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A B S T R A C T

Estimating crop biomass is critical for countries whose primary source of income is agriculture. It is a valuable
indicator for evaluating crop yields and provides information to growers and managers for developing climate
change adaptation strategies. The objective of the study was to model the impacts of agroclimatic indicators on
the performance of aboveground biomass (AGB) in Arabica coffee trees, a critical income source for millions of
Ethiopians. One hundred thirty-five coffee tree stump diameters were measured at 40 cm above ground level. The
historical (1998–2010) and future (2041–2070) agroclimatic data were downloaded from the European Coper-
nicus climate change services website. All datasets were tested for missing data, outliers, and multicollinearity and
were grouped into three clusters using the K-mean clustering method. The parameter estimates (coefficients of
regression) were analyzed using a generalized regression model. The performance of coffee trees' AGB in each
cluster was estimated using an artificial neural network model. The future expected change in AGB of coffee trees
was compared using a paired t-test. The regression model’s results reveal that the sensitivity of C. arabica to
agroclimatic variables significantly differs based on the kind of indicator, RCP scenario, and microclimate. Under
the current climatic conditions, the rise of the coldest minimum (TNn) and warmest (TXx) temperatures raises the
AGB of the coffee tree, but the rise of the warmest minimum (TNx) and coldest maximum (TXn) temperatures
decreased it (P < 0.05). Under the RCP4.5, the rise of consecutively dry days (CDD) and TNx would increase the
AGB of the coffee tree, while TNx and TXx would decrease it (P < 0.05). Except for TXx, all indicators would
significantly reduce the AGB of coffee trees under RCP8.5 (P < 0.05). The average values of AGB under the
current, RCP4.5, and RCP85 climate change scenarios, respectively, were 26.66, 28.79, and 24.41 kg/tree. The
predicted values of AGB under RCP4.5 and RCP8.5 will be higher in the first and third clusters and lower in the
second cluster in the 2060s compared to the current climatic conditions. As a result, early warning systems and
adaptive strategies will be necessary to reduce the detrimental consequences of climate change. More research
into the effects of other climatic conditions on crops, such as physiologically effective degree days, cold, hot, and
rainy periods, is also required.
1. Introduction

Estimating crop biomass is critical for countries whose primary source
of income is agriculture. The dry biomass of the crops is directly linked to
agricultural production and is used to predict crop yields (Geng et al.,
2021; Reisi-Gahrouei et al., 2019). It is an essential indicator for evalu-
ating crop yields and provides better information to growers and man-
agers for developing climate change adaptation strategies such as
issa).
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The biggest challenge currently facing agricultural producers world-
wide is climate change. Extreme climatic index occurrences have become
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more frequent and more severe in recent decades due to climate change
and global warming (Ramalho et al., 2014; Schroth et al., 2016). The
frequency and intensity of extreme events have increased significantly in
recent decades due to climate change and global warming (Perkins et al.,
2012). Extreme weather events (droughts, floods, heatwaves, colder and
warmer temperatures, changes in precipitation patterns), a decline in
agricultural production, and increased incidence of pests and diseases
have all been exacerbated across the broads by climate change (Bernstein
et al., 2007; Schroth et al., 2016; WMO, 2010). Agriculture production is
based on climate and meteorological conditions. Today, changes in
temperature and precipitation directly affect agricultural production
(Chemura et al., 2015). Changing rainfall patterns and rising tempera-
tures may complicate agricultural development, shorten growing seasons
and increase pest and disease distributions. Maize rice, wheat sorghum,
pulses, oilseeds (Casas, 2017), coffee, and cocoa (Schroth et al., 2016;
Sousa et al., 2019) are among the most vulnerable crops to climate
change and variability.

C. arabica is one of Ethiopia’s most valued commodities, but its
products are impacted by climate change (Bento et al., 2010; Filipe et al.,
2015; Hirons et al., 2018; Rahn et al., 2018). Studies on arabica plants'
responses to climate stresses like extreme cold, heat, and drought show
that coffee yield and quality decline in less-than-ideal growing conditions
(Muslihah et al., 2020; Ramalho et al., 2014). The Arabica beans can’t
grow big enough outside of their ideal temperature. According to the
IPCC (2018), rising temperatures, more frequent and severe droughts,
and more seasonal changes in the Bean Belt could be dangers for Arabica
coffee.

C. arabica is very sensitive to climatic factors, and it cannot withstand
low temperatures, nor does it tolerate intense heat either (Wang et al.,
2008; Chalchissa et al., 2022). As a result, it is widely cultivated on
relatively chilly mountain slopes in the tropics (Moat et al., 2017).
Warming temperatures severely affect the growth and development of
C. arabica (Damatta and Ramalho, 2006). The amount of photosynthetic
active radiation (PAR) collected by the crop during its life cycle is related
to crop biomass buildup (Monteith, 1972). Of the 50% of photosyn-
thetically active radiation (0.4μ–0.7μm), only 2–10% of this supports
photosynthesis. The plant’s leaves absorb blue and red wavelengths of
visible solar radiation (Buckner et al., 2016). Warmer temperatures
hinder the economic exploitation of the coffee plant by disrupting
metabolic and absorption processes in shoots and leaves, resulting in
imitative plant growth performance (Sanquetta et al., 2011). It hastens
evaporation, decreases soil moisture, and halts CO2 fertilization and
photosynthetic activity (Vieira et al., 2018).

On the other hand, the colder temperatures hinder water and nutrient
absorption and transport inside the plant, decreasing development and
growth and, eventually, total plant biomass (Damatta et al., 2018).
Droughts in the tropics are aggravated by excessive sun radiation and
temperatures, resulting in multidimensional stress on coffee plants, and
these concerns are predicted to become increasingly prevalent in
coffee-growing locations (Damatta and Ramalho, 2006). In general,
climate change alters how plants interact with their surroundings, which
impacts the biomass accumulation of coffee plants (Prieto et al., 2009;
van Oijen et al., 2010).

Ethiopia is the largest coffee producer in Africa, but its primary
coffee-growing locations will likely no longer be influenced by culti-
vating this commodity due to excessive temperature and precipitation
indices (Davis et al., 2012b; Moat et al., 2017a, 2017b). Meanwhile,
increasing temperatures may endanger native coffee trees, a vital re-
pository of coffee’s primordial genetic diversity that grows wild in
Ethiopian forests. Many researchers have been working tirelessly to un-
derstand how climate suitability influences coffee plants and devise
practical solutions to mitigate the severity of the consequences (Bunn
et al., 2015; Davis et al., 2012b; Godfrey et al., 2018; Muslihah et al.,
2020; Wagner et al., 2021). However, none of them have looked at
C. arabica’s physiological response to agroclimatic variables, so no data
on biomass production variation has been published. The current study
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aimed to make a difference by assessing extreme agroclimatic impacts on
the C. arabica trees' aboveground biomass under medium and higher
emission scenarios using ground and satellite data in response to the
existing research gaps.

2. Methodology

2.1. A description of the study area

The study was conducted in the Jimma zone of Oromia National
Regional State, Ethiopia. as shown in Figure 1, Jimma is located 357 km
to the southwest of Addis Abeba, between 7�130 and 8�560 N and 35�490

and 38�380 E. The Jimma Zone consists of various landforms with an
altitude of 871m–3231m above sea level. It is characterized by a tropical
highland climate with high rainfall, warm temperatures, and low hu-
midity. Its average annual temperature is between 11 and 25, and the
total annual precipitation is between 1200 and 2400 mm, and the rainy
season often lasts from February to October (Eshetu, 2018; Gemeda et al.,
2020). Similar to southern and south-eastern Ethiopia, spring and sum-
mer rains in southwestern Ethiopia have decreased by 15–20% since
1970 (Sisay, 2018). The study area has three major climatic zones: sub-
tropical, temperate, and tropical or warm areas, which account for 78%,
12%, and 10%, respectively (Diro and Erko, 2019). C. arabica is one of
the most important cash crops grown in the southwestern regions
because of its origin and climate suitability for this the environment
(Davis et al., 2012a; Moat et al., 2017a, 2017b).

2.2. Data collection

2.2.1. Biomass data
The preferential sampling technique was adopted since it assures that

all of the necessary samples have a chance of being involved in the
research. The three types of coffee sub-zones defined by Benti et al.
(2022) were used to sample coffee trees in the research area. Three
small-scale representative coffee farms (50 m � 60 m) were randomly
selected from sub-zones. Each farmwas then divided into five plots (20m
� 30 m), with three coffee trees from each plot were selected to measure
diameters. A total of 135 coffee trees were chosen at 40 cm (D40 cm)
above ground level using the method of Negash et al. (2013).

A non-destructive technique for aboveground biomass (AGB) esti-
mation was used because property rights regulations may not allow
cutting coffee without special authorization. The samples of stand coffee
trees with a diameter greater than or equal to 2 cm at 40 cm aboveground
level were measured using a tap meter as described in the method
(Negash et al., 2013). Samples of 51, 45, and 42 coffee trees from the 1st,
2nd, and 3rd sub-Zones or a total of 135 coffee trees' stump diameters,
were measured at 40 cm (D40 cm) above ground level. Sample trees' lo-
cations were recorded during data collection.

2.2.2. Agroclimatic indicator data
The European Copernicus Climate Change Services (C3S) provided

historical agroclimatic indicator data from 1981 to 2010 and future
projections from 2041 to 2070. The datasets are freely available in a
NetCDF format file on the website: https://climate.copernicus.eu/. Every
agroclimatic indicator is derived from daily precipitation and minimum,
mean, and maximum temperatures. The WFDEI (Watch Forcing Data
methodology applied to ERA-Interim) was used to reanalyze agroclimatic
indicators for historical and future time periods. This product offers bias-
corrected climate data from five CMIP5 General Circulation Models
(MIROC-ESM-CHEM, IPSL-CM5A-LR, NorESM1-M Mode, GFDL-ESM2M,
HadGEM2-ES). This dataset contains indices with a spatial resolution of
0.5 � � 0.5 � on a latitude and longitude grid. These climate datasets are
provided by the Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP2). ISIMIP is a community-driven climate impact modeling
initiative that aims to contribute to a quantitative and cross-sectoral
synthesis of climate change’s different impacts (ECMWF, 2019). The

https://climate.copernicus.eu/


Figure 1. Map of the research area with the locations of meteorological stations.
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medium (RCP4.5) and higher (RCP8.5) emission scenarios were
considered for the current study.

2.2.3. Data screening and clustering
Data must be screened before further statistical analysis to ensure that

it is useable, reliable, and valid for testing causal theories. Missing values
and outliers are the two factors that increase the degree of bias, degrade
the efficiency of the data, and reduce the reliability, validity, and gener-
alizability of study results (Kwak and Kim, 2017). The two components
were investigated using a machine learning method (utilizing JMS soft-
ware) to handle datawithmissing values andoutliers, and fortunately, our
datasets had nomissing values or outliers. Itmight be because the datasets
were bias-corrected at the start (ECMWF, 2019).Multicollinearity reduces
the statistical strength of the regressionmodel by reducing the precision of
estimated coefficients. It affects only the specific independent variables
that are correlated (Wonsuk et al., 2014). The coefficients become
particularly sensitive to small changes in the variables. A Pearson corre-
lation coefficient was also employed to identify highly correlated agro-
climatic variables. One of the two highly correlated agroclimatic variables
was removed when the absolute values of the correlation coefficient be-
tween the variables were |r| > 0.7. Because multicollinearity makes the
model’s output unreliable (Dormann et al., 2013). Figure 2 shows the
selected agroclimatic variables with a low correlation coefficient, or |r|,
less than 0.70 and their normal distributions.

A data clustering technique was used to deal with this multivariate
input data. This process may be used to evaluate the geographical varia-
tionof input data (SAS, 2020). The total sample locationof coffee treeswas
reduced from 135 to 127 by removing eight sample coffee tree locations
with equivalent agroclimatic datasets for the dependent variables
(Table 1). The observed AGB of the coffee trees and extreme climate input
datawere categorized into three clusters based on theirmean values using
3

the K-Means clustering technique. The clustering technique produces
groups of items in the same category that have comparable features
(Morissette and Chartier, 2013). In this scenario, K-mean clustering as-
signs every data point to the nearest centroid, which means K different
randomly-initiated points in the data. After all the data points have been
assigned, the centroid ismoved to anaverageof them(Figure3a). Thedata
was redistributed and mapped with ArcGIS as shown in Figure 3b.

Table 2 represents the statistical summary of the observed C. arabica’s
AGB and historical agroclimatic indicators between 1981 and 2010. The
agroclimatic datasets were converted to a comma-separated value (CSV)
file or geospatial data to point data using ArcGIS (Phillips, 2017). It might
aid in obtaining the exact agroclimatic indicators at the sites of each
sample coffee tree. The outliers and missing data were screened using
JMP software. A partial correlation analysis was carried out to choose the
agroclimatic indicator having a higher relationship with the AGB of the
C. arabica trees. The agroclimatic extremes at its normal distribution and
partial correlation coefficient of more than 0.25 and less than -0.25 to the
C. arabica’s AGB were chosen according to Bühlmann et al. (2010).

2.2.4. Above ground biomass estimation
A species-specific equation was utilized to calculate the AGB of

C. arabica trees, and the average AGB per thermal climatic zone was
recorded separately. The aboveground biomass data was calculated using
the allometric equation (Eq. (1)) established by Negash et al., (2013), for
a specific coffee arabica species in the Gedeo zone, closer to the study
area.

AGBCoffee ¼ 0:147ðD40cmÞ2 (1)

where AGB indicates above-ground biomass of coffee trees, D40 cm in-
dicates stump diameter at 40 cm above ground level.



Figure 2. Correlation Matrix of least correlated agroclimatic indicators employed for this study.

Table 1. Measured AGB C. arabica tree and selected agroclimatic indicators.

Code Description Unit

40cm Diameter coffee tree at 40 cm above ground surface cm

AGB Aboveground biomass of C, arabica tree kg

CDD Annual maximum number of consecutive dry days when daily rainfall
<1 mm

Day

R10mm Annual heavy precipitation days when daily total precipitation �10
mm day

Day

TNx Annual maximum values of minimum temperature when daily
minimum temperature �15 �C

�C

TNn Annual minimum values of minimum temperature when daily
minimum temperature �10 �C

�C

TXn Annual minimum values of Maximum temperature when daily
maximum temperature �20 �C

�C

TXx Annual maximum value of maximum temperature when daily
maximum temperature >25 �C

�C
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According to Negash et al. (2013), the square power equation has the
best rate of goodness-of-fit (R-squared ¼ 80%) for estimating the total
and component biomass of arabica coffee tree.

2.3. Modeling above-ground biomass under climate change

2.3.1. Model validation and testing
Different model comparisons were carried out before constructing

predictive models to choose the best fit model for the dataset. Validation
is a technique of estimating model parameters with part of a data set and
assessing model predictive abilities with the remaining data set (SAS,
2020). It can lessen the threat of model overfitting when dealing with
4

complex data. Both AGB and agroclimatic indicators' datasets were split
into three of the validation columns: training 70%, validation 15%, and
testing 15%. The training dataset was employed to assess model pa-
rameters. The validation dataset was used to select a model with higher
accuracy for predicting the outcome. After a model was selected, the
testing dataset was used toevaluate the predictive ability of the model.

he coefficient of determination (R-square), root mean square error
(RMSE), and mean absolute error (MAE) values for training, validation,
and tests were used to evaluate and compare the model performance
(SAS, 2020).

R-square is known as the coefficient of determination. It aids in
describing the strength of a relationship between a dependent variable
(the AGB of C. arabica) and independent variables (climate extremes). It
shows how close the actual data values are to the regression line. The R-
squared value ranges from 0 to 1, with 0 indicating that the model does
not match the given data and 1 indicating that the model fits the dataset
correctly. An adjusted R-squared greater than 0.75 is very good for
demonstrating accuracy. A model assessment helped this work investi-
gate the impacts of local climatic change on C. arabica’s AGB perfor-
mances. Eq. (2) was used to calculate the R-squared.

R2 ¼1� RSS
TSS

(2)

where R2 is the coefficient of determination, RSS is the sum of squares of
residuals, and TSS is the total sum of squares.

A Root Mean Square Error (RMSE) is the standard deviation of the
errors that occur while predicting a dataset. It is similar to the Mean
Squared Error (MSE), except that the root of the integer is used when
calculating the model’s accuracy (SAS, 2020). It tells us how concen-
trated the data is around the line of best fit. The lower values of RMSE



Figure 3. Input data as clustered into three Gaussian distributions.

Table 2. Statistical summary of C. arabica growth performance and current agroclimatic indicators' data.

Cluster Parameter N D40cm AGBO CDD R10P TNx TNn TXn TXx

1 Mean 27 15.17 33.93 26.59 5.65 5.22 15.9 16.65 31.74

SD 27 0.84 3.62 3.53 0.02 0.71 0.21 0.49 0.15

CV 27 5.54 10.67 13.28 0.35 13.60 1.32 2.94 0.47

2 Mean 49 14.25 29.94 32.87 9.61 5.71 15.92 16.78 30.78

SD 49 0.86 3.55 5.56 8.08 0.38 0.36 0.36 0.4

CV 49 6.04 11.86 16.92 84.08 6.65 2.26 2.15 1.30

3 Mean 51 11.41 19.52 52.79 15.49 7.82 16.77 17.35 29.93

SD 51 1.65 5.3 4.63 4.08 0.76 0.44 0.56 0.19

CV 51 14.46 27.15 8.77 26.34 9.72 2.62 3.23 0.63

Overall Mean 127 13.47 26.66 37.42 10.25 6.25 16.2 16.93 30.82

SD 127 2.02 7.37 11.98 6.84 1.29 0.56 0.56 0.74

CV 127 15.00 27.64 32.01 66.73 20.64 3.46 3.31 2.40
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indicate a better fit of the model to the dataset. It was calculated by Eq.
(3).

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðbyi � YiÞ
n

r
(3)

where RMSE is the root average square error, y is a predicted AGB, Y is
the actual AGB, and i ¼ 1, 2, 3, ...127, and n is the number of the sample
population.

The absolute mean error measures the average magnitude of the error
without considering direction. The high values of MAE are undesirable,
and the low ones indicate the better accuracy of the model to fit the
datasets. Eq. (4) was utilized to calculate absolute mean error.

MAE ¼ 1
n

Xn

i¼1

jYi � byi j (4)

where MAE stands for the absolute difference between the actual values
of AGB and the projected values of AGB, Y is measured AGB, and cyi is
predicted AGB, i ¼ 1, 2, 3, ...127. If the result has a negative sign, it is
ignored in absolute terms.

2.3.2. Model development
Figure 4 depicts a diagram of the artificial neural network (ANN)

model for current and future climate change scenarios. A neural network,
which has the best predictive model that fits AGB and agroclimatic
5

indicators data, was chosen to assess the impacts of climate change on the
AGB performance of C. arabica. A neural network is often known as an
artificial neural network (ANN). It is a mathematical model that repre-
sents the system of biological brain networks. This model describes the
relationship between the predictors and the response variables very well
(SAS, 2020). It recognizes underlying relationships in datasets through a
process that acts like the human brain (SAS, 2020). Therefore, we created
the artificial neural network models for the historical and future 2060s
under the RCP4.5 and RCP8.5 climate change scenarios using the com-
mercial statistical program JMP version 14 (SAS, 2020). The model
consists of three layers of neurons, as illustrated in Figure 4; the input
layer, the hidden layer, and the output layer. As part of the operation
with this type of neural network, a network of coffee trees in AGB was
generated (Wu et al., 2019). Both AGB and agroclimatic indicators'
datasets were submitted into input layers, were analyzed to produce
weighted values, and these weighted values were then transmitted to the
series of hidden layer nodes that provide predicted AGB values and then,
transfered them into the output layer (Figure 4). The estimated output of
AGB was calculated in the output layers using Eq. (5) as described by Wu
et al. (2019).

AbGB¼ f
�X

WiXi � θ
�

(5)

where AGB is aboveground biomass, f is the activation function. W is the
weight of dry biomass, X is agroclimatic indicators, and θ is the threshold.



Figure 4. Structure of an Artificial Neural Network model with 5, 15, and 15 neurons for present, RCP4.5, and RCP8.5 climate change scenarios.
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2.3.3. Model evaluation
Table 3 depicts a trial-and-error method of artificial neural network

model’s performance evaluation. During the model building process, the
performance of the models varied widely. Therefore, many neurons in a
hidden layer were chosen using a trial-and-error technique until a good
result was achieved. Because artificial neural networks model with too
many neurons and hidden layers memorize the input data, those with few
neurons and hidden layers may not produce accurate predictions (Dan-
so-Amoako and Prasad, 2014). Increasing the number of neurons some-
times increases the values of the R-square while reducing the RMSE
(Domingues et al., 2020). As a result, five feedforwards were created for
each TanH, linear and Gaussian activation functions using AGB, and
historical and future agroclimatic indicators. Finally, the Gaussian acti-
vation function with the maximized R-square and minimized RSME and
MAE was optimized at 5, 15, and 15 neurons for current, RCP4.5, and
RCP8.5, respectively (Table 3).

2.4. Model parameter estimates

A change in a predictor variable (agroclimatic indicator) was asso-
ciated with a change in a response one (C. arabica’s AGB) while all other
predictors remain constant. It’s critical to analyze whether agroclimatic
Table 3. Trial and Error method of Artificial neural network model’s performance ev

Scenarios Number of Neuron Training

R-squared RMSE

Current 5 0.89 2.42

10 0.89 2.45

15 0.89 2.49

20 0.89 2.49

25 0.88 2.54

RCP4.5 5 0.91 2.08

10 0.97 1.23

15 0.99 0.70

20 0.99 0.75

25 0.97 1.36

RCP8.5 5 0.912 2.12

10 0.925 2.02

15 0.94 1.80

20 0.94 1.74

25 0.94 1.77

Note: The Bolded number indicated the best performance of ANN model at 5, and 15
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indicators positively or negatively influence the C. arabica AGB’s accu-
mulation performance. These unknown parameter estimates were
analyzed using a Generalized Regression model (GRM). This model
generates multiple regression weights, Wald Chi square, and reduces the
multicollinearity of the predictors. Multicollinearity is defined as the
variance of inflation factors (VIP) (Derringer and Suich, 1980; SAS,
2020). The squared ratio of the estimate to the standard error of the
corresponding predictor is the Wald Chi-Square test statistics. The
probability that a particular Wald Chi2 test statistic is the same as or
more extreme than the significant level (α ¼ 0.05) is known as Pr > Chi2
(Indumathi et al., 2014).

2.5. Estimation of aboveground biomass change under climate scenarios

The statistics of the batch values; the mean, standard deviations (SD),
standard error (SE), and coefficient of variation (CV) of the observed and
predicted aboveground biomass of the coffee trees under different eco-
climatic clusters and climate change scenarios were analyzed using JMP
software. The mean variation between the predicted AGB under current
and future climate change scenarios was determined using a paired T-
test. The relative difference between the current and the future predicted
AGB in the current and in the 2060s was calculated using Eq. (6).
aluation.

Testing

MAE R-squared RMSE MAE

1.75 0.92 2.04 1.61

1.80 0.92 2.04 1.63

1.86 0.91 2.13 1.71

1.84 0.90 2.19 1.74

1.99 0.90 2.21 1.77

1.67 0.88 2.38 1.86

0.91 0.83 2.68 2.18

0.48 0.94 1.71 1.35

0.59 0.87 2.81 2.32

1.10 0.84 2.36 1.70

1.71 0.89 2.44 1.83

1.58 0.89 2.39 1.71

1.37 0.92 2.008 1.37

1.32 0.89 2.29 1.60

1.34 0.91 2.20 1.54

neurons.
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RAbGB¼
�
AbGBf � AbGBCb

�
� 100 (6)
AGBC

where RAbGB is the relative change of above-ground biomass, AbGBf is

future above-ground biomass, and AbGBC is the predicted current above-
ground biomass of arabica coffee trees.

3. Results

3.1. Model validation and testing

The results of the model comparison analysis are illustrated in
Table 4. According to the validation study, an artificial neural network
(ANN) model fits the dataset best, followed by a general regression
model. The ANN model is more accurate than generalized regression and
bootstrap forest models, with the highest value of R-squared, the lowest
values of RMSE, and the highest MAE. The validation set’s R-Square
scores for ANN model were 0.89, 0.96, and 0.94, indicating that the
model is superior to general regression and Bootstrap to fit the data that
was not used to train it. This finding coincides with Salmayenti et al.’s
(2017) prediction of the relationship between rainfall variability and the
El Nino Southern Oscillation and the Indian Ocean Dipole (IOD) in
Indonesia.

3.2. Evaluation of model performance

Figure 5 displays the R-square and RMSE values produced by the
Gaussian activation functions when comparing actual and predicted AGB
of C. arabica. The R-square (R2) values, RMSE, and MAE at the top of the
plots show a significant association between actual and predicted AGB in
training and testing. The 5th number of neurons in the hidden layer
produced the highest R-square values and the lowest RMSE and MAE
values in the current climate conditions. The higher R-squared and the
lower RMSE and MAE values were found on the 15th number of neurons
for the RCP4.5 and RCP8.5 climate scenarios. The highest R-square value
combined with the lowest RMSE andMAE values in data testing indicates
the model is performing effectively (Domingues et al., 2020; SAS, 2020).

3.3. Model parameter estimates under current and future cimate change
scenarios

3.3.1. Current (1981–2010)
Table 5 shows the standardized regressive weight (coefficient) of

agroclimatic parameters related to the AGB of coffee trees. The results of
the generalized regression model indicate that the AGB of coffee trees has
an asymmetric relationship with acute agroclimatic indicators, given that
changes in agroclimatic variables cause changes in AGB at a significant
level of P < 0.05. Under the current conditions, every unit increase in
Table 4. Models' validation as three distinct models compared for data goodness
of fit (n ¼ 32).

Scenarios Predictive Models R2 RMSE MAE

Current Artificial neural network 0.89 0.11 0.97

Generalized regression 0.79 0.21 1.65

Bootstrap forest 0.42 0.58 2.49

RCP4.5 Artificial neural network 0.96 0.08 1.22.

Generalized regression 0.79 0.21 1.65

RCP48.5 Bootstrap forest 0.42 0.58 2.49

Artificial neural network 0.94 1.36 2.24

Generalized regression 0.79 0.21 1.65

Bootstrap forest 0.42 0.58 2.49

Note: RASE and MAE indicate root average square error and mean absolute
average error, respectively.
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CDD, TNx, and TXn significantly decreased the AGB of the C. arabica tree,
while the increases in R10mm, TNn, and TXx improved AGB (P < 0.05).
It implies that when the annual mean values of CDD, TNx, and TXn in-
crease by one unit, the mean values of AGB wereestimated to declined by
1.11, 2.72, and 1.56 kg/tree, respectively. Nonetheless, when the mean
values of R10mm, TNn, and TXx increase by one unit, the corresponding
mean values of AGB were estimated to be significantly raised by 0.36,
7.48, and 2.86 kg/tree, respectively.

3.3.2. Future (2041–2070)
The result indicates that C. arabica’s growth performance (AGB) was

supposed to be asymmetrically correlated to agroclimatic factors in the
2060s. Increases in the mean values of CDD and TNx are expected to have
a significant positive effect on the performance of the C. arabica tree’s
AGB (P< 0.0001) when the remaining indicators in the RCP4.5 scenarios
are kept constant (Table 1). It implies that for every one-day increase in
CDD and one degree Celsius in TNx, the AGB levels rise by 0.25 and 5.56
kg, respectively, assuming all other variables stay constant. A one-degree
Celsius increase in the annual mean values of TXn and TXx in the RCP4.5
scenario will result in AGB losses of 3.36 and 1.05 kg per tree, respec-
tively (P < 0.05).

Nevertheless, it was anticipated that the impacts of agroclimatic in-
dicators on the AGB performance of C. arabica trees under the RCP8.5
climate change scenarios would be different from or contradict those on
AGB under the RCP4.5 climate change scenarios. Under the RCP8.5, the
AGB of C. arabica was anticipated to decrease for every 1 unit rise in the
annual mean of CDD, R10mm, TNn, and TNx. It means that the AGB of
the crop plant will significantly decrease by 0.10, 0.5, 1.35, and 4.5 kg for
every unit increase of CDD, R10mm, TNn, and TNx, respectively (P <

0.01). Unlike the RCP4.5, the RCP8.5 forecasts an annual increase of one
degree Celsius in TXn and TXx will that considerably increase AGB (P <

0.0001) by 2.35 and 3.02, respectively.

3.3.3. Interactive matrix of agroclimatic indicators
Figure 6 demonstrates the general regression analysis between the

AGB of the C. arabica tree accumulation potential and six agroclimatic
factors using the Prediction Profiler. It was done by creating a matrix of
plots with the X-axis representing the number of agroclimatic parameters
and the Y-axis representing the AGB of coffee trees. The X-axis displays
the values of agroclimatic variables, while the Y-axis desplays the values
observed AGB. The mean and standard deviation in the normal distri-
bution of parameters define the relationship between the AGB and in-
dicators. At the average values of agroclimatic indicators such as 61.86
days of CDD, 46.55 days of R10mm, 8.39 �C of TNn, 18.95 �C of TNx, and
18.74 �C of TXx, the mean value of AGB showed up at 26.66 kg/tree
under the present climatic conditions (Figure 5a).

Under the RCP4.5 climate change scenarios, the average value of C.
arabica's AGB would be 28.79 kg, with average values of 48.86 days for
CDD, 45.47 days for R10mm, 7.78 �C for TNn, 17.78 �C for Nx, 19.92 �C
for TXn, and 29.52 �C for TXx (Figure 5b). In the RCP8.5 scenarios, the
average of C. arabicatree's AGB was also achieved at 24.41 kg when
average values of all agroclimatic variables were measured concurrently
at 66.19 days, 47.84 days, 8.53 �C, 18.21 �C, 18.72 �C, and 30.22 �C,
respectively, for CDD, R10mm, TNn, TNx, TXn, and TXx (Figure 5c). It
shows that the predicted AGB of the C. arabica tree under RCP4.5 will be
higher than the predicted AGB under present and RCP48.5 climatic
conditions. Despite this, the AGB anticipated by RCP8.5 is the smallest. If
the predictors exceed or drop further beyond these limits, the AGB of
coffee tree performance declines or rises depending on the explanator
parametric estimation. TNn and TNx are the most critical factors in
determining the AGB of C. arabica’s performance in current and future
climatic conditions, respectively. It suggests that when the coldest min-
imum temperature increases in current climatic conditions, AGB de-
creases, and when the warmest minimum temperature increases in future
climatic conditions, AGB will increase while the other variables stay
constant.



Figure 5. Evaluation of the ANN Model's performance under current, RCP4.5, and RCP8.5 climate conditions.

Table 5. Standardized regressive weight of agroclimatic indicators associated with coffee trees' AGB.

Agroclimatic predictors scenarios Estimate Std Error Wald ChiSquare Prob > ChiSquare VIF

CDD Current �1.11 0.14 67.20 <.0001 2

RCP4.5 0.25 0.02 148.86 <.0001 1

RCP8.5 �0.10 0.02 21.52 <.0001 3

R10mm Current 0.36 0.07 29.46 <.0001 6

RCP4.5 0.03 0.02 1.93 0.17 5

RCP8.5 �0.05 0.02 6.23 0.01 1

TNn Current 7.48 1.16 41.83 <.0001 11

RCP4.5 0.47 0.46 1.03 0.31 2

RCP8.5 �1.36 0.51 6.99 0.01 2

TNx Current �2.72 1.26 4.66 0.03 10

RCP4.5 5.65 1.07 28.12 <.0001 6

RCP8.5 �4.93 1.12 19.50 <.0001 6

TXn Current �1.56 0.79 3.90 0.05 5

RCP4.5 �3.36 1.17 8.26 0.001 7

RCP8.5 2.35 1.29 3.31 0.07 8

TXx Current 2.86 0.45 40.67 <.0001 3

RCP4.5 �1.05 0.43 5.87 0.02 2

RCP8.5 3.02 0.47 41.45 <.0001 2

Note; VIF indicates the Impacts of Variance Inflation factors on the models between 1 and 10 variation.
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3.4. Aboveground biomass estimation under climate change

3.4.1. Descriptive statistics of the estimated coffee trees' AGB
Table 6 shows the descriptive statistics of the AGB of the C. arabica

trees under three ecoclimatic regions and the entire study area. When the
observed AGB dataset was subjected to an Artificial Neural Network
(ANN) model, the mean values of predicted AGB in the current, RCP4.5,
and RCP8.5 climatic conditions were found to be 26.66, 28.79, and 24.41
8

kg/tree, respectively. It means that the AGB of C. arabica tree was
responsive to climate parameters, as it was elevated in coffee landscapes
with favorable or green climate scenarios while decreasing in landscapes
with adverse climatic circumstances.

Similar differences in AGB exist between ecoclimatic clusters as well.
Under the current and RCP4.5 climate conditions, the predicted mean
value of AGB in the first cluster was higher than the values in the second
and third clusters. The expectedmean value of AGB in the third cluster, on



Figure 6. Predictive profilers demonstrate for agroclimatic factors settings at the normal distribution of coffee tree’s AGB under Current (a), RCP45 (b) and RCP8.5 (c)
climate change scenarios.
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the other hand, was estimated to be higher than those values in the first
and second clusters. This disparity might result from the maldistribution
of the solar heating, land surface, the physical features of the areas, and
their interconnections, all of which play a role in this variation.

3.4.2. Aboveground biomass changes under different microclimates
Table 7 presents the changes in AGB of C. arabica trees under the

current and future climate change scenarios via RCP4.5 and RCP8.5 in
the 2060s. The result reveals that the performance of AGB accumulations
in coffee trees in the three clusters was significantly different under the
cyrrent, RCP4.5, and RCP8.5 climate change scenarios (P < 0.05).
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In the first cluster, the mean values of AGB under RCP4.5 were sub-
stantially higher than the mean value of AGB in the current ones (P ¼
0.023). Result indicates that, under the RCP4.5 scenario, the perfor-
mance of AGB accumulation per coffee tree in the coming 2060s will be
raised by 2.98 kg (9.15%) compared to current climatic circumstances.
However, under the RCP8.5 scenarios, the AGB of coffee trees is expected
to be substantially lower than it is now (P< 0.0001). The performance of
AGB accumulation in the C. arabica tree will be 9.14 kg (28.07%) lower
under the RCP8.5 scenarios. The C. arabica tree’s AGB accumulation will
be higher in an intermediate carbon emission scenario than in the current
one.



Table 6. Descriptive statistics of predicted AGB of C. arabica tree under three microclimatic clusters.

Cluster Decades Scenarios N Mean (kg) Std Dev SE CV Min Max Range

1 Current – 27 32.56 4.37 0.84 13.41 20.00 39.33 19.33

2060s RCP4.5 27 35.54 2.94 0.57 8.27 28.98 39.20 10.23

RCP8.5 27 23.42 4.67 0.90 19.95 15.35 29.20 13.85

2 Current – 49 29.92 2.39 0.34 8.00 26.09 36.02 9.93

2060s RCP4.5 49 28.23 5.69 0.80 20.16 17.08 36.54 19.46

RCP8.5 49 24.50 5.10 0.72 20.83 16.19 33.42 17.23

3 Current – 51 20.21 4.05 0.57 19.90 12.41 27.66 15.25

2060s RCP4.5 51 25.71 2.85 0.40 11.07 18.39 29.42 11.03

RCP8.5 51 27.40 4.14 0.58 15.13 16.57 34.05 17.48

Overall Current – 127 26.66 6.34 0.56 23.79 12.41 39.33 26.92

2060s RCP4.5 127 28.79 5.56 0.49 19.32 17.08 39.20 22.12

RCP8.5 127 25.41 4.90 0.43 19.26 15.35 34.05 18.70

Table 7. The mean difference between current and 2060s predicted A bG B of C. arabica tree.

Cluster Decades Scenarios N Mean (kg) A bG B’s mean Change [compared to current]

Value (kg) SE % P-value

1 Current – 27 32.56 – – – –

2060s RCP4.5 27 35.54 2.98 1.11 9.15 0.0232

RCP8.5 27 23.42 ‒9.14 1.11 ‒28.07 <0.0001

2 Current – 49 29.92 – – – –

2060s RCP4.5 49 28.23 ‒1.69 0.92 ‒5.65 0.17

RCP8.5 49 24.50 ‒5.42 0.92 ‒18.11 <0.0001

3 Current – 51 20.21 – – – –

2060s RCP4.5 51 25.71 5.50 0.74 27.21 <0.0001

RCP8.5 51 27.40 7.19 0.74 35.58 <0.0001

Overall Current – 127 26.66 – – – –

2060s RCP4.5 127 28.79 2.13 0.7 7.99 0.01

RCP8.5 127 25.41 ‒1.25 0.7 ‒4.69 0.1814

Note: AbGB indicates the predicted aboveground biomass in kilograms per tree, while (–) sign indicates a reduction in AGB as compared to the current climatic condition.
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In the second cluster, the performance of AGB accumulation in
C. arabica under RCP4.5 was projected to be worse in the 2060s than at
its current stage. Result shows that under RCP4.5 circumstances, the
performance of the C. arabica tree in terms of AGB accumulation will be
insignificantly lower than it is now (P ¼ 0.17). It would be lowered by
1.69 kg (5.65%) per tree. Furthermore, it would be significantly reduced
under the RCP8.5 climatic scenario (P< 0.0001) from 28.23 to 24.50 kg/
tree, or decreased by 5.42 kg (18.11%) in the 2060s. In conclusion, the
AGB of the coffee tree would decrease under the medium carbon and
highest carbon emission scenarios. However, the reduction would be
more severe under the highest emission scenario than under the inter-
mediate emission scenario over the second ecoclimatic cluster.

In the third cluster, this location was recognized as having the lowest
coffee plant growth potential. However, the AGB of coffee plants was
projected to positively respond to agroclimatic parameters in this
ecological cluster (P < 0.0001). It will increase by 5.50 kg (27.21%) and
7.19 kg (35.58%) under the RCP4.5 and RCP8.5 scenarios, respectively,
implying that the change is more robust in the highest emission scenario
(RCP8.5) than those in the medium scenario (RCP4.5). It means that
change in agroclimatic indicators has beneficial effects in this cluster.

In the overall study area, the productivity of the C. arabica tree was
quantitatively altered as a result of changes in agroclimatic factors under
the two distinct climate scenarios. The findings show that the mean value
of AGB calculated under RCP4.5 was much greater than under the cur-
rent conditions. The mean value of AGB under the RCP8.5 scenario, on
the other hand, was expected to be much lower than the present one. It
would rise considerably by 2.13 kg (7.99%) under RCP4.5 (P < 0.0001),
but shrink significantly by 1.25 kg (4.69%) during RCP8.5 (P < 0.18).
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4. Discussions

The productivity of C. arabica was predicted by this study using a
GRM and ANNM for the current, RCP4.5, and RCP8.5 climate change
scenarios in three different clusters. According to the predictive models,
the AGB growth performance of the C. arabica tree and agroclimatic in-
dicators are significantly correlated (P < 0.05). The increase in consec-
utive dry days (CDD) and warm night temperature (TNx) seemed to
significantly reduce the C. arabica tree’s AGB under the current (the
2000s) and highest (RCP8.5) emission scenarios of the 2060s, whereas
they seemed to significantly increase the plant growth parameter under
the medium (RCP4.5) emission scenario by the 2060s. It follows that
under the status quo, extreme agroclimatic indicators have a negative
impact on the productivity of C. arabica, whereas they have a positive
effect on it under some scenarios, with climate change mitigation and
adaptation. The rise of the cold night (TNn), on the other hand, signifi-
cantly improves the performance of the AGB of the C. arabica tree under
the current climatic conditions, while it tends to degrade under the
RCP8.5 scenarios. The productivity of the C. arabica species seems to
benefit from the current rising cold nighttime temperatures. It is unex-
pected that under RCP8.5 emission scenarios, the AGB's accumulation
performance of the C. arabica trees significantly increases under the
rising extreme maximum temperature, while it decreases under the
current and RCP4.5 climatic conditions. This might be related to the
future increase of atmospheric Carbo dioxide and precipitation. The
warmer temperatures with a higher level of atmospheric carbon dioxide
and adequate water supplies may increase the productivity of crop plants
(Moraes et al., 2010). However, under this emission scenario, the
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combined effects of agroclimatic indicators substantially reduce the
performance of AGB coffee trees.

The performance of the C. arabica tree in terms of AGB accumulation
might be related to variation in agroclimatic indicators in the three
ecoclimatic clusters. The impact of agroclimatic change on C. arabica’s
growth performance (AGB) in the study area in general and in the second
cluster, in particular, will be much higher in the RCP4.5 scenario than in
the RCP8.5 climate change scenario, as shown in Table 5. It suggests that
coffee in different microclimates is more sensitive to an open-ended
emission scenario in diverse ways. According to Pen et al. (2004),
plant growth performance in a cold-wet environment is more susceptible
to warming temperatures, while its growth performance in a warm-dry
ecosystem is more susceptible to drought. The present findings are
similar to those of Fu et al. (2017) who discovered a significant decrease
in the AGB of larch plant species in China’s semi-arid climate zone as a
result of extreme temperatures and abundant total precipitation in the
wettest quarter, while excessive rainfall and high temperatures during
the growing season may favor plant growth performance. Soil tempera-
ture extremes also affect the biomass of the plant, in which warmer soil
temperatures in shallow layers increase the biomass allocation to
above-ground plant parts, while the enhanced warming of frozen soil in
deep layers caused by warming treatment produces more moisture that
affects plant biomass allocation (Manhou et al., 2016).

C. arabica plants might perish due to unexpected climate change,
especially when the flowers arrive early. The study by Drinnan and
Menzel (1995) suggests that C. arabica growth performance slowed from
January to May when daytime and nighttime temperatures climbed, then
picked up again in the summer and autumn. According to Moat et al.,
(2017a, 2017b), plant AGBmay acclimate to tight temperature variations
of 18–22 �C. However, the total exposure of C. arabica to high temper-
atures may result in energy overpressure as it absorbs much more energy
than that directed to photosynthesis (Moraes et al., 2010). On the other
hand, warmer temperatures with a higher level of atmospheric carbon
dioxide and adequate water supplies may reduce damage to C. arabica
(Moraes et al., 2010). The present findings also support the study of
Rodrigues et al. (2016), who found that lowering the minimum tem-
perature disrupts plant nutrient intake.

When temperatures in the coldest season drop below 18 �C, it limits
the economic performance of the crops (Bento et al., 2010). Since plants
produce enzymes to break down the components around them, this
process can be disrupted by freezing temperatures. They may have been
stunted growth or, in the worst-case situation, the death of the plant as a
result (Ramalho et al., 2014). The colder temperatures have a mild
impact on coffee net photosynthesis, beginning around 20–18 �C and
causing a severe and widespread impact when temperatures drop to 4 �C
(Batista-Santos et al., 2011). In general, temperature and precipitation
extreme indicators would wreak havoc on coffee’s development and
reproductive phases (Hatfield and Prueger, 2015). The temperatures
ranging from 18 to 25 �C and 5–10 mm of rainfall per day, on the other
hand, are ideal for coffee development (Moat et al., 2017a, 2017b; van
Oijen et al., 2010). Another work done by Fu et al. (2017) indicated that
excessive rain during the growing season and a highmean temperature in
the wettest quarter significantly reduced the AGB, while a warm growing
season and abundant precipitation in the wettest quarter increased the
AGB.

5. Conclusions

The increase in frequency and intensity of agroclimatic indicators has
increased threats to Arabic coffee production. C. arabica grown in a
separate eco-climatic region has been projected for AGB performance
under current and future climate change scenarios. The technique is
valuable for comprehending how climatic extremes influence the
growing performance of coffee trees throughout diverse landscapes. In
this study, agroclimatic extreme indicators have a two-fold effect on
C. arabica AGB accumulation performance under the studied climate
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change scenarios, with some extremes assisting in increasing AGB while
others hindering it. Because Arabica coffee has unique growth needs,
even slight variations in temperature and precipitation have a significant
impact on the plant growth performance.

The result of AGB in the second microclimatic cluster is expected to
decrease. The increase in consecutive dry days (CDD) and rising night
temperatures (TNx) now represent a greater danger to reduce coffee
production than ever before in every setting of climate change scenarios.
Smallholder farmers who cultivate coffee in areas with a higher preva-
lence of CDD and TNx will be unable to produce high-quality coffee and
may be forced to abandon their planting. In contrast, AGB performance is
estimated to be particularly higher in the third microclimatic cluster.
Areas with a high frequency of heavy precipitation days (R10mm) and
warmer daytime temperatures (TXx) considerably improve the perfor-
mance of the coffee tree’s AGB in all climatic circumstances. It might be
due to the combined effects of high amounts of CO2 in the atmosphere,
warmer temperatures, and an abundance of soil moisture.

Therefore, incremental adaptation options such as crop replacement,
new varieties, diversification, shade, and irrigation may be required for
the second microclimatic cluster, and transformational adaptation op-
tions (e.g., expansion of coffee growing in new areas) may be required for
the third microclimatic cluster. In addition, more studies into the impacts
of other climatic factors, such as biologically effective degree days, cold,
hot, and wet spells on crops in different localities will be needed.
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