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Patients with germline mutations in the CDH1 gene are at 
high risk for gastric poorly cohesive (signet ring cell) carcinoma, 
also referred to as hereditary diffuse gastric cancer. To minimize 
the risk, current guidelines recommend that patients undergo 
prophylactic gastrectomy prior to developing symptomatic cancer 
[1]. In many of the prophylactic gastrectomy specimens from 
these patients, there is no grossly visible lesion. Consequently, 
many pathology labs have a protocol of submitting the entire 
stomach for microscopic examination to determine whether the 
patient had any evidence of cancer at the time of gastrectomy. 
This requires the assessment of hundreds of hematoxylin and 
eosin (H&E) slides for each case, which represents a significant 
cost to the healthcare system in terms of pathologist time. Fur-
thermore, patients often wait an extended period of time to receive 

a final diagnosis because of the time required for this analysis. 
Increased efficiency in the analysis of these specimens would 
represent a significant benefit in terms of both resource utiliza-
tion and patient care. This study utilizes deep learning methods 
to automatically analyze digitized H&E slides from prophylactic 
gastrectomy specimens and detect regions suspicious for intramu-
cosal signet ring cell carcinoma.

In recent years, deep learning methods using convolutional 
neural networks (CNNs) have emerged as the most powerful 
tools for automated medical image analysis. For example, these 
models have shown impressive accuracy detecting pneumonia 
from chest radiographs [2] or retinopathy from retinal fundus 
images [3]. With the advent of digital pathology, it is becoming 
increasingly feasible to apply these same strategies to whole slide 
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images in pathology. Several groups have already begun to exam-
ine tasks in pathology that might benefit from computer assis-
tance. Relatively large-scale efforts have shown that CNNs can 
help to identify metastases in lymph nodes [4,5] or mitotic figures 
in breast cancer [6]. Importantly, it has recently been shown 
that pathologists working with the assistance of CNNs to identify 
lymph node metastases can achieve superior speed and accuracy 
relative to pathologists working without computer assistance [7].

In the current study, we create the first dataset of manually anno-
tated digitized histopathology images of hereditary diffuse gastric 
cancer. Using this data, we train a model using DenseNet-169 
architecture [8]. This is an efficient model architecture [9] that 
utilizes direct connections between early and late layers in the 
model without requiring that information pass through inter-
mediate layers. It has previously demonstrated strong performance 
on a variety of pathology image classification tasks [10]. With this 
model, we address two key questions. First, can a CNN be trained 
to accurately classify individual small images of hereditary diffuse 
gastric cancer? Second, can such a trained model be applied to 
large whole slide images to effectively highlight areas containing 
signet ring cell carcinoma?

MATERIALS AND METHODS

Patients and data collection

The lab information system at our institution was searched to 
identify seven consecutive patients with established germline 
CDH1 mutations who underwent prophylactic total gastrecto-
my. All patients had foci of intramucosal carcinoma identified 
microscopically. Patients were not excluded based on age, sex, 
or medical history. The seven patients we identified included 
four female and three male patients. The age at the time of gas-
trectomy ranged from 35 to 59 years (mean, 42.9 years). The 
number of slides containing intramucosal signet ring cell carci-
noma ranged from 5 to 24 per case (mean, 13.4), and the number 
of lesions per slide ranged from 1 to 7 (mean, 1.4). 

The seven gastrectomy specimens were divided into training 
and testing datasets. Five cases were used for training and opti-
mizing the model, and two cases were reserved for testing so 
that no data from these test cases would be seen by the model 
prior to the final analysis.

For all H&E slides from the gastrectomy specimens, foci of 
intramucosal signet ring cell carcinoma were identified by one 
of the gastrointestinal pathologists at our institution. The slides 
with cancer were digitally scanned at 200 × (0.496 µm per pixel) 
magnification using an Aperio ScanScope XT (Leica Biosys-

tems, Concord, ON, Canada). Within each scanned whole slide 
image, regions containing cancer were manually annotated by a 
pathology resident using QuPath v0.2.0-m2 software [11]. 
Patches of size 256 × 256 pixels were then randomly extracted 
from these regions such that the central 128 × 128 pixel region 
overlapped with annotated cancer. The number of patches ex-
tracted per lesion was based on the size of the carcinoma focus, 
such that there was one patch per 2,000 µm2 of carcinoma. In 
the case of tumor foci smaller than 2,000 µm2, two patches 
were extracted. To create patches of normal gastric tissue, a total 
of 150 representative normal regions were digitally scanned 
(116 from training cases, 34 from test cases). 256 × 256 pixel 
patches were then randomly extracted from these regions, with 
the number of extracted patches per region chosen to create 
roughly balanced datasets in both the training and test groups. 
For test cases, this resulted in 15 patches per region being extract-
ed, and for training cases (where the tumor foci were larger on 
average) this resulted in 70 patches per region being extracted. 

In total, 94 H&E slides were scanned and 133 individual tu-
mor foci were manually annotated. An example of a manually 
annotated tumor region is shown in Fig. 1, illustrating the 
complex borders of some tumor foci. A total of 16,822 patches 
were extracted, distributed between training and testing sets as 
shown in Fig. 2. Signet ring cell carcinoma was present in 8,192 
of these patches, while the remaining 8,630 patches contained 
only background gastric tissue.

To create an external validation dataset, the lab information 
system at an outside institution (Sunnybrook Health Sciences 
Centre, Toronto, ON, Canada) was searched to identify recent 
cases with suspected or confirmed hereditary diffuse gastric can-

Fig. 1. A representative example of a manually annotated tumor re-
gion.
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cer. Two cases were identified, with three slides containing car-
cinoma (out of 110 H&E slides in total). These slides were 
scanned using the Aperio (Leica Biosystems) scanner at Sunny-
brook Health Sciences Centre, and 256 × 256 pixel patches 
were extracted in a manner identical to that described above for 
test cases. This resulted in a total of 814 patches, with 394 of 
these containing carcinoma.

CNN training

Image patches from the five training cases were randomly di-
vided into training (90%) and validation (10%) sets. A model 
was trained using DenseNet-169 architecture with compression 
of 0.5, dropout of 0.2, and bottleneck layers as described in 
Huang et al. [8]. The model was coded in Python using Ten-
sorFlow v1.14.0 [12] with the Keras API. We trained for 100 
epochs with stochastic gradient descent at learning rate 0.1, 30 
epochs at learning rate 0.01, and 20 epochs at learning rate 
0.001. Momentum for batch normalization was set at 0.99. 
Data was augmented during training with rotations of 0°, 90°, 
180°, or 270°. The model was evaluated on the validation im-
ages after each epoch and at the end of training to monitor prog-
ress and fine tune training parameters. Various learning rate sched-
ules and minor variations on model architecture were applied. In 
particular, we found that the addition of dropout layers (which 
are optional in the DenseNet architecture [8]) was useful to reduce 
overfitting in this relatively small dataset. Only the most suc-
cessful model based on validation performance was evaluated on 
the test set.

Training was completed on an NVIDIA GeForce GTX 1060 
6GB GPU (Nvidia Corporation, Santa Clara, CA, USA).

Data analysis

The first issue to address was whether the trained model 
could accurately classify individual image patches. After train-
ing on patches from the first five cases, the model was evaluated 

on patches extracted from the two test cases. Receiver operating 
characteristic (ROC) analysis was completed and the area under 
the curve (AUC) was calculated based on the model’s predicted 
classification on these images compared to ground truth anno-
tations. An identical analysis was conducted on patches extracted 
from the external validation cases.

The second issue to address was whether the trained model 
could efficiently analyse whole slide images and identify areas 
suspicious for carcinoma. We used an approach similar to that 
described by Liu et al. [5]. Whole slide images from the two 
test cases were tiled into patches of size 256 × 256 pixels with 
128 pixels of overlap between adjacent patches. The trained 
model then made a prediction on each patch. In this way, each 
tumor focus would be analyzed in multiple overlapping patches, 
so even if one patch resulted in a false-negative, the tumor focus 
may still be detected in an adjacent/overlapping patch. When a 
patch was predicted to be positive, the image was rotated 180° 
and another prediction was made. The final prediction was 
called positive only if both individual predictions exceeded the 
threshold value. The threshold value for classifying a patch as 
positive for carcinoma was chosen based on the value needed to 
maintain 90% sensitivity for carcinoma patches in the valida-
tion dataset. This approach was chosen in an effort to minimize 
false-positives, while still maintaining adequate sensitivity for 
individual tumor foci. 

Sensitivity was calculated for the whole slide image analysis 
based on the number of tumor foci that overlapped with at least 
one patch predicted positive by the model. We also calculated 
the false-positive rate as a percentage of the non-cancer slide 
area that was predicted positive by the model.

RESULTS

Our first major objective was to determine whether the trained 
model could correctly classify individual patches as containing 
signet ring cell carcinoma or not. To assess this, the trained 
model was evaluated on patches from the test set, which it had 
not seen during training. On these images, the trained model 
achieved an ROC AUC of 0.9986 (Fig. 3). This would permit 
sensitivity of 95% with a false-positive rate of 0.2%, or a sensi-
tivity of 90% with a false-positive rate of less than 0.1%. Fig. 4 
illustrates several examples of correctly classified patches con-
taining signet ring cell carcinoma or normal tissue.

We conducted an identical analysis on the external validation 
dataset to determine whether the model’s performance could be 
generalized to images from slides stained and scanned at an out-

7 Cases total, 133 
annotated tumor foci

90% Training 
(14,266 images)

10% Validation 
(1,585 images)

Test data 
(971 images)

5 Cases 2 Cases

Fig. 2 . Distribution of image patches into training, validation, and 
test data.
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Fig. 3. Receiver operating characteristic curve for classification of in-
dividual patches from test data. The area under the curve is 0.9986.

Fig. 4.  Examples of 256 × 256 pixel patches correctly classified as cancer (A–D) or normal (E–H) by the trained model.

side institution. On external validation images, the model achieved 
a similar ROC AUC of 0.9984. This would permit sensitivity 
of 95% with a false-positive rate of 0.5%, or a sensitivity of 90% 
with a false-positive rate of less than 0.1%.

Our second major objective was to determine whether the 
trained model could be used to effectively analyze whole slide 
images with an acceptable sensitivity and false-positive rate. On 
13 whole slide images from the test cases, the sensitivity for tumor 
patches was 100% (24 out of 24 tumor foci overlapped with at 
least one patch predicted positive by the model). An example of 
the model’s output following analysis of a whole slide image is 
illustrated in Fig. 5. 

On average, false-positive results accounted for 0.098% of 

the non-cancer slide area (ranging from 0% to 0.17%). This 
was equivalent to a mean of 0.53 mm2 (approximately 0.14 
100 × microscope fields) of false-positive area per slide (ranging 
from 0 to 0.91 mm2). In other words, the model correctly elim-
inated more than 99.9% of the non-cancer area from whole 
slide images, while correctly identifying all tumor foci present 
in the testing data. However, 12 out of 13 whole slide images 
from the test set had at least one false-positive region.

DISCUSSION

In this study, we created the first dataset of annotated digital 
histopathology images from patients with hereditary diffuse gas-
tric cancer. We used this data to train a CNN with DenseNet-169 
architecture to accurately classify individual patches of cancer 
versus patches of normal background gastric tissue. The model’s 
performance on this task was consistent when it was evaluated 
on a small external validation dataset. Additionally, we applied 
the trained model to the far more difficult problem of analyzing 
whole slide images from a test set of cases that were not seen 
during training. On whole slide images, the model identified 
all tumor foci with a relatively low false-positive rate.

The trained model performed exceptionally well on the clas-
sification of individual image patches (including images from 
our institution and external validation images). Its success on 
this task suggests that the classification of these patches is usu-
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ally relatively easy. Any pathologist looking at the images in 
Fig. 4 would have little trouble determining which contained 
cancer or normal tissue, and the trained model likewise seems 
to have little difficulty with this distinction. For a human pathol-
ogist, the task becomes much more difficult when foci of cancer 
are presented in the context of a series of whole slide images from 
a total gastrectomy. This requires hours of sustained pathologist 
attention while scanning every part of the sampled tissue on 
each of hundreds of slides, typically at 100 × magnification. Un-
like a human, a computer can scan every cell of every slide at 
200× magnification with no fatigue or loss of concentration. In 
our analysis, this resulted in 100% sensitivity for tumor foci.

However, as illustrated in Fig. 5, the trained model has its 
own set of difficulties when it analyzes a whole slide image. The 
number of images of normal background tissue in the training 
dataset is relatively small compared to the number of images of 
normal tissue encountered when scanning an entire whole slide 
image. Because a machine learning algorithm can only make 
predictions based on images that it has encountered during train-
ing, it will inevitably encounter areas in a whole slide image that 
are unlike images it has seen before, and therefore more difficult 
to classify. Practically, this results in occasional false-positive 
patches, which were present on almost every slide analyzed. The 
false-positive results accounted for a small portion of the total 
slide area, equivalent to an average of 0.14 100 × microscope 
fields per slide, but these false-positive regions would require 

interpretation by a pathologist following automated computer 
analysis. 

A major barrier to the implementation of an automated slide 
analysis system is the digitization of all relevant slides. This is a 
time-consuming and expensive process, but some centers have 
begun to routinely digitize all surgical cases, encouraging pa-
thologists to routinely sign out cases using digital images [13]. 
Even after digitizing slides, automated analysis itself can be slow, 
requiring between 1 and 2 hours per slide in the current study. 
This time could be significantly improved with more powerful 
hardware, but remains an important consideration when assess-
ing the potential benefits of computer-assisted diagnosis. 

Despite the successes of CNN models in pathology, there are 
significant barriers to their implementation. Effective training 
requires a large number of images containing the lesion of inter-
est. The most successful studies analyzing whole slide images 
have used massive training slide datasets to maximize the expe-
rience of the model during training and minimize false-posi-
tives during testing. For example, Campanella et al. [4] utilized 
44,732 whole slide images, representing a dataset many orders 
of magnitude greater than that used in the current study. While 
such an approach is undeniably impressive, it is less practical in 
the case of rare diseases like hereditary diffuse gastric cancer. 
Furthermore, most approaches require that lesional areas are 
manually annotated with “ground truth” labels prior to train-
ing. This is particularly time consuming in hereditary diffuse 

Fig. 5. A portion of a whole slide image analyzed by the trained model. Panels on the right show close ups of correctly identified tumors. 
Panels on the left show false-positive patches.
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gastric cancer because of the multifocal, poorly circumscribed 
nature of the lesions. To our knowledge, our dataset currently 
represents the only fully annotated set of digital images of heredi-
tary diffuse gastric cancer, meaning that approaches requiring 
larger datasets are not yet feasible. 

While the external validation data from the current study 
suggests that the model may generalize well to image at other 
institutions, it must be acknowledged that the external valida-
tion dataset we used was quite small. This reflects the difficulty 
of creating usable data for cases of hereditary diffuse gastric cancer, 
as no large-scale datasets currently exist. The model would un-
doubtedly benefit from being trained on a larger volume of data 
generated from several different labs. The current work clearly 
demonstrates the potential utility of deep learning in the con-
text of hereditary diffuse gastric cancer, and further refinements 
as additional datasets become available in the future will continue 
to improve on the baseline we have established here. 

It should also be noted that the use of DenseNet-169 archi-
tecture in the current study is somewhat arbitrary. While this 
architecture is well known and compares favorably to other com-
mon network architectures in digital pathology [9,10], there is 
no reason to think that a model using another popular architec-
ture would not be similarly successful. Because accuracy on the 
current task was so high, a comparison between network archi-
tectures would likely not be informative. This is not to suggest 
that DenseNet is necessarily superior, but only to show that 
deep learning in general is well suited to addressing the issue of 
hereditary diffuse gastric cancer.

This model, trained on a relatively small set of images, shows 
encouraging progress towards computer-assisted diagnosis of 
hereditary diffuse gastric cancer. The case of hereditary diffuse 
gastric cancer may represent an ideal example of the value and 
effectiveness of computer-assisted diagnosis, as the strengths of 
computers (tirelessly scanning a large number of images) and 
pathologists (making intelligent decisions when encountering 
images that they have never encountered previously) comple-
ment each other. In an ideal scenario, a trained model could 
scan every slide from an entire gastrectomy specimen and pres-
ent the pathologist with only the most suspicious areas, inevita-
bly including some false-positives. Without scanning through 
hundreds of slides of each case, the pathologist could then focus 
their attention on high power images of only the most suspicious 
areas in order to determine whether cancer was present or whether 
additional investigations (for example, deeper levels or special 
stains) were required. Determining whether such a cooperative 
effort can in fact improve efficiency or accuracy will be the sub-

ject of future research.
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