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Abstract

Background: Alpha motoneurons receive common synaptic inputs from spinal and supraspinal pathways. As a result, a
certain degree of correlation can be observed between motoneuron spike trains during voluntary contractions. This has
been studied by using correlation measures in the time and frequency domains. These measures are interpreted as
reflecting different types of connectivity in the spinal networks, although the relation between the degree of correlation of
the output motoneuron spike trains and of their synaptic inputs is unclear.

Methodology/Principal Findings: In this study, we analyze theoretically this relation and we complete this analysis by
simulations and experimental data on the abductor digiti minimi muscle. The results demonstrate that correlation measures
between motoneuron output spike trains are inherently influenced by the discharge rate and that this influence cannot be
compensated by normalization. Because of the influence of discharge rate, frequency domain measures of correlation
(coherence) do not identify the full frequency content of the common input signal when computed from pairs of
motoneurons. Rather, an increase in sampling rate is needed by using cumulative spike trains of several motoneurons.
Moreover, the application of averaging filters to the spike trains influences the magnitude of the estimated correlation levels
calculated in the time, but not in the frequency domain (coherence).

Conclusions: It is concluded that the analysis of coherence in different frequency bands between cumulative spike trains of
a sufficient number of motoneurons provides information on the spectrum of the common synaptic input. Nonetheless, the
absolute values of coherent peaks cannot be compared across conditions with different cumulative discharge rates.
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Introduction

During sustained contractions, motoneurons receive both

common and independent synaptic inputs from presynaptic

neurons and supraspinal centers [1,2,3]. The common inputs

alter the membrane potentials of different motoneurons in a

correlated way and this slightly increases the probability that pairs

of motoneurons discharge action potentials almost concurrently

[4,5,6]. The motoneurons integrate the common synaptic inputs and

discharge more synchronously than in the absence of common

input, since their membrane potentials share common fluctua-

tions. The resulting output spike trains correspond to the results of

several sampling processes whose pulse densities follow the

amplitude fluctuations of the shared input. To quantify the

amount of common input to the motoneuron pool, several

correlation measures in the time and frequency domains are used

[7,8,9,10]. The approach is based on the measure of the degree of

correlation between spike trains discharged by motoneurons,

which can be assessed in vivo with motor unit recordings. Because

of the highly reliable synaptic connection between motoneuron

axons and muscle fibers, in the following we will refer to

motoneuron or motor unit spike trains indifferently.

The main assumption behind methods for correlation analysis

of output spike trains is that the correlation between output spike

trains is proportional to the relative degree of common input that

the motoneurons receive (see [11] for review). Therefore, the

estimation of the output correlation of motoneuron spike trains

may give information about the connectivity between the

motoneuron pool and spinal or cortical networks.

Different ways for quantifying the strength of association

between spike trains of motoneurons are usually interpreted as

indicators of separate underlying physiological mechanisms. For

example, the degree of short-term synchronization [9] and the

common drive [7] between motor units are both computed from

the cross-correlation function of motoneuron spike trains but with

different pre-filtering and are usually associated to different types

of connectivity between inputs to motoneurons [12].

The correlation analysis between spike trains of neurons has

been extensively investigated from the 60s [13,14]. However, only

recently have there been studies that focused on the limitations of
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these measures for the analysis of connectivity in cortical networks

[15,16,17,18,19,20,21,22]. In this study, we use some of these new

findings and adapt them for the interpretation of the correlation

and synchronization indexes between alpha motoneuron spike

trains.

The correlation between spike trains can be performed in the

time (cross-correlation) or frequency (coherence) domain. These

analyses have different mathematical properties and are thus

influenced differently by the properties of the spike trains. Despite

the extensive use of these analysis methods in the study of motor

unit physiology (e.g., [8,23,24,25,26,27,28,29,30,31,32,33,34]),

there are several issues in the interpretation of measures of

correlation between neuronal spike trains that should be consid-

ered when discussing motoneuron output correlations. The output

correlation depends on the input correlation in a non-linear way

because it is also a function of the mean and variance of the

current injected in the neuron [16]. This problem practically

results in an intrinsic dependency of the correlation measures on

the discharge rates of motoneurons [35] and has been addressed

by various normalization methods [32,36] that may remove such

dependency in some conditions [35]. However, the response of a

neuron to a driven current is essentially a sampling process [37]

that submits to the sampling theorem [38] therefore the estimated

output correlation inherently depends on the discharge rate, up to

a saturation point that corresponds to the number of samples

necessary for correctly reconstructing the oscillations of the input

current. Since in normal contractions, the common synaptic inputs

have a bandwidth above the sampling possibilities of the single

motoneuron (,10–20 pps), the full reconstruction is usually not

possible for individual motoneurons. Thus, removal of the

dependency of a correlation measure on discharge rate does not

necessarily correspond to more accurate estimates of the input

correlation. Because the dependency of correlation output on

discharge rate and other properties of correlation functions

between spike trains have not been investigated theoretically for

motor neurons, some physiological mechanisms of motor unit

synchronization and common drive are still debated. For example,

the dependence of correlated inputs to motoneurons on the force

level is based on experimental observations of dependence of

synchronization indexes on force when also the motor unit

discharge rate varies [39].

Currently, the strength of common input to motoneurons is

estimated by many indexes, with various normalizations, in the

time or frequency domain, usually using pairs of motor units. The

appropriateness of each estimation method and the relations

between these methods are not fully clear. Therefore, in this study,

we provide an analytical description of the two fundamental

aspects necessary for correctly interpreting correlation measures

between motor unit spike trains: sampling and filtering. Using

theoretical, modeling and experimental analyses, we show that the

dependence on discharge rate of the various correlation measures

previously proposed is an intrinsic limitation of the sampling

process generated by the spiking nature of the motoneurons.

Moreover, the dependency on discharge rate introduces a large

variability in the estimates that can limit their use in practical

applications. Under the assumption of a synaptic noise commonly

spread across the motoneuron pool, the equivalent sampling rate

can however be increased by the concurrent analysis of

populations of motoneurons. Additionally, we describe how

different indexes for expressing correlation between output spike

trains (e.g., synchronization and common drive indexes) can be

interpreted by the application of temporal averaging filters of

different lengths to the motoneuron spike trains. Therefore, these

indexes represent the same phenomenon in different frequency

bandwidths, so that the same information can be obtained by a

frequency analysis approach rather than by several time-domain

methods.

Materials and Methods

Theory
The effect of discharge rate (sampling) on the level of correlation

estimated at the cell output has been recently studied for cortical

neurons [16] and can be described by a mathematical derivation

under the assumption of leaky integrate-and-fire neurons and

Gaussian noise. This derivation is partly valid also for motoneu-

rons, since they can be approximated to some extent by this model

(Goroso, Cisi, Kohn 2000).

The input currents delivered to a population of motoneurons

can be described as:

Ii~mizsi

ffiffiffiffiffiffiffiffiffiffi
1{c
p

:ji(t)z
ffiffiffi
c
p :jc(t)

� �
ð1Þ

where c, mi, si, ji(t) and jc(t) are, respectively, the input correlation,

the mean and standard deviation of the synaptic input current and

the realizations of independent and common Gaussian noises for

each motor neuron i. With this formalism, the input correlation is

defined as the proportion of variance of a common synaptic input

that is shared by different motor neurons. The expression for the

output correlation between spike trains of two motoneurons

receiving the inputs described by Eq. (1) is [16]:

r~S(m,s):c~

s2 dn

dm

� �2

CV2n
:c ð2Þ

where r is the output correlation and m, s, n, CV are,

respectively, the mean value of the synaptic input current, its

standard deviation, the average discharge rate of the motoneuron

and the coefficient of variation for the interspike-interval (ISI).

Eq. (2) shows that the output correlation is related to the input

correlation by the scaling factor S(m,s), which for cortical

neurons has been referred to as correlation susceptibility [16].

This function depends on the statistics of the input current and

the discharge rate of the neuron. Since the statistics of the input

current cannot be reliable estimated in vivo, the relation between

r (measured correlation) and c (actual input correlation) is

essentially unknown. Moreover, the dependency on discharge

rate of the estimated output correlation cannot be easily

eliminated due to the relation between input current and

discharge rate. Eq. (2) is valid only in the ‘‘low-correlation’’

regime (c,0.3), a level comparable with the correlation that can

be measured in vivo in motoneurons, whereas it can be shown

that for high correlations the dependence on the discharge rate

tends to vanish [20]. Eq. (2) indicates that the dependence of the

output correlation on the discharge rate is a property of the

spiking nature of the neurons and not a bias due to the increase

probability of coincident spikes with increasing discharge rates.

In practice, indexes extracted from the motoneuron spike trains

can only estimate the output correlation r. The aim of this

estimate is to get an accurate representation of the input

correlation c. Eq. (2) indicates the association between the

variable that can be measured (r) and the intrinsic correlation

level (c), which is the unknown physiological strength of common

input. While c is fixed in a given condition, r depends on other

factors, in addition to c, and thus can vary even if c does not.

Correlation between Motor Unit Spike Trains
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The above considerations are valid for cortical as well as spinal

neurons and can be interpreted also considering the sampling

process associated to the motoneuron discharging. Higher

discharge rates imply a better sampling of the input current

[37,40,41] and therefore a better reconstruction of the input

signals, that results in greater values of the estimated output

correlation r. However, the bandwidth of the input current to the

motoneuron pool is unknown and thus it is not possible to estimate

the minimal sampling rate (discharge rate) that would allow a

measure without under-sampling. For this reason, the estimated

output correlation r may provide limited information on the

actual amount of correlation in input c, as it will be shown in the

Results by both simulations and experimental tests.

Under the assumption of a common noise shared across a

population of motoneurons, the pooling of several motoneuron

spike trains in a composite spike train (CST) can in principle

improve the estimation of correlation because it increases the

average sampling rate of the common input to motoneurons

[37,41]. However, the measure of correlation estimated from

pooled spike trains increases monotonically with the number of

spike trains until saturation [18]. This effect is easily explained by

observing that the summation process for generating the CST

performs an averaging that removes the uncorrelated part of the

output signals so that what remains is entirely correlated. For

these reasons, the estimation of the correlation coefficients

calculated from CST will overestimate the actual correlation

value and will depend on the number of spike trains used for the

estimation.

For the estimation of the output correlation r, time and

frequency domain measures can be used. If we indicate as xi(t) the

output spike train of the i-th motoneuron, the covariance function

between two spike trains is defined as [22]:

xij(t1,t2)~E xi(t1){mi½ � xj(t2){mj

� �	 

ð3Þ

If instead of considering a raw spike train, we generate a filtered

version of it yi(t), defined as:

yi(t)~xi(t) � fi(t)~

ðz?

{?

xi(t)fi(t{t)dt ð4Þ

where fi(t) is the impulse response applied to the i-th spike train,

the covariance function becomes:

cij(t1,t2)~E yi(t1){mi½ � yj(t2){mj

� �	 


~

ðz?

{?

dt1

ðz?

{?

dt2xij(t1,t2)fi(t{t1)fj(t{t2)

~(xij � wij)(t1,t2)

ð5Þ

where wij is the deterministic auto-correlation function of the filter

impulse response. If the signals yi(t) and yj(t) have finite energy, a

normalized measure of correlation can be calculated as:

rij~
cij(t1,t2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cii(t1)cjj(t2)

p ð6Þ

that is limited between [21,1]. Note that according to these

notations, the common drive indexes [7] and the synchronization

indexes [9,36] are defined in the same way but with a different

filtering of the spike trains. These time-domain measures depend

on the transfer function of the filter applied, therefore the

estimated output correlation can differ depending on the length

of the filter applied.

In the frequency domain, the coherence function is defined as

the Fourier transform of the cross-correlation, which after

normalization can also be written as:

k(v)~
DX ij(v)Hij(v)Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X ii(v)X jj(v)Hii(v)Hjj(v)
p ð7Þ

where Xij(v) is the cross-spectrum (the Fourier transform of the

cross-correlation function) of the two spike trains, Hij(v) the cross-

spectrum of the filter kernels (the filters applied to the spike trains)

and Xii(v), Xjj(v), Hii(v), Hjj(v) the respective autospectra.

Contrary to the cross-correlation function, the coherence

function is independent of the filter transfer functions, as is shown

in the following:

k(v)~
DX ij(v)Fi(v)F�j (v)Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X ii(v)X jj(v)Fi(v)F�i (v)Fj(v)F�j (v)
q

~
DX ij(v)DDFi(v)DDFj(v)D

DFi(v)DDFj(v)D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X ii(v)X jj(v)

p

~
DX ij(v)Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X ii(v)X jj(v)
p

ð8Þ

Therefore, in the frequency range defined by the applied filter,

the coherence measure is independent of the filter used, contrary

to time-domain measures. Filtering applied to spike trains provides

different time-domain indexes of correlation but does not change

the coherence values in the filter bandwidth. Practically, filtering

defines the subband of analysis in the coherence function so that

filtering the spike trains is equivalent to limit the coherence

function to a subband defined by the bandwidth of the filter,

without changing the value of the coherence function in such

subband.

From the above theoretical considerations, it is concluded that

1) the scale factor between the measured output correlation

between spike trains and the input correlation cannot be estimated

and depends on the discharge rate (Eq. (1)); 2) filtering spike trains

impact the time-domain measures of output correlation (Eq. (5))

but not the frequency measures (Eq. (8)), so that filtering spike

trains is equivalent to a subband analysis of the correlation in the

frequency domain. The impact of these theoretical conclusions in

estimating the strength of correlation between motor unit spike

trains was tested by simulations and experimental analyses.

Simulations
Correlation Indexes were Computed from Signals Simulated

with a Realistic Motoneuron Model.

Motoneuron model. The motoneuron model was a modifi-

cation of that described by [42]. It consists of two compartments

and six conductances. The pulse-based simplification used in the

original model was removed in the present study and a full

formulation, previously proposed in another model [43], was used

instead. The motoneuron parameters were the same as used by

[42] (their Table 2) and selected according to an exponential

distribution over the pool of motoneurons [44]. This model was

chosen because it provides motor unit behaviours similar to those

Correlation between Motor Unit Spike Trains
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observed experimentally. The number of motoneurons was chosen

equal to 300, which is similar to histological findings in the

abductor digiti minimi muscle [45], which was the muscle used for

the experimental analyses (see below).

The input to the motoneuron pool was divided into two

components: one common component resembling a shared

synaptic input to the entire motoneuron pool and an independent

component for each motoneuron. The common input (CI) and the

independent input (IN) were modelled as a band-limited (0–100 Hz)

white Gaussian noise [46]. This large bandwidth was chosen to be

as general as possible, even if the experimental recordings usually

show some specific harmonics. Anyway, the main conclusions of

the manuscript are independent of the selected bandwidth. The

common and independent inputs were weighted in the same way

for small and large motoneurons and the current was injected

uniformly across the motoneuron pool. The input to the

motoneuron pool was the linear combination of the two input

sources. The total variance of the stochastic input was a

percentage of the steady-state drive in order to obtain a coefficient

of variation for the interspike interval (ISI) of approximately 15%

[46]. A schematic representation of the motoneuron model is

shown in Figure 1.

The stochastic input current was applied to the soma

compartment as an injected current. All motoneurons received

the same amount of synaptic input. Therefore, the motoneuron

model did not have limitations in discharge rate and did not

describe tonic firing in the absence of synaptic input. These

simplifications are acceptable in the current study since discharge

rate saturation has a limited effect at low level of mean input

current (as in the simulations presented in the Results). Our model

did not incorporate voltage-dependent dendritic channels and

purely inhibitory inputs because an exhaustive study on these

inputs and correlation output is available [47].

The full model was implemented in Matlab. The system of

differential equations for the motoneuron model was solved with

the Adams-Bashforth-Moulton PECE solver [48], using optimized

time steps within intervals of 1 ms. Each simulation was 100-s

long.

Experimental Analysis
Motor unit spike trains were experimentally analysed in healthy

subjects.

Subjects. Eight healthy men participated in the experiments

(mean 6 SD, age: 25.762.3 yrs; range, 23–31 yrs). The exper-

iments were conducted in accordance with the Declaration of

Helsinki and approved by the ethics committee of Nordjyllands

(approval number N-20090019). All participants self-reported to

be right handed and signed a written informed consent form

before inclusion.

Recordings. Single motor unit action potentials were record-

ed from the abductor digiti minimi muscle with Teflon-coated

Figure 1. Schematic representation of the model. A, types of synaptic inputs incorporated in the model. B, equivalent circuit of the
motoneuron model (soma compartment).
doi:10.1371/journal.pone.0044894.g001
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stainless steel wires (diameter 0.1 mm; A-M Systems, Carlsborg,

WA) inserted into the muscle with 25-gauge hypodermic needles.

To increase the sampling size of the motor unit population, three

pairs of wires were placed approximately 5 mm apart in

the transverse direction in the proximal portion of the muscle.

The needles were inserted and removed after the insertion, leaving

the wires inside the muscle. Each wire was cut to expose the cross

section of the tip without insulation. The three bipolar intramus-

cular EMG signals were amplified (Counterpoint EMG, Dantec

Medical, Skovlunde, Denmark), band-pass filtered (500 Hz to

5 kHz), and sampled at 10 kHz. The position of the wires was

slightly adjusted before starting the recordings and when the signal

quality was poor, which occurred rarely, a new pair of wires was

inserted.

In order to increase the sample size of the motor unit population

even further, in only one subject (Subject 7), two additional needle

insertions (for a total of 5) were performed. This could not be

repeated in all subjects because of discomfort. Recordings from

this subject were used to prove experimentally the saturation

properties of measures of correlation output.

Procedures. The subject was seated on an adjustable chair

with the right arm extended in a force brace (Aalborg University).

The fifth finger was fixed in the isometric device for the

measurement of finger-abduction forces. The forearm and the

four digits were secured with Velcro straps. The force produced by

the fifth finger was measured using two force transducers

(Interface, Arizona USA), one in the transverse plane (abduction

force) and the other in the sagittal plane (flexion force). The force

signal was sampled at 10 kHz. Visual feedback on the finger

abduction force was provided on an oscilloscope.

The subjects performed three maximal voluntary contractions

(MVCs) of finger abduction with a rest of 2 min in between

MVCs’. The maximum force achieved during the maximal

contractions was considered as the reference MVC. The electrodes

for EMG recording were then mounted, as described above. The

subject increased the force level to a value for which the degree of

interference in the signal was sufficient to identify 3–5 motor units

per wire and low enough to assure accurate signal decomposition

and to limit fatigue. At this level the subject performed a sustained

contraction lasting 100 s.

The subject had visual feedback on force during the contrac-

tions and was asked to maintain the target force level as stable as

possible. During each contraction, the flexion force was monitored

and contractions with flexion force higher than one percent of the

force generated during the MVC attempt were repeated.

Decomposition of experimental signals. Individual motor

units were identified from the intramuscular EMG signals

recorded from the three (five for subject #7) locations in the

muscle by the use of a decomposition algorithm [49]. This

interactive algorithm (EMGLAB) includes a user interface for

manually editing and verifying the correctness of the spike trains.

Each motor unit spike train was manually edited using this visual

interface by an experienced operator and any unusually long

(.250 ms) or short (,20 ms) inter-spike intervals (ISIs) were

manually inspected for checking potential discrimination errors.

From the results of the decomposition, spike trains of individual

motor units were obtained with a sampling rate of 1000 Hz. The

CST (composite spike train) was defined as the sum of individual

spike trains, as for the simulated signals.

Synchronization and coherence analysis in simulated and

experimental signals. The degree of spike train correlation

was calculated using the cross-correlation function on the

simulated and experimental motor unit spike trains. The

calculation was computed on the raw spike trains (equivalent to

a rectangular filter of 1 ms duration, given a sampling frequency of

1000 Hz) and on the spike trains filtered using 150 ms and 400 ms

Hann windows. From the raw and filtered spike trains, several

indexes of correlation were extracted.

The cross-correlation function for the raw spike trains (bin

width: 1 ms) were calculated between 2100 ms prior and 100 ms

after the discharge of the reference unit [6,28,36]. This particular

interval was chosen for comparison with the cited studies since it is

the one commonly used in those. The cumulative sum (CUSUM)

technique was used to assess the location of the peak of the

histograms [50]. The time bin where the cumulative sum exceeded

3 SDs with respect to the mean calculated over the first 50 bins

was set as the location of a significant peak [23]. Histograms with a

mean count less than 4 were not analyzed [12]. The common

input strength (CIS) index [36] was computed as the number of

synchronous discharges of the motor unit pair in excess of chance,

divided by the duration of the analyzed interval. The Synchronous

Impulse Probability (SIP) index was also derived from the analysis

of raw spike trains. This index is defined as the number of counts

in the peak above the chance divided by the number of spikes used

to compute the cross-correlation function [9]. The CIS and SIP

are commonly used to quantify the degree of short-term

synchronization in motor unit spike trains [51].

Indexes of correlation were also obtained by filtering the spike

trains. From the spike trains filtered with 400 ms Hann windows,

the common drive index (CDI) was calculated after the application

of a detrend high-pass filter with cut-off frequency 0.75 Hz (zero-

phase filter),

H(f )~1{
sin (pf )

pf
ð9Þ

to remove offsets and trends, as proposed in previous studies

[7,52]. The strength of common drive was computed on these

filtered spike trains over intervals of 5-s and averaged over the full

signal duration. To compare the effect of different low-pass filters,

a Hann window of 150 ms duration was also used in the analysis.

Only peak values of the cross-correlation function corresponding

to time delays in the interval 6100 ms were considered for this

analysis [53].

The coherence was also calculated between pairs of (filtered)

motor unit spike trains as in Eq. (7).For computing the coherence

in simulated and experimental signals, the recording segments

were divided in intervals of 5-s and 1-s duration from which the

power spectra were estimated with the periodogram (Hanning

window). The confidence limit for coherence values was [54]:

CL~1{(1{a)
1

N{1 ð10Þ

where N is the number of segments used in the calculation and a is

the level of confidence.

Statistical analysis of experimental data. For the exper-

imental data, linear regression analysis was used to assess the

relation between CIS, SIP, or CDI and the geometric mean of

discharge rate values. Data are reported as mean and SD.

Significance was accepted for P values smaller than 0.05. The

significance level for coherence functions was computed according

to Eq. (10) with a = 0.05.

Results

The results will indicate the effect of sampling and filtering

when computing output spike train correlations. For this purpose,

Correlation between Motor Unit Spike Trains
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results from the experiments and simulations are presented

together and interpreted based on the theoretical framework

described above.

From the experiments, a total of 94 motor units (average: 1161,

with a maximum of 16 motor units detected from subject #7 from

5 recording sites) were recorded from the eight subjects. 477 pairs

(average: 59613, min-max: 43–74) of motor units showed a

significant level of synchronization, according to the criteria

described in Methods. The average discharge rate of the motor

units analyzed was 12.562.1 pps, with a range between 7.1 and

19.5 pps. The average CoV for ISI was 21.062.5%. The average

level of force produced by the subjects was 4.560.5% MVC.

Table 1 shows the results for the individual subjects.

The Sampling Issue: Dependence of Correlation Indexes
on Discharge Rate

As indicated in Eq. (2), discharge rate inherently influences the

output correlation. This was observed experimentally for different

filters applied to the spike trains. Figure 2 shows a representative

example of seven spike trains recorded from subject 4. Fig. 2A

shows the filtered spike trains with the corresponding impulse

response of the filters used. The spike trains are ordered from the

higher to the lower discharge rates. Fig. 2B shows the cross-

correlation function between the filtered spike trains (time-domain

analysis). The magnitude of the central peak depended on the pair

of motor units chosen for the analysis and thus on the discharge

rate of the pair. Variability in the individual results is present (see

for example the higher peak of the cross correlation between the

5th and 6th spike trains for the raw data), as expected, but a clear

pattern of dependence between correlation peak and discharge

rate is evident when the pooled data are analysed, as described

below. Moreover, the filter length has also an influence on the

estimation since for long filters the dependence on the discharge

rate tends to vanish. For example, there is no clear trend for the

longest filter in Fig. 2.

Figure 3 shows the regression analysis between average

discharge rate and correlation indexes performed on a represen-

tative subject (subject #6). Figure 3A shows a significant linear

relation between the CDI calculated using a short Hann window

of 150 ms and the geometric mean of the discharge rates

(R2 = 0.13, P,0.001). However, this association was not signifi-

cant (R2 = 0.02, P = 0.12) when a longer filter was applied (Hann

window of 400 ms) for the same index (CDI), demonstrating a

dependence of the behaviour of this correlation index on the filter

applied (Figure 3B). The CIS was linearly associated (R2 = 0.14,

P,0.001) with the geometric mean of the discharge rates (Fig. 3C)

whereas SIP did not show dependence (R2 = 0.006, P = 0.5) on

discharge rate (Fig. 3D). The regression analysis performed on all

subjects (Table 2) confirmed these representative results. The same

calculations applied to the simulation data showed similar results.

It is important to notice that all these measures, which are

calculated using pairs of motor unit spike trains, suffer from the

effect of not complete sampling and therefore show high degree of

variability.

These results are explained by different sensitivity of these

indexes to filtering and sampling and to their normalization. It is

however to be noted that it is not possible to decide which of these

indexes is closer to the actual intrinsic correlation degree (c in the

theoretical derivation), due to the unknown scaling between the

estimate of r (the computed indexes) and c (see theoretical

derivation).

The dependence on the average discharge rate is a consequence

of the sampling of the input which is more effective for higher

rates. As discussed in the theoretical derivation, the actual effective

sampling rate can be increased by adding spike trains of several

motor units, to obtain the CST signal. According to the theory, the

values of correlation from simulated and experimental spike trains

were generally higher when the CST was used instead of

individual motor unit pairs and when low-pass filtering was

applied (low-pass filtering decreases the bandwidth and thus the

signal is more effectively sampled). Figure 4 shows the averaged

normalized cross-correlation values (500 pairs randomly selected)

for different numbers of spike trains and filters, both reported for

simulation and experimental results (for subject #7 with the

greatest number of detected motor units, all pairs). The x-axis

reports the number of pooled spike trains used for the calculation

of the reported indexes of correlation. For the simulations, when

more than 4–5 spike trains were used, the rate of change of the

correlation was decreasing considerably, showing approximately a

saturation value in the frequency range 0–5 Hz (coherence, Hann

windows of 150 and 400 ms). Additional motor neuron spike

trains increased the correlation measures by few percents only.

Moreover, the variability of the estimates, as assessed by the

standard deviation of the measures, decreased with increasing

number of motor unit spike trains used in the calculation. This is

the result of increasing accuracy in the sampling and better

averaging of the independent components of the synaptic inputs.

The experimental results confirmed the simulations, with generally

higher levels of cross-correlation estimated when increasing the

number of spike trains. Only the results for subject #7 are shown

because it was the one with the greatest number of motor units

identified. The results from the other subjects confirmed the trends

although the number of detected units in those cases was not

sufficient to reach the saturation level.

The effect of the increased sampling in the pooling of several

spike trains is evident when the coherence measure is applied to

investigate the frequency content of the common inputs. Figure 5

shows that an increased number of spike trains changes the

estimation of the coherence between CSTs and increases the

bandwidth of the coherence function. Fig. 5A shows the estimation

of the coherence between CST for the simulated signals. In these

examples, when referring to one spike train, we mean the analysis

of coherence between two CSTs each made of one spike train.

The same interpretation is valid for more than one spike train.

Using only one spike train in the CST, the estimated coherence

calculated for 100 pairs (grey lines) and averaged (black line)

showed a lower magnitude and smaller bandwidth compared with

the case where 3 or 5 spike trains were used. Fig. 5B shows similar

results for the experimental data recorded from subject #2. The

Table 1. Motor unit statistics for the 8 subjects.

Force (% MVC) N. Motor Units DR (pps)

Sub. 1 4.5 11 9.2963.5

Sub. 2 4.3 11 15.162.53

Sub. 3 5.1 13 14.162.21

Sub. 4 3.8 10 12.161.66

Sub. 5 4.1 11 9.662.28

Sub. 6 4.2 12 11.861.76

Sub. 7 4.5 16 10.162.34

Sub. 8 5.1 10 17.663.41

MVC: maximal voluntary contraction. DR: average discharge rate in pulses per
second.
doi:10.1371/journal.pone.0044894.t001

Correlation between Motor Unit Spike Trains

PLOS ONE | www.plosone.org 6 September 2012 | Volume 7 | Issue 9 | e44894



coherence function calculated using one spike train in the CST

shows common components at very low frequencies (,223 Hz)

that are related to the low-frequency components of the control

(common drive) and a second clear peak at 7.3 Hz, that

corresponds approximately to the oscillation peak in the force

signal (7.5 Hz in this example). No other peaks were visible over

the confidence level. However, when 3 and 5 spike trains were

used in the CST, significant coherence in the beta frequency band

(15–30 Hz), a frequency band commonly found in EEG-EMG

coherence analysis (Halliday et al. 1998), was clearly visible with

an overall increase in the magnitude of the coherence for all

frequencies. Moreover, the variability of the estimate was greater

when only a pair of spike trains was used, as shown by the grey

lines. The analysis performed across all subjects showed a similar

trend. A significant peak at 5–10 Hz was indeed evident in all

recordings and for the three combinations of spike trains (mean

frequency, 7.561.2 Hz). Over all subjects, the magnitude of this

peak increased by 117640% when 3 motor unit spike trains were

used compared with only one, and by 163638% for 5 spike trains.

Moreover, significant coherence in the beta band was also evident

only when more than one motor unit spike train was used. Indeed

the mean magnitude of the coherence in the frequency band 15–

30 Hz was 1.660.2 times greater using 5 motor unit spike trains

compared to one motor unit spike train. These results are the

frequency-domain counterparts of the trends observed for the

time-domain analysis.

Effect of Filtering
As described in the theoretical part, the transfer function of the

filter applied to the pairs of spike trains for the quantification of

common inputs influences the estimated correlation (time

domain).

We systematically analyzed in simulation and experimentally,

the effect of the filter length on the peak of the cross-correlation

function. Figure 6 shows that the level of correlation estimated by

filtered spike trains increases when the filter length increases

(reduced bandwidth), although not monotonically. A similar trend

could be observed for the simulated (Fig. 6A) and experimental

conditions (subject #7 is represented) (Fig. 6C). The correlation

values are reported for the combinations of 2 (black), 3 (dark grey),

and 7 (light grey) spike trains (averaged over 100 pairs). The

increase in estimated correlation with a decrease in bandwidth

reflects the more efficient sampling for smaller bandwidths. When

the filters had a length comparable with the inverse of the average

discharge rates of the spike trains used in the calculation, however,

the level of correlation reached a local maximum (Fig. 7B–D). The

effect was more evident using pairs of spike trains, and it was due

to the amplification of the common frequency component

corresponding to the average discharge rate. Using CSTs, the

Figure 2. Representative example of the behavior of the correlation measures for seven motor unit spike trains recorded from
subject #4. A, spike trains of seven motor units filtered with 1 ms, 150 ms and 400 ms duration low-pass windows (shown on top). The spike trains
are ordered in decreasing discharge rates (6–13 pps). B, cross-correlation functions between pairs of the same filtered spike trains. Note the
dependence of the peak correlation on the average discharge rates of the pairs and the length of the filters.
doi:10.1371/journal.pone.0044894.g002
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Figure 3. Association between the discharge rates of the pairs of spike trains for four correlation indexes calculated from subject
#6. A, scattered plot of the common drive index calculated using an Hann window of 150 ms duration and the geometric mean of the discharge
rates of the pairs of spike trains used in the calculation (R̂2 = 0.14, P,0.05). B, the same but using a longer window of 400 ms duration (P.0.05). C,
scattered plot of the CIS index and the geometric mean of the discharge rates (R̂2 = 0.13, P,0.05). D, scattered plot of the SIP index and the
geometric mean of the discharge rates (P.0.05).
doi:10.1371/journal.pone.0044894.g003

Table 2. Correlation coefficients between motoneuron spike trains for the 8 subjects.

CIS SIP CDI (150 ms) CDI (400 ms)

Sub. 1 R2 = 0.09, P,0.05 R2 = 0.005, P = 0.63 R2 = 0.001, P = 0.14 R2 = 0.0022, P = 0.61

Sub. 2 R2 = 0.05, P,0.05 R2 = 0.01, P = 0.16 R2 = 0.0001, P = 0.85 R2 = 0.004, P = 0.07

Sub. 3 R2 = 0.19, P,0.001 R2 = 0.05, P = 0.05 R2 = 0.04, P,0.05 R2 = 0.005, P = 0.37

Sub. 4 R2 = 0.04, P,0.05 R2 = 0.07, P,0.05 R2 = 0.02, P,0.05 R2 = 0.00007, P = 0.86

Sub. 5 R2 = 0.03, P = 0.051 R2 = 0.02, P = 0.06 R2 = 0.02, P,0.05 R2 = 0.0002, P = 0.76

Sub. 6 R2 = 0.14, P,0.001 R2 = 0.006, P = 0.5 R2 = 0.13, P,0.001 R2 = 0.015, P = 0.12

Sub. 7 R2 = 0.16, P,0.05 R2 = 0.09, P,0.05 R2 = 0.046, P,0.001 R2 = 0.003, P = 0.35

Sub. 8 R2 = 0.19, P,0.05 R2 = 0.08, P = 0.06 R2 = 0.11, P,0.001 R2 = 0.03, P = 0.05

CIS: common input strength (pps). SIP: synchronous input probability; CDI (150 ms): common drive index calculated using a hann window of 150 ms duration. CDI
(400 ms): common drive index using a window of 400 ms duration.
doi:10.1371/journal.pone.0044894.t002
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effect of the discharge rate was mitigated by the increased

sampling efficiency, but the transition was still evident. The overall

effect on the experimental signals was perfectly predicted by the

simulations.

These results indicate that the applied filter has a large impact

on the time domain correlation indexes (Fig. 6). It is particularly

relevant to note that the local maximum in correlation due to the

average value of discharge rate imposes a large sensitivity of

correlation estimates to small changes in filter length for filters with

length smaller than 200 ms (corresponding to the range of

physiological discharge rates).

Conversely, the coherence calculated in the frequency band of

the filter used does not change with the filter. Figure 7 confirms

this theoretical prediction on experimental data. The figure shows

the analysis of correlation in time and frequency domain for one

pair of motor unit spike trains recorded from subject #3. From the

two spike trains, three cross-correlation functions were calculated

with three filters (shown in Fig. 7A,B). The first filter is that usually

used for the analysis of short-term synchronization [9,10,36] while

the third is that used for the common drive analysis [7], and the

second has intermediate length between the other two. Figure 7C

shows the cross-correlation functions estimated after applying the

three filters. Figure 7D shows the corresponding coherence

functions. According to the theoretical derivation, the cross-

correlation analysis in the time domain depended on the filter

used, as shown by the magnitude and the shape of the three cross-

correlation functions. However, the coherence function was

identical in the three conditions within the bandwidth of the

applied filter. The grouped data analysis confirmed this observa-

tion. The area of the coherence calculated in the frequency band

described by the third filter (,1.8 Hz, the smallest frequency

band) was indeed similar for the three filters (0.43860.166 for the

first, 0.44260.168 for the second, and 0.44960.171 for the third;

P.0.05). These results indicate that different indexes of synchro-

nization obtained from filtering the spike trains are equivalent in

the frequency domain and only correspond to the analysis of

different frequency bandwidths of the output spike trains. A

coherence analysis of the raw spike trains therefore provides the

full information on correlation strength (complete frequency

range). For example, the information carried by the CDI can be

extracted from the low-frequency band of the coherence estimated

from the raw spike trains. Similarly, the raw cross-histogram

without filtering provides the full information in the time domain.

Discussion

We described the relation between the amount of correlation

received by the motoneuron pool and the corresponding level of

indexes usually applied for estimating spike train synchronization,

coherence and common drive. These measures of correlation

between spike trains have been often considered independent since

they usually show different behaviors. However, they can all be

interpreted as the subband analysis of the coherence function

between spike trains. As such, they are influenced by the sampling

rate and are different between each other since they address

different bands in the coherence frequency axis.

Correlation analysis of motor unit spike trains aims at estimating

the correlation between inputs to motoneurons from the analysis

of the output spike trains. In general, the dependence of the output

correlation on the characteristics of the input current to the

motoneuron pool produces a bias in the estimation of the true level

of input correlation [16,20]. The problem is intuitive if it is

addressed in terms of sampling process. A single motoneuron

cannot reliably sample an input with frequency greater than its

average discharge rate [37,38,55], which is very low. Therefore

the level of correlation that can be estimated from the output spike

trains of two motoneurons depends on the frequency content of

the input current and the sampling/discharge rate, not only on the

correlation in input. This problem has been addressed by

Figure 4. Normalized correlation values and coherence using the pooling of multiple spike trains. A, results from the simulations using
the band-pass Gaussian noise in the frequency band 0–100 Hz. B, results from the experimental recording on Subject n. 7, the one whit the highest
number of motor unit spike trains correctly identified. Note a trend of saturation for all indexes when more than 4–5 motoneuronspike trains were
used in the calculations.
doi:10.1371/journal.pone.0044894.g004
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normalizing the correlation indexes [9,10,36] in order to minimize

the effect of discharge rate. Nonetheless, these normalized

measures have demonstrated both a positive [32,36,39,51],

negative [33], or no association [36,39,51,56] with the discharge

rates of the analyzed spike trains, generating difficulties in the

interpretation of the results. These observations are in agreement

with the theoretical derivation (Eq. 1) that describes a scaling

factor associating the output and input correlation that depends

non-linearly on the discharge rate (note that the input current in

the scaling factor is also associated to the discharge rate), so that

the effect of discharge rate cannot be removed by normalization.

Occasionally, normalization may reduce the dependency on

discharge rate, as also observed in this study (e.g., SIP index,

Fig. 3), but this is not a general observation (Table 2) and depends

on the range of observed discharge rates. For this reason, it is not

possible to infer dependency of correlation inputs on variables that

change the discharge rate, such as force [39], since it is not possible

to distinguish between the variations of input correlation and

statistics of the total synaptic currents in such conditions. In this

study, for example, the simulated and experimental results showed

a clear relation between output correlation and discharge rates

with the same synaptic current statistics and force level. Therefore,

the concurrent change of both input correlation and statistics of

synaptic current would result in variations of the estimated output

correlation, limiting the possibility of inferring clear conclusions

about the strength of the common synaptic input. These

considerations are limited to the estimated strength of the

correlation. Other measures extracted from the cross-correlograms

between spike trains, as for example the time courses of the

correlation peaks [57], may be less influenced by sampling. For

estimating the strength of correlation higher motoneuron rates

would be needed, but the intrinsic low discharge rates experi-

mentally found in alpha motor neurons [58] limits this possibility.

Moreover, for the same reason, the estimate of the strength of the

correlation is inevitably affected by high variability.

Under the assumption of a common synaptic noise uniformly

spread across the motoneuron pool [37,41], the pooling of the

spike trains extracted from several motoneurons could help to

increase the sampling rate [37,41]. However, the estimated

correlation increases with the number of spike trains used for

the analysis (Fig. 4). This observation is due to two effects. First,

the better sampling implies a more reliable transmission of the

synaptic inputs, which is the desired effect. Second, the summation

of multiple spike trains determines the averaging of the output so

that the independent components are relatively attenuated with

respect to the common ones, which is an undesired effect that

biases the result. In this way, the measure saturates (Fig. 4) [17,18].

This limits the applicability of the technique when various

conditions have to be compared since the differences will tend to

vanish.

Another contribution of this study is the demonstration that

different ways of assessing correlation between motor unit spike

trains, such as common drive and synchronization, are actually

strongly related and only differ for the bandwidth of the analysis.

Figure 5. Coherence functions using pooled spike trains. A, magnitude of coherence for the simulation data (band-pass common synaptic
Gaussian noise in the range 0–100 Hz) using 1, 3 and 5 pooled spike trains. Single pair combinations (light grey) and average using all available
combinations (black line) B, same results for the experimental motor unit spike trains recorded from subject n. 2. The confidence level is shown with a
dashed line.
doi:10.1371/journal.pone.0044894.g005
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Time-domain correlation measures are strongly influenced by the

filter used for processing the spike trains [22] which generates

uncorrelated indexes when using different filters [12]. For

example, a length approximately equal to the inverse of the

average discharge rates of the investigated motor unit generates a

large variability in the estimation (Figure 6). On the contrary,

coherence measures are not influenced by the filter applied (in the

filter bandwidth) (Figure 7) and thus all the information carried by

different correlation indexes can simply be retrieved by analyzing

different bandwidths of the coherence function. For example, the

cross-correlation calculated using a short time bin, as it is typically

computed for estimating the strength of short-term synchroniza-

tion, describes the amount of correlation in the entire frequency

range. For this reason, this measure is associated with the level of

coherence present in large subbands (e.g., 15–30 Hz)

[34,51,59,60] that constitute a relative large part of the full

frequency bandwidth. Conversely, the common drive index [7]

carries information on a very small frequency band (,5 Hz)

[59,61], so that it is not surprising that it is poorly associated to the

strength of synchronization [12] that represents the full frequency

range. According to these results, coherence analysis in different

frequency bands or time-domain cross-correlation without filtering

provides the full information. Other indexes of correlation can be

extracted both in time and frequency domain by filtering the cross-

histograms or coherence functions, respectively. However, the

coherence function (and raw cross-histogram) still depends on the

number of spike trains used for the analysis so that a sufficient

number of spike trains is needed for identifying all the significant

peaks in the coherence function (Fig. 5) (or corresponding features

in the time domain). For the same reasons as discussed for time-

domain indexes, the actual peak values in the coherence function

cannot be compared directly when extracted from motoneurons

with different discharge rates and relative comparisons are the

only possible. Interestingly, the coherence function approximates

the power spectrum of the common synaptic input to motoneurons

when a large number of motoneurons is used for the estimate,

despite the non-linearity of each motoneuron, for the same reason

that common cortical oscillations to the motoneuron pool can be

extracted by coherence analysis between EEG and motoneuron

spike trains [37]. We previously provided an analytical demon-

stration of this effect in the context of EEG-EMG coherence [37]

Figure 6. Peak of correlation magnitude between spike trains filtered with Hann windows of different lengths. A, simulations results
using combinations of 2, 3 and 7 pooled spike trains. B, inset for the filter lengths in the range 20–200 ms. C, experimental results for subject n. 3. D,
inset for the filter length in the range 20–140 ms. Values are reported as the mean across all combinations of the specified number of spike trains.
Notice the non-monotonic behavior when the filter length is approximately equal to the mean inter-spike intervals (97617 ms for simulations and
72619 ms for experimental).
doi:10.1371/journal.pone.0044894.g006
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that could be applied almost without changes also in the case of

coherence between spike trains.

In conclusion, this study clarifies controversial issues in the

estimation of common inputs to alpha motoneurons. It shows that

an intrinsic dependency on discharge rate of these measures is

expected theoretically and cannot be removed by normalization,

thus the interpretation of correlation measures should be cautious

when the discharge rate differs, even if some normalization is

applied. The study further proves that indexes used for assessing

the common input signal to motoneurons can all be extracted by

the coherence analysis (or cross-histogram in time domain) of the

raw spike trains. Therefore, the extraction of coherence or cross-

histogram between spike trains should be preferred over the same

measures obtained with pre-filtering. Furthermore, the use of

populations of motor units rather than pairs improves the

detection of significant frequency peaks in the coherence function.

This is due to the influence of discharge rate on the absolute

magnitude of coherence peaks, which also indicates that only

relative comparisons of peak values are possible. These conclusions

lead to the indication that common inputs to motoneurons should

be investigated from the calculation of the coherence or cross-

histogram functions between the unfiltered CST of populations of

motoneurons. The information extracted in this way is not related

to an absolute strength of the common input but to the

identification of spectral frequencies or temporal correlations

present in such input.

Author Contributions

Conceived and designed the experiments: FN DF. Performed the

experiments: FN. Analyzed the data: FN DF. Contributed reagents/

materials/analysis tools: FN DF. Wrote the paper: FN DF.

Figure 7. Comparison between time and frequency domain correlation for different filter lengths. A, impulse response of the three
filters used in the study: rectangular window of 1 ms (equivalent to raw spike train with 1000 Hz sample rate), Hann window of 150 ms and 400 ms
durations. B, transfer function for the same filters. C, cross-correlation functions calculated for two spike trains recorded from subject 7 and filtered
with the above windows. D, comparison of the coherence functions for the pair of spike trains filtered with the rectangular window (black line) and
the other two filters.
doi:10.1371/journal.pone.0044894.g007
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