binary-state
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assumption reduces the dependence on various kinetic parame-
ters in the model, instead making full use of the large available
database of qualitative protein–protein and protein–gene interac-
tions. As with deterministic and stochastic models, a simulation
of a Boolean network model should converge to an attractor state
representing the binary gene expression pattern of a particular
phenotypic state (Albert and Othmer, 2003). For chemicals that
exhibit developmental toxicity, a Boolean network model can be
used to predict low-dose effects based on high-throughput screen-
ing, allowing comparison of gene expression profiles between the
undisturbed and disrupted states of the transcriptional regulatory
network (Jack et al., 2011).

These various modeling techniques are based on a topologi-
cal representation of cellular signaling networks, and ignore the
spatial relationship among intracellular molecular species and the
spatial heterogeneity inside a cell. In reality, the cytosol, the nucleus
and organelles such as mitochondria and endoplasmic reticulum
segregate the intracellular space into a number of discrete com-
partments. The difference in concentrations of molecules between
these compartments and inter-compartment molecular traffic can
be accounted for by simple compartmental models, where each
subcellular compartment is assumed to behave as a well-mixed
sub-system. However, diffusion must be explicitly considered in
cases where the spatial aspect of molecular diffusion within cellu-
lar compartments becomes rate-limiting. Examples include pat-
tern formation in the animal body in response to concentration
gradient of morphogens, effects of chemicals on different der-
mal layers when absorbed by the skin, and propagating waves of
signaling molecules in the cytosol. In these circumstances, spa-
tiotemporal models based on partial differential equations may
be employed (Kholodenko, 2006; Kholodenko et al., 2010). The
spatial dimension can also be explicitly incorporated by model-
ing the motion and interaction of distinct molecular species as
discrete particles, for example with agent-based spatial modeling

approaches. Agent-based models also address another problem
arising from the lack of a spatial component in network models:
incorporating multicellular or tissue-level interactions.

THE AGENT-BASED MODELING APPROACH
Agent-based modeling (ABM), also referred to as“individual-based
modeling” (Bonabeau, 2002; Grimm et al., 2005; An et al., 2009) is
a more intuitive approach than traditional equation-based model-
ing formalisms, and as such can be helpful in model development,
model interpretation, and model use by a variety of stakehold-
ers. The “agents” in an ABM may be individual molecules, cells,
or other entities that populate a virtual “world” (a discrete lat-
tice), with each agent represented as a distinct data structure
(or “object”) in the computational model (see Figure 2). Agents
can move in the physical space of the world, and interact with
neighboring agents according to a pre-defined set of rules. As
the model is simulated over a large number of iterations, these
local interactions generate macroscopic, sometimes counterintu-
itive, phenomena of interest – referred to as “emergent properties”
of the system being modeled.

Agents in an ABM are modeled as discrete entities located
in a physical space – thus it is no longer necessary to assume a
well-mixed continuous system as in differential equation-based
dynamic modeling approaches. The reliance on averaged aggre-
gate parameters is therefore reduced in favor of an emphasis on
strict definition of rules governing agent behavior and interac-
tions. Decisions regarding such explicit rules for agent behavior
are typically more intuitive than the choice and estimation of
abstract parameters in equation-based models, making it easier
for decision-makers to interpret and use the model. ABM plat-
forms like NetLogo (http://ccl.northwestern.edu/netlogo/) use an
integrated visualization/programing interface (Figure 2), which
makes it straightforward to evaluate the effect of modifications to
the “engine” of the model on model behavior.

FIGURE 2 |The NetLogo agent-based modeling platform with an integrated visualization/programing interface. “Agents” occupy a virtual spatial
“world” in this two-dimensional representation of the liver lobule (left). The programing interface (right) in NetLogo makes it simple to test various changes in
model code during model development.
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Agent-based modelings were first used in models in social
science and ecology, but have been applied to a wide range of
biological problems in recent years, particularly for modeling
pathophysiological processes with a significant spatial component
(An et al., 2009). These include tumor formation (Engelberg et al.,
2008; Gerlee and Anderson, 2009; Zhang et al., 2009b,c), inflam-
mation (An, 2001, 2008), wound healing (Walker et al., 2004;
Vodovotz, 2006; Sun et al., 2007), T-cell activation and prolifera-
tion within a lymph node (Bogle and Dunbar, 2010), and stromal
cell trafficking during acute skeletal muscle ischemia (Bailey et al.,
2009). Agents in these “virtual tissue” models represent the behav-
ior of individual cells – the natural functional unit in tissue-level
biological phenomena. In the toxicology context, virtual tissues
can be thought of as multicellular models of tissue microenviron-
ment that attempt to reconstruct the in vivo milieu of target organs
to simulate the physiological consequences of toxicity pathway
activation by specific chemicals. As such they represent an exten-
sion of traditional compartmental models to the scale of individual
cells in a tissue (Shah and Wambaugh, 2010).

LIVER MODELING CASE STUDIES
CASE STUDY 1: A CSBP MODEL: CAUSAL TRANSCRIPTIONAL
NETWORK INFERENCE
The 2007 NAS report (NAS/NRC, 2007) emphasized computa-
tional modeling of core intracellular toxicity pathways as a crucial
component of the new toxicity testing paradigm. While these path-
ways have been the object of a large number of experimental
studies, the causal molecular networks giving rise to activation of
the pathways have not been mapped out in sufficient detail. Here
we describe an approach for causal network mapping we are cur-
rently applying to the analysis of two prototype toxicity pathways:
the PPARα pathway in liver parenchymal cells, and the estrogen
receptor pathway in uterine epithelial cells. Such approaches are
likely to be pertinent to mapping the pathways activated by a broad
group of toxicants.

Both ER and PPARα belongs to the NR family: ligand-activated
TFs that regulate a variety of physiological functions involved in
development, metabolism, and homeostasis. These include the
steroid hormone-receptors: estrogen receptor, androgen receptor
(AR), glucocorticoid receptor (GR), and progesterone receptor
(PR), as well as the PPARs, liver X receptors (LXRs), retinoic
acid receptors (RARs), and retinoid X receptors (RXRs). NRs act
on chromatin combinatorially and dynamically throughout the
genome to regulate transcriptional responses to physiological and
environmental stimuli (Carlberg and Seuter, 2010; George et al.,
2011).

The PPARs function as regulators of hepatic lipid metabolism
and adipogenesis (Kersten et al., 2010; Pyper et al., 2010; Siersbæk
et al., 2010). They form heterodimers with RXR and bind to perox-
isome proliferator response elements (PPREs) on the promoters of
target genes to induce gene expression. There are three identified
PPAR isotypes α, β, and γ – among which PPARα regulates genes
involved in fatty acid oxidation, ketogenesis, gluconeogenesis, cho-
lesterol catabolism, and lipoprotein metabolism (Mandard et al.,
2004; Lefebvre et al., 2006), as well as anti-inflammatory response
(Zandbergen and Plutzky, 2007; Michalik and Wahli, 2008). Sus-
tained PPARα-mediated induction of peroxisome proliferation

can produce liver tumors in rats and mice (Reddy et al., 1976,
1980).

In the canonical picture, activation of PPARα in liver parenchy-
mal cells causes downstream alterations in gene expression
through a series of coordinated steps:

(i) phosphorylation of PPARα in the cytosol;
(ii) translocation of PPARα to the nucleus;

(iii) heterodimerization with its binding partner retinoid X
receptor alpha (RXRα);

(iv) binding of the heterodimer at DNA-response-elements
(PPREs) in the promoters of target genes; and

(v) alterations in binding of co-activators and co-repressors.

In recent years, genome-wide profiling of TF-binding activity
has provided an unprecedented global picture of gene regula-
tion. Chromatin immunoprecipitation (ChIP) in combination
with microarray hybridization (ChIP-chip) or high-throughput
sequencing (ChIP-seq) has been widely used for genome-wide
location analysis and characterization of TF-chromatin interac-
tions both for NRs and other TFs (Odom et al., 2004; Carroll et al.,
2005; Bieda et al., 2006; Gao et al., 2008; John et al., 2008; Lefterova
et al., 2008; Nielsen et al., 2008; Fullwood et al., 2009; Delacroix
et al., 2010; Hu et al., 2010; Ravasi et al., 2010; van der Meer et al.,
2010; Dere et al., 2011). An important finding of these studies is
the combinatorial control of gene expression by NRs. TF-binding
sites are often clustered in the genome, which allows coordinated
action of multiple TFs to induce or suppress the expression of indi-
vidual genes in a cell type and condition-specific manner (George
et al., 2011).

In addition,gene regulation by“DNA-independent”chromatin-
NR interactions is surprisingly common across the genome
(George et al., 2011), whereby NRs indirectly modulate transcrip-
tion by “tethering” to other TFs directly bound to DNA. About
25% of ER and 30% of GR binding to the chromatin, for example,
appears to be DNA-independent – possibly enabled by tethering
to co-localized TFs like RUNX1 and AP1 (Heldring et al., 2007; So
et al., 2007; Reddy et al., 2009; Stender et al., 2010). Although the
number of potential NR binding sites across the genome is vast,
only a small fraction of these sites is occupied, with an even smaller
number of sites likely contributing to functional gene regulation
in vivo (Bourdeau et al., 2004; Carroll et al., 2005, 2006). These
observations suggest that a more realistic picture of NR-mediated
gene regulation can be obtained by combining gene expression
data from transcriptome profiling with genome-wide analysis of
NR localization.

Accordingly, we are using a combination of: (i) microarray-
based gene expression data; (ii) published ChIP-on-chip analyses
of genome-wide NR binding; and (iii) curated lists of directly
bound NR target genes to develop a comprehensive picture of NR-
mediated transcriptional regulation. Differentially expressed genes
responding to specific NR ligands are classified into three groups:

(i) genes with the NR directly bound to their promoters;
(ii) genes with the NR indirectly bound to their promoters by

tethering to other directly bound TFs
(iii) non-NR-bound genes regulated by other TFs.
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The non-NR TFs that regulate genes in groups (ii) and (iii) are
identified from the TRANSFAC (Biobase Corporation, Beverly,
MA, USA) database of TF-DNA interactions. These transcrip-
tional interactions may be summarized in a “latent regulatory net-
work”(shown schematically in Figure 3A),which could potentially
reveal the significant regulatory hubs in the transcriptional net-
work. Superposition of gene expression results from microarray
studies onto the latent network then allows visualization of time-
or dose-dependent transitions in the network (Figures 3B–D).
This derivation focuses purely on regulation at the transcriptional
level, and as such ignores epigenetic-level regulations including
post-translational modifications of NRs that could be important
in certain dosing contexts.

CASE STUDY 2: AGENT-BASED MODEL OF THE HUMAN LIVER
Motivation for multi-scale, agent-based models of the liver
Multi-scale spatial models based on the ABM formalism are par-
ticularly suited for investigating the effects of toxic chemicals and
drugs in the liver, which arise from a combination of cellular and
tissue-level mechanisms, with marked heterogeneities observed

across the liver lobule. These mechanisms are discussed below
in the context of dioxin-induced liver toxicity – a particularly
well-studied phenomenon.

The persistent environmental contaminant 2,3,7,8-tetrachloro
dibenzo-p-dioxin (TCDD) belongs to a class of toxicants known
as halogenated aromatic hydrocarbons (HAHs). The toxic effects
of HAHs in mammals are mediated through binding to the AhR
(Poland and Knutson, 1982; Schmidt and Bradfield, 1996; Row-
lands and Gustafsson, 1997). The liver is one of the most sensitive
organs for toxicity induced by TCDD. A spatial agent-based “vir-
tual tissue” model of the liver lobule that incorporates a mechanis-
tic representation of the activation of the AhR toxicity pathway in
individual hepatocytes can be used to investigate the sequence of
events leading from early activation of the AhR pathway through
subsequent cellular effects to cell proliferation, and culminating
in liver cancer as an endpoint. The structure of the AhR path-
way is well-studied (Figure 4A), and as such could serve as a
good case study for multi-scale, quantitative dose-response model
development based on information from in vitro assays and in vivo
biomarkers.

FIGURE 3 | Schematic representation of inferred nuclear receptor
transcriptional regulatory network and dose-response. Rectangular
nodes indicate regulatory transcription factors (TFs), with the functional
nuclear receptor (NR) marked in dark orange. Each directed edge in the
network indicates binding of a TF to the promoter of a target gene (circular
nodes, G1–G25). Dark black arrows connect NR with direct targets; light

black arrows with indirect targets. Green arrows connect other (non-NR)
TFs with their target genes. (A) The “latent” network, showing
well-connected transcriptional “hubs” (NR, TF1, TF2, TF3). (B–D) Evolution
of network structure with increasing levels of stimulation with NR ligand.
Target genes are colored by level of expression (red: upregulation; green:
downregulation).
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FIGURE 4 |The AhR signaling pathway, and agent-based spatial
model of liver lobule. (A) Key components and events in AhR signaling
pathway activation. AIP: Aryl hydrocarbon receptor interacting protein;
hsp90: heat-shock protein 90; Arnt: aryl hydrocarbon receptor nuclear

translocator; DRE: dioxin-responsive element. (B) Agent-based model of
liver lobule section (representational unit: one sinusoid), incorporating
hepatocytes, liver endothelial cells, hepatic stellate cells, and Kupffer
cells.

The hepatic dose-response of TCDD culminating in liver cancer
consists of the following key steps (Mills and Andersen, 1993):

(i) Accumulation of TCDD in the target tissue.
(ii) Formation of a complex with AhR.

(iii) Activation of growth-regulatory genes by the AhR-TCDD
complex.

(iv) Cellular responses to the altered expression of growth-
regulatory gene products.

(v) The effect of these cellular events on tumor promotion and
progression.

However the mechanistic and causal links connecting steps (iii)
through (v) are not well understood.

The carcinogenic effects of TCDD are believed to be mediated
by tumor promotion rather than initiation (Pitot et al., 1980). A
“negative selection”model of tumor promotion has been proposed
where specifically mutated cells acquire a proliferative advantage in
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the presence of persistent mitosuppression (Andersen et al., 1995).
TCDD suppresses apoptosis induced in rat hepatocytes by DNA-
damaging agents, which could result in selective expansion of
clones evading growth arrest and apoptosis (Worner and Schrenk,
1996; Bock and Kohle, 2005). The traditional benchmark dose
calculation for low-dose hepatotoxic effects of TCDD is linked
to centrilobular induction of cytochromes P450 1A1 (CYP1A1)
and 1A2 (CYP1A2). However the relation between these early
centrilobular gene expression events, and subsequent cell prolif-
eration events likely originating in the periportal region of the
liver lobule, is unclear. Specifically, cytochrome P450 activity and
cell proliferation follow different dose-response patterns: CYP1A1
activity appears to be reversible following prolonged TCDD expo-
sure, while the selective growth of altered hepatic foci and cell
proliferation are persistent (Maronpot et al., 1993; Sewall et al.,
1995; Tritscher et al., 1995; Whysner and Williams, 1996; Viluksela
et al., 2000). Liver cytotoxicity may be an intermediate step in the
sequence of cellular events leading to tumor promotion (Busser
and Lutz, 1987; Maronpot et al., 1993; Whysner and Williams,
1996; Viluksela et al., 2000).

Putative liver stem cells – known as “oval cells” in the rat and
“progenitor cells” in the human, may be one possible link between
early events in AhR toxicity pathway activation and eventual cell
proliferation culminating in liver cancer (Lemire et al., 1991; Lib-
brecht et al., 2001). These cells, which can differentiate into either
hepatocytes or cholangiocytes (bile duct cells; Roskams et al.,
2003), may have a role in development of human liver tumors
(Libbrecht et al., 2001). In a quiescent or healthy liver, oval cells
are localized in the Canals of Hering, situated in the smallest
branches of the biliary tree close to the periportal end of the liver
lobule (Fausto and Campbell, 2003; Fausto et al., 2006; Gaudio
et al., 2009). However in the diseased human liver, in the case of
both hepatitis (Libbrecht et al., 2000) and hepatocellular adeno-
mas (Libbrecht et al., 2001), progenitor cells and hepatocyte-like
cells are found scattered throughout the parenchyma, suggest-
ing migration and differentiation toward the hepatocyte lineage.
Intriguingly, biopsies of human primary liver tumors have revealed
cells with an intermediate phenotype between that of hepato-
cytes and bile duct cells, suggesting the involvement of these liver
progenitor cells (Robrechts et al., 1998; Kim et al., 2004).

The Hippo signaling pathway regulates cell contact inhibition
and suppression of hepatic oval cell proliferation (Zeng and Hong,
2008; Lee et al., 2010). Interestingly, TCDD activates the proto-
oncogene cyclin A to deregulate contact inhibition in rat liver
oval cells (Weiss et al., 2008), providing a possible role for this
pathway in TCDD-induced tumor promotion. Several other non-
parenchymal cells (e.g., hepatic stellate cells and Kupffer cells)
also regulate oval cell activity (Zhang et al., 2009a). Livers of rats
treated with TCDD and other AhR agonists exhibit loss of cell-cell
contact and enhanced cell proliferation including oval cell hyper-
plasia (Chramostová et al., 2004; NTP, 2006a,b; Andrysík et al.,
2007; Dietrich and Kaina, 2010).

In spite of the large number of empirical studies with TCDD,
some of which are summarized above, there is no agreement on a
unifying hypothesis to connect these observations into a mecha-
nistic description linking AhR toxicity pathway activation to liver
cancer. Spatial multicellular ABM of the liver lobule incorporating

parenchymal (hepatocytes) and non-parenchymal cells (hepatic
stellate cells and Kupffer cells), along with oval cell prolifera-
tion, can serve as an ontological tool to assemble diverse in vitro
and in vivo observations and compare alternative hypotheses for
TCDD-induced tumor promotion. Research teams at The Ham-
ner are pursuing multi-scale modeling approaches for examining
pathways perturbed by TCDD and other environmental chemicals,
as well as therapeutic molecules that cause DILI.

The liver ABM
A realistic spatial model of the liver lobule and drug/chemical-
induced toxic effects needs to account for:

(i) cellular heterogeneity across the lobule;
(ii) multiple cell types in the liver lobule that participate in liver

injury.

The virtual tissue formalism can be used to develop a spatial
agent-based model of the human liver lobule (the “lobule ABM”),
with individual hepatocytes represented by single agents. There
have been some initial efforts toward development of agent-based
representations of the liver (Hunt et al., 2006; Davila and An, 2010;
Wambaugh and Shah, 2010). Here we lay out the steps toward
developing a multi-scale model, where the lobule ABM is coupled
with an intra-hepatocyte ODE-based kinetic model of AhR path-
way activation for dose-response prediction with TCDD or other
chemicals (Figures 5A–C). A preliminary version of such a model,
incorporating hepatocytes, liver endothelial cells, hepatic stellate
cells, and Kupffer cells, is shown in Figure 4B. Other components,
including oval cells, will be added in course of model refinement.

(i) Output from a standard TCDD physiologically based phar-
macokinetic (PBPK) model (e.g., Leung et al., 1988, 1990)
estimates disposition of TCDD in the liver lobule: the input
dose for the lobule ABM (Figure 5A).

(ii) This TCDD input dose acts upon the individual agents (hepa-
tocytes) in the model, which occupy heterogeneous states by
virtue of differential gene expression: e.g., graded expres-
sion of the Ah receptor along the lobule (higher at the
centrilobular end; Lindros et al., 1997; Figure 5B).

(iii) The agents (hepatocytes) are implemented as intracellu-
lar signaling cascades: i.e., key molecular events associated
with the AhR toxicity pathway (Figures 4A and 5C). Indi-
vidual signaling events along the cascade can be modeled
and quantitatively calibrated from the literature, including
TCDD-AhR binding (Poland and Knutson, 1982), TCDD-
AhR-ARNT binding (Rowlands et al., 1996; Rowlands and
Gustafsson, 1997), activation of AhRR (AhR repressor) by
liganded AhR and reciprocal inhibition of AhR binding activ-
ity by AhRR (Mimura et al., 1999; Evans et al., 2008), and
cytochrome (CYP) P450 protein induction (Jones et al., 1985;
Fisher et al., 1989; Nebert et al., 2004).

Subsequent steps incorporate additional events into the signal-
ing cascade shown in Figure 5C, for example crosstalk between
the AhR and cell cycle/cell proliferation pathways (Elferink,
2003; Dietrich and Kaina, 2010). The tissue-level model imple-
ments specific “agent rules,” e.g., hepatocyte proliferation (agent
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FIGURE 5 | Implementation of multi-scale agent-based model
(ABM) of liver lobule. (A) ABM of the lobule showing distinct cell
types, with kinetics from PBPK model used as input for TCDD flow
rate through the lobule. (B) Individual agents (hepatocytes) along the
lobule, with heterogeneous states (e.g., with graded AhR
concentration), will be exposed to TCDD molecules flowing through

lobule sinusoid, which determines the dose for each agent (PP:
periportal end; CV: central-vein end). (C) Each agent (hepatocyte) is
implemented as a molecular network: in this case the intra-hepatocyte
cascade of events linking ligand (TCDD) – activation of the Ah receptor
to expression of cytochrome (CYP) P450 proteins. [(C) adapted from
Gim et al., 2010].

addition), or hepatocyte death (agent deletion), at specific lev-
els of TCDD, or downstream signaling components/metabolites.
The model structure would be extensible to other chemicals
besides TCDD; however the implementation of the agent struc-
ture (i.e., the signaling cascade shown in Figure 5C) will vary from
case to case, depending on the specific toxicity pathways stimu-
lated. In addition, a variety of interactions between diverse cell
types/agents will be specified to account for pharmacodynamic
responses, including necrosis, apoptosis, proliferation, and tumor
promotion.

CASE STUDY 3
ODE-based mechanistic multi-species model of the liver
Drug-induced liver injury is the most common adverse drug event
leading to termination of clinical development programs and reg-
ulatory actions on drugs, as well as the most common cause of
acute liver failure in the United States (Ostapowicz et al., 2002).
The DILI-sim Initiative is a partnership of several drug develop-
ment companies, led by The Hamner Institutes for Health Sciences,
to improve prediction and understanding of DILI. The DILI-
sim Initiative sponsors the development and application of the
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DILIsym™ model, a computational representation of physiolog-
ical processes involved in DILI. The model (Howell et al., 2012;
Woodhead et al., 2012) initially focuses on reactive metabolite-
induced DILI and spans multiple scales of physiology, from the
organ/tissue-level to the molecular and cellular levels (Figure 6).
The DILIsym™ model utilizes ODEs in the MATLAB computing
platform (The MathWorks, Natick, MA, USA). Multiple sub-
models are included: (a) PBPK dynamics, (b) glutathione (GSH)
depletion and synthesis, (c) mitochondrial dysfunction, (d) the
hepatocyte life cycle and cell death due to ATP depletion and mito-
chondrial dysfunction, (e) the innate immune response, and (f)
clinical endpoints, e.g., bilirubin, alanine aminotransferase (ALT),
and keratin 18. Using publicly available literature, the DILIsym™
model includes parameters to represent mouse, rat, and human
physiology which enables species-specific investigation and facili-
tates cross-species interpretation. Further, a genetic algorithm has
been applied to create alternate parameterizations of the model
within each species. These alternate parameterizations, termed
SimPops™, are generated to explore inter-individual differences
in response with respect to DILI. Simulated protocols run in the

SimPops™ framework allow the researcher to assess whether and
how variation in the underlying biology impacts the predicted out-
comes. The model integrates available mechanistic data on DILI
to recapitulate in vivo responses using only in vitro data, and to
identify critical drug-related uncertainties that if resolved could
vastly improve the understanding and/or treatment of drug hepa-
totoxicity. The following examples illustrate the application of the
DILIsym™ model to understand DILI induced by acetaminophen
(APAP) and methapyrilene (MP).

Acetaminophen metabolism via the cytochrome P450 sys-
tem (Cyp450) yields the toxic reactive metabolite, N -acetyl-p-
benzoquinone imine (NAPQI). As GSH concentration is depleted,
NAPQI forms protein adducts and induces mitochondrial oxidant
stress, leading to cell death. The DILIsym™ model includes the
basic biochemistry to describe these processes, and model simu-
lations are consistent with molecular data, e.g., changes in liver
GSH following APAP administration (Figure 7), and the corre-
sponding circulating indicators of liver injury, e.g., ALT (Figure 8).
Formalizing the available literature in the DILIsym™ model has
itself provided insights into the underlying biology. For example,

FIGURE 6 | Conception of the multi-scale DILIsym™ model. The DILIsym™ model is a multi-scale representation of liver physiology, encompassing
molecular and cellular interactions, variability in different zones of the liver acinus, whole-body drug distribution and metabolism, as well as variability in both
drug profile and underlying physiology leading to alternate responses. The multi-scale graphic has been reprinted with permission from Kuepfer (2010).
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FIGURE 7 | Simulations from the DILIsym™ model are compared against
published data on the underlying biology as illustrated in the GSH
example. (A) The baseline simulated rat administered 500 mg/kg APAP was
evaluated for degree and kinetics of GSH depletion against data from Chen
et al. (2009) (squares) and Vendemiale et al. (1996) (triangles). (B) A genetic

algorithm was applied to created alternate simulated rats with variability in
multiple parameters. Results from alternate simulated rats administered
500 mg/kg APAP were compared against the same data (circles for all data
points). Alternate simulated rats reflect reported biological variability and
permit testing of how such biological variability impacts outcomes.

FIGURE 8 | Simulations from the DILIsym™ model are compared
against published data on indicators of liver damage in response to
APAP. (A) Results from the baseline simulated rat administered different
doses of APAP was evaluated for ALT elevation against data from multiple
references (Zieve et al., 1985; Chanda et al., 1995; Sugimura and

Yamamoto, 1998; Wang et al., 1999; Waters et al., 2001; Gueguen et al.,
2007; Chen et al., 2009; all data in circles). (B) Results from alternate
simulated rats administered different doses of APAP were compared
against the same datasets. Alternate simulated rats reflect reported
variability in liver damage following APAP administration.

the modeling team sought to examine Hy’s Law which specifies
liver injury concerns in subjects with simultaneous elevations of
ALT exceeding three times the upper limit of normal (ULN) and of
bilirubin exceeding twice the ULN. Bilirubin is inversely correlated
with viable hepatocyte numbers (Portmann et al., 1975). However
bilirubin is elevated before liver necrosis is apparent (Zieve et al.,
1985; Sawant et al., 2004; Pooranaperundevi et al., 2010a,b), sug-
gesting that hepatocyte death may not be the primary mechanism
underlying early increases in bilirubin. Alternate mechanisms
for drug-induced loss of hepatocellular function were investi-
gated. While analyzing these data, we observed an inverse corre-
lation between GSH and bilirubin following drug administration
(Sawant et al., 2004; Pooranaperundevi et al., 2010a,b). In addi-
tion, there is a direct correlation between hepatic GSH and ATP
levels (Jenner and Timbrell, 1994). Together, these data indicate
that drug-induced bilirubin elevation might initially result from
a decrease in hepatocellular ATP. Bilirubin processing includes

several steps that are likely ATP-dependent, e.g., bilirubin con-
jugation and export from the hepatocyte (Tiribelli and Ostrow,
1996; Paulusma et al., 1997; Borst et al., 2007). Using the DIL-
Isym™ model, APAP was simulated in the presence or absence
of an ATP contribution to bilirubin generation. The addition of
an ATP effect more faithfully reproduces experimental data on
drug-induced early bilirubin elevation than drug-induced hepa-
tocyte death alone (Figure 9A), and inclusion of an ATP effect
does not compromise consistency with the data relating hepato-
cyte numbers to bilirubin (Figure 9B). This example illustrates
the integration of multiple datasets and the manner in which it
supports the formulation of new hypotheses that better reconcile
the data.

The DILIsym™ model also allows protocol optimization. N -
acetyl-cysteine (NAC) is the standard therapy for APAP overdose
(Rumack et al., 1981; Heard, 2008), but there are differences in the
route of administration as well as the duration of treatment (21 h
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FIGURE 9 | Alternate hypotheses for mechanisms underlying early
drug-induced elevation in bilirubin were tested using the DILIsym™
model. (A) Drug was simulated in the presence (solid line) or absence
(dashed line) of an ATP effect on bilirubin formation. Simulation results were
compared with published data (Pooranaperundevi et al., 2010a,b), closed and
open circles (Nirala and Bhadauria, 2008), x mark (Sawant et al., 2004, open

squares), where the presence of an ATP effect on bilirubin formation results in
higher fidelity with the published literature for early bilirubin elevation. (B)
Drug simulation with the ATP effect on bilirubin formation maintains
consistency with the available data describing the relationship between viable
hepatocytes and bilirubin (Portmann et al., 1975), circles; simulation results,
line).

intravenous vs. 72 h oral) with corresponding debate on the best
treatment regime. For example, there are indications that proto-
col efficacy varies by the length of delay between overdose and
treatment initiation (Yarema et al., 2009) and that NAC adminis-
tration impedes recovery (Athuraliya and Jones, 2009; Yang et al.,
2009), providing impetus to identify the shortest effective treat-
ment. Investigative simulations were conducted comparing the
standard NAC treatment protocols for 60 g APAP overdose and
varying length of delay between overdose and treatment (4–44 h).
The standard 72 h oral NAC protocol consistently out-performed
the 21 h intravenous (IV) protocol when the delay between over-
dose and treatment was short; i.e., most pronounced difference in
hepatocyte preservation was observed with a 4 h delay, diminishing
to equivalent efficacy with longer delays (Table 1). Mechanis-
tically, the predicted superior efficacy of the oral protocol with
short delays can be attributed to the later stage of the treatment
cycle, when higher levels of NAC present with the oral proto-
col more effectively neutralize the remaining APAP and NAPQI
(Figure 10A). Prolonging the standard IV protocol such that NAC
infusion continued beyond 21 h improved efficacy (Figure 10B)
but did not achieve equivalence with the standard oral protocol in
preservation of hepatocytes, due to the overall lower level of NAC
administration used in the IV protocol.

Finally, we sought to identify an IV protocol that could pro-
vide equivalent efficacy to the standard oral protocol. In 1991, a
group of investigators proposed a novel IV protocol which mimics
the level of dosing used in the oral protocol but is condensed
to 48 h duration (Smilkstein et al., 1991). They demonstrated
its clinical efficacy but were unable to simultaneously evaluate
it against standard protocols. Using the DILIsym™ model, side-
by-side simulations confirmed that this protocol has equivalent
efficacy to the standard 72 h protocol (Figure 10C). Further, simu-
lations demonstrate that the higher NAC levels better control peak
NAPQI levels accounting for the improved hepatocyte preserva-
tion (Figure 10D). This example illustrates how the DILIsym™
model may be used to compare clinical protocols under multiple

Table 1 |The DILIsym™ model was applied to compare the efficacy of

standard 72 h oral and 21 h IV NAC therapy following a 60 g APAP

overdose and varying delays (4–44 h) between overdose and

treatment initiation in the baseline human patient.

Time elapsed between

overdose and

treatment (h)

72 h oral NAC

(fraction of viable

hepatocytes)

21 h IV NAC

(fraction of viable

hepatocytes)

4 0.702 0.626

9 0.615 0.546

14 0.545 0.484

19 0.487 0.440

24 0.437 0.413

29 0.387 0.372

34 0.315 0.307

39 NA NA

44 NA NA

The lowest fraction of viable hepatocytes observed in the experiment was com-

pared. NA indicates APAP overdose resulted in death of the simulated patient

despite late NAC treatment (adapted from Woodhead et al., 2012).

scenarios (i.e., length of delay, treatment duration), understand
the molecular basis of the predicted efficacy, and identify proto-
cols that improve clinical results. Simulation results could be used
to help design confirmatory clinical studies.

The DILIsym™ model was designed to support decision mak-
ing throughout the drug lifecycle, including IVIVE, in which in vivo
outcomes are predicted using in vitro data. As proof-of-concept,
MP was selected for evaluation. Similar to APAP, MP hepatotoxic-
ity is thought to be mediated by a reactive metabolite, but impor-
tantly, MP differs from APAP in the observed necrotic pattern (i.e.,
periportal rather than centrilobular) and in species-specificity (i.e.,
MP toxicity in rats but not in humans vs. APAP toxicity in both
rodents and humans). The model for MP was constructed using
in vitro data, including the log P, pKa, metabolic partitioning in rat
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FIGURE 10 |The DILIsym™ model was applied to evaluate NAC treatment
protocols following 60 g APAP overdose. (A) NAC was initiated 4 h after
overdose. The level of circulating NAC was compared between standard oral
(thick line) and IV (dotted line) NAC protocols and compared against levels of
liver NAPQI for oral (thin line) and IV (dashed line) protocols. (B) Hepatocyte
viability was compared following application of the standard oral (thick line)

and IV (dotted line) NAC protocols and with extension of the IV NAC protocol
to 72 h (dashed line). (C) Hepatocyte viability was compared following
application of the standard oral (thick line) and IV (dotted line) NAC protocols
or the Smilkstein IV protocol (Smilkstein et al., 1991; dashed line). (D) Higher
NAC levels with the Smilkstein IV protocol (dashed line) better control peak
NAPQI levels than standard oral (thick line) or IV (dotted line) protocols.

FIGURE 11 |The DILIsym™ model was evaluated for its ability to predict in vivo liver toxicity given only in vitro input data for the drug methapyrilene.
(A) Simulations predict a hepatotoxic threshold of 150–200 mg/kg in rats, consistent with published data (Graichen et al., 1985), circles (Ratra et al., 1998),
diamonds (Ratra et al., 2000), triangles. (B) Biological variability represented in alternate simulated individuals yields considerable variability in the strength of
liver enzyme signal in rats (diamonds), but persistently, no hepatotoxic signal in humans (circles) or mice (triangles).

and mouse hepatocytes, and covalent binding in mouse, rat, and
human microsomes. Multiple doses of MP were evaluated in sim-
ulated mice, rats, and humans. The DILIsym™ model predicted
hepatotoxicity in rats between 150 and 200 mg/kg, consistent with

the available literature (Figure 11A). MP hepatotoxicity has not
been reported in mice; however, it was marketed in the 1950s
through the 1970s with no reports of hepatotoxicity, suggesting
a safe community experience. With inclusion of variability in the
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underlying biology, all simulated mice and humans were predicted
to be tolerant to the drug (Figure 11B), while simulated rats dis-
played a wide range of response. This example illustrates the IVIVE
capability of the DILIsym™ model.

The DILIsym™ model is a multi-species, multi-scale mecha-
nistic model for reactive metabolite mediated DILI. The model
is based upon APAP datasets, and its capabilities are illus-
trated above by its application to both APAP research ques-
tions (e.g., optimal NAC treatment) and related drugs (e.g.,
MP). Further model development is ongoing and focuses on
expanding model capabilities to address other mechanisms of
hepatotoxicity.

CONCLUSION
We have presented some concepts relevant to implementation
of a new vision for toxicity testing in the twenty-first century
for chemical and pharmaceutical molecules (NAS/NRC, 2007),
centered around the idea of critical perturbation to intracellular
toxicity pathways and computational systems biology models to

understand the topology and dynamic behavior of these pathways.
Three case studies were discussed highlighting our ongoing work
toward realization of the goals laid out in this vision: (i) causal
network mapping of the PPARα NR pathway in primary human
hepatocytes; (ii) a multi-scale agent-based model of the human
liver lobule to investigate activation of the AhR pathway in liver
parenchymal cells; and (iii) a predictive multi-scale physiological
model (DILIsym™) to understand DILI arising from administra-
tion of acetaminophen and other drugs. These various approaches
will be critical in devising in vitro toxicology testing strategies
and determination of pathway targets, as well as improved esti-
mation of dose-response characteristics from a network biology
perspective.
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