
Research Article
Transcriptome Analysis of Hypertrophic Heart Tissues from
Murine Transverse Aortic Constriction and Human Aortic
Stenosis Reveals Key Genes and Transcription Factors Involved in
Cardiac Remodeling Induced by Mechanical Stress

Peng Yu ,1 Baoli Zhang,2 Ming Liu,3 Ying Yu,3 Ji Zhao,2 Chunyu Zhang,2 Yana Li,2

Lei Zhang,2 Xue Yang,2 Hong Jiang ,2 Yunzeng Zou,2 and Junbo Ge 2

1Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University,
Shanghai, China
2Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital,
Shanghai Medical College of Fudan University, Shanghai, China
3Department of General Practice, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China

Correspondence should be addressed to Hong Jiang; jiang.hong@zs-hospital.sh.cn

Received 9 June 2019; Revised 20 August 2019; Accepted 17 September 2019; Published 27 October 2019

Academic Editor: Giuseppe Biondi-Zoccai

Copyright © 2019 Peng Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Mechanical stress-induced cardiac remodeling that results in heart failure is characterized by transcriptional
reprogramming of gene expression. However, a systematic study of genomic changes involved in this process has not been
performed to date. To investigate the genomic changes and underlying mechanism of cardiac remodeling, we collected and
analyzed DNA microarray data for murine transverse aortic constriction (TAC) and human aortic stenosis (AS) from the
Gene Expression Omnibus database and the European Bioinformatics Institute. Methods and Results. The differential
expression genes (DEGs) across the datasets were merged. The Venn diagrams showed that the number of intersections
for early and late cardiac remodeling was 74 and 16, respectively. Gene ontology and protein–protein interaction network
analysis showed that metabolic changes, cell differentiation and growth, cell cycling, and collagen fibril organization
accounted for a great portion of the DEGs in the TAC model, while in AS patients’ immune system signaling and
cytokine signaling displayed the most significant changes. The intersections between the TAC model and AS patients were
few. Nevertheless, the DEGs of the two species shared some common regulatory transcription factors (TFs), including SP1,
CEBPB, PPARG, and NFKB1, when the heart was challenged by applied mechanical stress. Conclusions. This study
unravels the complex transcriptome profiles of the heart tissues and highlighting the candidate genes involved in cardiac
remodeling induced by mechanical stress may usher in a new era of precision diagnostics and treatment in patients with
cardiac remodeling.

1. Introduction

Heart failure, the end stage for most cardiac diseases, is a
clinical syndrome in which the heart is unable to provide suf-
ficient blood flow to meet physiologic requirements of the
body. Prior to clinical symptoms or signs of heart failure,
the body tries to maintain adequate tissue perfusion using

several mechanisms, including the Frank–Starling mecha-
nism and neurohormonal activation, which lead to cardiac
remodeling [1].

Cardiac remodeling is a process in which genomic
changes occur. Physiologically, signaling and transcriptional
control involve precise programs of gene activation and
suppression [2]. Transcriptional changes in response to
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pathological stress might promote deterioration of cardiac
remodeling. It has been shown that preventing the genomic
changes may be a promising therapeutic approach [2–4].

The murine transverse aortic constriction (TAC) is a
commonly used experimental model for mechanical
stress-induced cardiac remodeling, which clinically mimics
the aortic stenosis (AS). TAC initially leads to compen-
sated hypertrophy of the heart and is often associated with
a temporary enhancement of cardiac contractility. In the
end stage, the response to chronic hemodynamic overload
becomes maladaptive, leading to cardiac dilatation and
heart failure. The murine TAC model has since been
extensively used as a valuable tool to mimic human car-
diovascular diseases and elucidate fundamental signaling
processes involved in the cardiac hypertrophic response
and heart failure development. It provides a more repro-
ducible model of cardiac hypertrophy and a more gradual
time course for the development of heart failure [5].

DNA microarrays facilitate measurement of the expres-
sion levels of large numbers of genes simultaneously. Recent
data underscored the significance of genomic mechanisms in
regulating gene expression programs in cardiac pathology
[2]. A number of studies have investigated the genomic
changes of the heart in the process of cardiac remodeling.

To investigate the genomic changes in the process of
cardiac remodeling induced by mechanical stress systemati-
cally and without bias, we collected and analyzed DNA
microarray data for cardiac remodeling induced by TAC
and AS from the Gene Expression Omnibus (GEO) database
and European Bioinformatics Institute (EBI). As a result, we
found a set of gene expression changes in the cardiac patho-
logic remodeling induced by mechanical stress that shared
some common transcription factors (TFs) with each other.

2. Methods

2.1. Microarray Data Collection and Preprocessing. The gene
expression profiles were screened and downloaded from the
National Center for Biotechnology Information GEO data-
base and the EMBL-EBI. To explore cardiac remodeling
under mechanical stress, the murine TAC datasets and the
human AS datasets were included. The TAC datasets in
which hypertrophic genes NPPA, NPPB, ACTA1, and
MYH7/MYH6 remained unchanged were excluded from
analysis. Datasets with the number of samples in each group
of <3 were also excluded.

2.2. DEG Analysis.GEO series were analyzed separately using
the online GEO2R tool with default parameters (https://www
.ncbi.nlm.nih.gov/geo/geo2r/), in which the empirical Bayes
algorithm (function “eBayes”) in the limma package was used
to detect differentially expressed genes between the TAC
model or AS patients and controls. In the murine model
analysis, the genes with a P value (Bayes test) of <0.05 were
considered as DEGs for the multiple intersection of different
datasets.

Since datasets were from different research centers,
group variation was present. It was not possible to con-
duct the data analysis on interdatasets. Considering these

limitations, we obtained only the average values of log
FC from each dataset to represent the expression levels
[6]. In the analysis of AS patients, significantly changed
genes were defined by a logarithmic-transformed fold-
change absolute value ðlog 2ðFCÞÞ ≥ 1 and a P value of ≤0.05.

2.3. Venn Analysis. Comparative analysis was carried out
with the InteractiVenn tool (http://www.interactivenn.net/)
[7] and Bioinformatics and Evolutionary Genomics tool
(http://bioinformatics.psb.ugent.be/webtools/Venn/).

2.4. GO Analysis. DAVID was employed to perform the GO
analysis for biological processes and pathway enrichment.
To plot the BPs of the DEGs involved, we used the cluster-
Profiler package [8].

2.5. PPI Network Construction Analysis. STRING online tool
(string-db.org) [9] was used to establish a PPI network for
the murine TAC model. Cytoscape software [10] was used
to establish a PPI network for DEGs of AS patients, with
the cutoff of a combined score of >0.4. The network analyzer
plug-in for the Cytoscape software was used to analyze the
topological property of the networks [6]. Genes with the edge
degree of ≥7 were defined as hub genes in this article.

2.6. TF Analysis. The Transcriptional Regulatory Relation-
ships Unraveled by Sentence-based Text mining version 2
database (https://www.grnpedia.org/trrust/) [11] was used
to predict regulation of TFs based on the lists of upregulated
and downregulated genes generated across the microarray
datasets. Significant TFs and potentially regulated genes were
identified based on a multiple parameters, P < 0:05 [12]. We
used the “igraph” package in R to visualize the output results.

3. Results

3.1. Datasets Involved in This Study.We searched a total of 14
datasets, which included a model of murine cardiac remodel-
ing induced by TAC and utilized a microarray to detect dif-
ferential expression genes (DEGs) in an unbiased manner.
Four datasets for the early cardiac remodeling and seven
datasets for the late cardiac remodeling were used (Table 1).

3.2. Genomic Changes in the Early Hypertrophic Response
Stage. The period within two weeks after the TAC operation
was defined as the early stage of cardiac remodeling, charac-
terized by compensated hypertrophic remodeling. Four
datasets included the microarray data from analysis of this
period.

The four datasets shared 251 significant DEGs
(Figure 1(a)), among which only 74 exhibited similar trends.
The heatmap showed DEGs with the same trends across the
four datasets (Figure 1(b)). The 74 DEGs were analyzed using
the STRING online tools (Figure 1(c)). To show the main
biological processes involving DEGs, we performed Gene
Ontology (GO) analysis using the Database for Annotation,
Visualization and Integrated Discovery (DAVID)
(Table S1), with the results represented in Figure 1(d).

Intersections among the four datasets comprised only
a small portion of each dataset. However, among the
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intersections, the number of DEGs with same trends was
even smaller. STRING analysis showed that the 74 DEGs
were mainly concentrated in metabolic changes, cell
differentiation and growth, cell cycling, and collagen fibril
organization (Figure 1(c)). The BP enrichment of the
DEGs mainly occurred during the lipid metabolic change
(Table S1).

3.3. Genomic Changes in the Late Stage of Cardiac
Remodeling. We then analyzed the datasets detecting DEGs
more than four weeks post-TAC, which represented gene
changes in the late stage of cardiac remodeling. The analysis
involved seven datasets. The Venn analysis of DEGs is shown
in Table S2. In the seven datasets, only 16 DEGs exhibited the
same trends, which is shown as a heatmap in Figure 2(a). We
consequently performed the protein–protein interaction
(PPI) analysis of the 16 DEGs using the STRING tools
(Figure 2(b)). Biological processes involving these 16 DEGs
were concentrated mainly in collagen biosynthesis and
hypertrophic marker molecules, such as NPPA, NPPB, and
ACTA1 (Table 2).

Although intersection of the seven datasets credits the
genes involved in the TAC-induced cardiac remodeling, its
comprehensiveness may be attenuated for the multiple inter-
sections. Additionally, we performed PPI and BP analyses for
the DEGs in the intersection of at least six sets (Figure S1 and
Table S3). The results showed collagen biosynthesis process,
innate immune response, metabolic changes, and ion
transmembrane transport to be the main changes involved
in the late remodeling stage.

3.4. Microarray Data Analysis of the Human Heart Tissue
from AS Patients. TAC is a common model used to investi-
gate cardiac remodeling and heart failure. Clinically, heart
failure is a syndrome with multiple heterogeneous etiologies.

Hypertension and AS are the main heart failure types
induced by mechanical stress, a model of TAC.

To investigate the DEGs involved in human heart failure
induced by mechanical stress, we analyzed GSE1145, in
which datasets for the heart tissues from AS patients were
utilized. The total DEG count was 252. Some of these genes
are represented by a heatmap in Figure 3(a). BP analysis
showed that the genes mainly enriched the inflammatory
process, in addition to playing a role in muscular hypertro-
phic changes (Figure 3(c)). In the PPI analysis, four genes
were identified as hub genes with the edge degree ≥ 7.
According to the edge degree rank, the four hub genes were
IL-8, JAK2, AGTR1, and BCR. IL-8, in particular, might play
an important role in the development of mechanical stress
induced by AS. However, these four genes were not involved
in the analysis of ischemic cardiomyopathy [6], implying a
distinct pathogenesis between these two cardiomyopathies.

Compared with the mechanical stress-induced cardiac
remodeling in mice, few DEGs or BPs overlapped between
the murine TAC model and AS patients, in which the effects
of clinical medication had to be excluded.

3.5. TF Analysis. We also predicted the TFs regulating DEGs
using the data from the TAC model and AS patients.
Although the DEGs shared little overlap between human
and murine mechanical stress-induced hypertrophic heart
tissue, there were four TFs (SP1, CEBPB, PPARG, and
NFKB1) in common between early cardiac remodeling
(Figure 4(a)) and AS patients (Figure 4(c)). The TFs pre-
dicted in the late cardiac remodeling were few for a little set
of DEGs (Figure 4(b)).

The most prominent TF was SP1, which is involved in
many cellular processes, including cell differentiation, cell
growth, apoptosis, immune response, response to DNA dam-
age, and chromatin remodeling. Activity of CEPPB and
NFKB1 is important in the regulation of genes involved in

Table 1: Studies that included murine model of cardiac remodeling induced by TAC using DNA microarray.

Accession number Stain Days post TAC Sample volume Citation
Hypertrophic gene

expression

GSE61177 C57BL/6 3d 4 vs 3 [13] Elevated Enrolled

GSE1621 FVB 10d 4 vs 4 [14] Elevated Enrolled

GSE5500 C57Bl6/J–FVB/N 7d 4 vs 6 [15] Elevated Enrolled

GSE415 C57BL/6 7d 4 vs 4 [16] Unchanged Excluded

GSE5129 C57BL/6 7d 1 vs 1 [17]
Excluded for small

sample size

GSE48110 C57Bl/6 3d, 11d, &28d 3 vs 3 for each time point [3] Elevated Enrolled

GSE38733 Not shown 28d 1 vs 1 Unpublished
Exclued for small

sample size

E-MTAB-2732 C57BL/6 Ambiguous Ambiguous Unpublished Exclueded

GSE12337 C57BL/6 28d 4 vs 4 [18] Elevated Enrolled

GSE2459 FVB 30d 9 vs 6 [19] Elevated Enrolled

GSE72904 C57BL/6 28d 3 vs 3 Unpublished Elevated Enrolled

GSE52796 B6.129 28d 6 vs 9 [20] Elevated Enrolled

GSE68518 Not shown 28d 4 vs 6 [21] Elevated Enrolled

GSE56348 C57BL/6 28d 5 vs 5 [22] Elevated Enrolled
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Figure 1: Continued.
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immune and inflammatory responses. PPARG is a regulator
of metabolic changes.

4. Discussion

Using the data from the high throughput DNA microarray
analysis, we were able to systemically reveal genomic changes
in a disease, so that potential therapeutic targets could be
identified in the future.

In this study, we investigated the datasets for TAC, a typ-
ical model to explore cardiac remodeling. We divided the
datasets into early and late phases of cardiac remodeling,
according to data from mice that succumbed days after the
TAC operation. After analysis of the data, we found common
gene changes within different datasets, which mainly con-
verged on matrix remodeling, metabolic changes, and
mechanical response.

Genomic changes in cardiac remodeling have recently
gained attention from researchers and their modulation has
been widely investigated. The methylation of DNA [23] and
histones [24], acetylation of chromatin and facilitation of
transcriptional activation [3, 25], and chromatin structural
remodeling [26] all result in genomic changes and lead to
heart failure. Suppression of genomic changes could amelio-
rate cardiac remodeling. Thus, it is important to determine
the genomic changes taking place during heart failure. Our
study represents the first attempt to systematically elucidate
these changes.

In a murine model, the genome is altered in the early
stages of metabolic changes, cell differentiation and growth,
cell cycling, and collagen fibril organization. A recent study
has revealed that cyclins and TGF-β that have terminally
exited the cell cycle can unlock the proliferative potential in
the myocardium. Moreover, their overexpression could

improve the cardiac function [27]. The PPI analysis showed
that SLC2A4 and TOP2A are the two centers of genomic
change. SLC2A4, also known as GLUT4, is a glucose trans-
porter that facilitates the metabolic switch to glucose in car-
diac remodeling. TOP2A (DNA topoisomerase II-alpha)
controlled the topological states of DNA by transient break-
age and subsequent rejoining of DNA strands that facilitated
cellular mitosis, chromatin remodeling, and gene transcrip-
tion [28–30].

There were fewer gene changes in the late stages of car-
diac remodeling, where only 16 genes exhibited similar
trends in all of the datasets. The upregulated genes ACTA1,
NPPA, NPPB, POSTN, COLIA1, and COL8A1 were
regarded as molecular markers in the pathologic process of
cardiac remodeling. Ces1d was downregulated in all datasets.
It has been shown to be involved in lipolysis, the process
whereby the adipocyte hydrolyzes stored triglycerides into
fatty acids to be used as fuel in times of need [31, 32], in cor-
relation with the opinion that the switch from fat to glucose is
an approach that could be taken to improve cardiac remodel-
ing [33]. FLCN, the inactivation of which could potentially
lead to cardiac remodeling [34], was also downregulated.
Research reports involving other genes from the set of 16
identified in this study, including P3H4, ANKRD1, CPXM2,
FBN1, FXYD5, MFAP5, NBL1, PFKP, and SLMAP, were
rare. These genes are therefore worth exploring further.

To delineate the correlation between the murine model
and clinical patients, we analyzed datasets from AS patients
mimicked by TAC [5]. The results showed that the genomic
changes in AS biological processes were mainly in inflamma-
tion. Results from the PPI analysis identified IL-8, JAK2,
AGTR1, and BCR to be the centers of genomic changes, in
which AGTR1 was the target of hypertension, the common
cause of cardiac remodeling triggered by mechanical stress.

Fatty acid metabolic prosses

Fatty acid catabolic prosses
Fatty acid oxidation

Viral genome replication
Positive regulation of viral process

Regulation of viral genome replication
Thioester metabolic process
Acyl-CoA metabolic process

Gene ratio
0.15

4
6

8
10

Count

P adjust
0.0100

0.0075

0.0050

0.0025

0.120.090.06

Sulfur compound metabolic prosses

Small molecule catabolic prosses

Lipid catabolic prosses
Carboxylic acid catabolic prosses

Oraganic acid catabolic prosses

Cellular lipid catabolic prosses
Monocarboxylic acid catabolic prosses

Response to peptide hormone

Cellular response to cytokine stimulus

(d)

Figure 1: Shared DEGs in the four datasets for the early stage of cardiac remodeling. (a) Venn diagram showed 251 shared DEGs.
(b) Heatmap for 74 DEGs with same trends from the four datasets. (c) Network diagram of 74 DEGs with same trends in the early stage of
cardiac remodeling. (d) Plotted biological processes for 74 DEGs.DEG: differential expression gene.
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Sartans, antagonists of AGTR1, are the cornerstone of medi-
cation for hypertension. Accordingly, IL-8, JAK2, and BCR
might be therapeutic targets for hypertension, which were
not detected in the microarray data from the TAC model.

The DEG intersections between the murine TAC model
and AS patients were few. However, predicted TFs from
DEGs SP1, CEBPB, PPARG, and NFKB1 were the common
TFs between the two species. Unsurprisingly, they were
either regulators in metabolic changes or pivotal hubs in
inflammatory response. SP1 has been reported to contribute
to the regulation of critical molecules involved in cardiac
remodeling [35, 36]. The mice downregulated of CEBPB
has been reported to display substantial resistance to cardiac

failure upon pressure overload, indicating its repression of
cardiomyocyte growth and proliferation in the adult mam-
malian heart [37]. The PPAR gene pathway coordinately
act to regulate cellular processes central to glucose and lipid
metabolism [38]. NFKB1 signaling also is critical for both
cardiac remodeling and hypertrophy [39].

5. Conclusion

In conclusion, we offer a novel and comprehensive analysis
of gene expression profiles using microarray DNA datasets
in cardiac remodeling induced by mechanical stress, mim-
icking hypertension. Genes involved in metabolic changes,
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Figure 2: DEGs with same trends in the late stage of cardiac remodeling. (a) Heatmap for 16 shared DEGs from the four datasets. (b) Network
diagram for DEGs in the late stage of cardiac remodeling.

Table 2: GO items of the 16 shared DEGs with the same trends during the late stage of cardiac remodeling.

Term Count % P value Genes

GO:0071260~cellular response to mechanical stimulus 4 25 2:72E − 05 NPPB, COL1A1, ANKRD1, NPPA

GO:0071560~cellular response to transforming growth factor beta stimulus 3 18.75 9:92E − 04 POSTN, COL1A1, ANKRD1

GO:0035582~sequestering of BMP in extracellular matrix 2 12.5 3:09E − 03 NBL1, FBN1

GO:0071356~cellular response to tumor necrosis factor 3 18.75 3:18E − 03 POSTN, COL1A1, ANKRD1

GO:0030308~negative regulation of cell growth 3 18.75 4:09E − 03 NPPB, FLCN, NPPA

GO:0007168~receptor guanylyl cyclase signaling pathway 2 12.5 6:95E − 03 NPPB, NPPA

GO:0061049~cell growth involved in cardiac muscle cell development 2 12.5 8:49E − 03 NPPB, NPPA

GO:0001666~response to hypoxia 3 18.75 9:39E − 03 NPPB, POSTN, NPPA

GO:0003085~negative regulation of systemic arterial blood pressure 2 12.5 1:00E − 02 NPPB, NPPA

GO:0006182~cGMP biosynthetic process 2 12.5 1:31E − 02 NPPB, NPPA
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Figure 3: DEGs in the human heart tissues of AS patients. (a) Heatmap for heart tissue DEGs from AS patients. (b) Network diagram for
DEGs in AS patients. (c) Plotted BP for DEGs. AS: aortic stenosis; DEG: differential expression gene; BP: biological process.
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extracellular matrix remodeling, and cell differentiation and
growth were significantly changed in the heart tissue from
the murine TAC model. Compared to results from the
TAC model, the significantly changed genes in patients suf-
fering from AS were mostly enriched during the inflamma-
tory biological processes. The analysis will provide valuable
information for future research on the molecular mecha-
nisms of cardiac remodeling and offer clues for the discov-
ery of novel therapeutic strategies.

6. Limitations

Although our analysis was comprehensive, with high
throughput and a large sample size, some limitations were
still present.

Classification of the cardiac remodeling stages in the
murine TAC model was performed on the basis of time
passed postoperation. No echo or histological standard was
used. The TAC model was performed using a standard

Sp1
Hnf1b

Trp53

Sp3

Cebpb

PparaPparg

Nfkb1

Ces1d
Fmr1

Ucp3

Acss1

Socs3

Gstk1Col5a1

Ghr

Slc2a4

Egr2

Gdf15
Uhrf1 Foxo3

Atf3

Slc27a1

Il15

(a)

Gata4

Nkx2.5

Sp1

Ankrd1

Nppa

Nppb

Ces1d

Col1a1

(b)

CEBPB

ESR1

ETS1

JUN

NFKB1

PPARG

RARG

SP1

STAT3

TBX5

ABCG2

AGTR1

ANGPT2

APOA1

BLM BST1

CCL5
COMP

CRCOL1A22

CTGF

CYP19A1

F2R

FGFBP1

HBB

HSD17B1
HSD3B1

JAK2 JUNB

KRT19

LCK

NOX1

NR1H3

OPRM1

PF4

PROM1

PTGER4

RARB

RET

RIPK2

S100A9

SYK

TFAP2A

TN FR SF11B

TSHR M

GJA5

YH6

(c)
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cardiac remodeling of mice. (b) TFs involved in the late cardiac remodeling of mice. (c) TFs involved in the hypertrophied patients. The red
character showed the mutual TFs in the mice and human. DEG: differential expression gene; TF: transcription factor.

8 Disease Markers



operating procedure [5]. The period within two weeks after
the operation was regarded as hypertrophic or compensatory
stage, while the period past four weeks was considered to be
the dilated or decompensated stage.

Furthermore, the data for patients suffering from AS
were extracted from GSE1145, which lacks detailed clinical
information as no research was published using this dataset.
However, the DEGs mainly involved in the inflammatory
biological processes were similar to a previous study of car-
diac remodeling [6, 40].

Despite these limitations, the comprehensive analysis of
microarray data in this study makes the results compelling.
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