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Abstract 
Aging-associated cognitive decline affects more than half of those in long-term residential aged care. Emerging evidence suggests that gut 
microbiome–host interactions influence the effects of modifiable risk factors. We investigated the relationship between gut microbiome char-
acteristics and severity of cognitive impairment (CI) in 159 residents of long-term aged care. Severe CI was associated with a significantly 
increased abundance of proinflammatory bacterial species, including Methanobrevibacter smithii and Alistipes finegoldii, and decreased relative 
abundance of beneficial bacterial clades. Severe CI was associated with increased microbial capacity for methanogenesis, and reduced capacity 
for synthesis of short-chain fatty acids, neurotransmitters glutamate and gamma-aminobutyric acid, and amino acids required for neuropro-
tective lysosomal activity. These relationships were independent of age, sex, antibiotic exposure, and diet. Our findings implicate multiple gut 
microbiome–brain pathways in aging-associated cognitive decline, including inflammation, neurotransmission, and autophagy, and highlight the 
potential to predict and prevent cognitive decline through microbiome-targeted strategies.
Keywords: Aged care, Cognitive impairment, Microbiome, Microbiome–gut–brain axis

Progressive loss of cognitive function is a common feature 
of aging and is not limited to those with dementia (1–4). 
Contributory pathologies, often occurring in combination, 
include ischemic or hemorrhagic infarcts within the brain 
(characteristic of vascular dementia) (5,6), the accumulation 
of amyloid plaques and neurofibrillary tangles (characteristic 
of Alzheimer’s disease) (7,8), and the development of abnor-
mal collections of alpha-synuclein protein within diseased 

brain neurons (characteristic of Lewy body dementia) (9,10). 
While these pathophysiological processes are increasingly 
well characterized, the factors that contribute to them and 
their relationship to external risk exposures remain poorly 
understood.

In addition to genetic factors (11–16), modifiable risk 
factors associated with dementia have been identified. 
Modifiable risk factors include exposures (smoking, excessive 

Received: May 2 2024; Editorial Decision Date: February 25 2025.
© The Author(s) 2025. Published by Oxford University Press on behalf of the Gerontological Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0002-5148-4063
https://orcid.org/0000-0003-3276-9685
https://orcid.org/0000-0002-9262-0463
https://orcid.org/0000-0001-8261-2665
mailto:geraint.rogers@sahmri.com
https://creativecommons.org/licenses/by/4.0/


2 The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 2025, Vol. 80, No. 7

alcohol consumption, physical inactivity, air pollution, diet), 
health conditions (hypertension, obesity, depression, diabetes, 
traumatic brain injury, hearing impairment), and social fac-
tors (less education and low social contact) (17). Together, 
these modifiable risk factors are estimated to account for 
40% of dementia incidence (17). Identifying how such factors 
influence the pathophysiology of aging-associated cognitive 
impairment (CI) is essential to the development of effective 
prevention and treatment.

The gut microbiome influences neurophysiology, central 
nervous system, and cognitive function through discrete 
bidirectional pathways, collectively termed the microbiome–
gut–brain axis (18–21). These pathways include the microbial 
synthesis of neurotransmitters, such as gamma-aminobutyric 
acid (GABA), noradrenaline, dopamine, and serotonin 
(22,23), the modulation of systemic immunity (24,25), and 
metabolism of essential amino acids, such as tyramine and 
tryptophan (26,27). They also involve production of immune 
and metabolically active metabolites, such as short-chain 
fatty acids (SCFAs) and 4-ethylphenylsulfate, and activation 
of nerve growth factor, glial-derived neurotrophic factor, and 
brain-derived neurotrophic factor secretion (28,29). Such 
microbial traits have the potential to contribute substantially 
to the development of neurological diseases, including 
Alzheimer’s (30,31), Huntington’s (32–34), and Parkinson’s 
diseases (35,36).

Aging-associated gut microbiome characteristics (37,38) 
are linked to progressive frailty and cognitive decline 
(4,38–40). External exposures that disrupt the microbi-
ome, such as antibiotics, can further contribute to altered 
neurological homeostasis and poorer cognitive outcomes 
(41–43). In contrast, dietary interventions that alter the 
composition of the gut microbiome in a beneficial man-
ner can result in improvements in cognitive function (44). 
Such findings suggest that the relationship between the 
gut microbiome and host neurophysiology may provide a 
basis to predict and/or prevent the onset and progression 
of aging-associated cognitive decline. Potential causality in 
these relationships is suggested by studies that have suc-
cessfully recapitulated impairment of memory and synaptic 
plasticity following fecal microbiota transplant from aged 
mice to younger mice (45).

Our aim was to explore whether the severity of CI expe-
rienced by residents of long-term aged care facilities (some-
times referred to as nursing homes, care homes, or residential 
aged care facilities) is associated with characteristics of the 
gut microbiome, and if so, whether such relationships might 
provide mechanistic insight into CI pathogenesis.

Method
Study Design, Cohort, and Data Collection
The Generating evidence on Resistant bacteria in the Aged 
Care Environment (GRACE) study (www.gracestudy.com.
au) was a cohort study supported by the Australian Medi-
cal Research Future Fund (Grant No. GNT1152268). Ethical 
approval for the study was obtained from the Southern Ade-
laide Clinical Human Research Ethics Committee (HREC/18/
SAC/244). The GRACE study investigated the carriage and 
transfer of resistant bacteria in long-term aged care facilities 
and was conducted between 2018 and 2020. GRACE enrolled 
279 residents in 5 long-term aged care facilities in metropol-
itan South Australia. Anonymized participant data, including 

assessments of cognition and behavior, were collected via 
an entry into care funding assessment (Aged Care Funding 
Instrument [ACFI]), in addition to medications prescribed via 
the Pharmaceutical Benefits Scheme (PBS) (46).

Assessment of CI
The Cognitive Skills component of the ACFI was used as a 
basis for assessment of CI. This cognitive skills component 
assesses a person’s cognitive abilities in everyday activities, 
including memory, self-care, and orientation (47,48), as 
defined via the Psychogeriatric Assessment Scales – Cog-
nitive Impairment Scales (PAS-CIS) method (49). Where 
individuals were unable to undertake the PAS-CIS test, 
for example, non-English speaking, sensory impairment, 
or severe CI beyond the scope of the instrument, the ACFI 
cognitive skills assessment was based on a clinical report 
by a registered health professional (47). The ACFI cogni-
tive skills component utilized the PAS-CIS and/or clinical 
reports to rate an individual’s level of CI as none or min-
imal (PAS-CIS = 0–3), mild (4–9), moderate (10–15), or 
severe (16–21).

CI Cohort
GRACE participants were categorized according to their 
cognitive skills rating, as defined in the ACFI. Participants 
were excluded if: (1) their cognitive skills assessment was 
not completed or missing, (2) the date of stool collection 
was not known, (3) the date of the cognitive assessment was 
not known, (4) the participant was diagnosed with a devel-
opmental or intellectual disability, or (5) the period between 
cognitive skills assessment and stool sample collection was 
not known or was deemed an outlier (>1 462 days as deter-
mined using the Robust regression and Outlier [ROUT] 
removal method (50)). A total of 45 participants were 
excluded (detailed in Supplementary Figure 1). Participants 
with dementia and a missing PAS-CIS rating were imputed 
the median PAS-CIS value from their cognitive skills assess-
ment group. Mental and behavioral diagnoses of dementia, 
depression, and delirium were ascertained from the ACFI, 
where a documented diagnosis from a medical practitioner 
was provided.

Fecal Collection, DNA Extraction, Metagenomic 
Sequencing, and Bioinformatics
Stool sample was collected and stored using Norgen Stool 
Nucleic Acid Collection and Preservation Tubes (Norgen 
Biotek, Thorold, ON, Canada), and microbial DNA was 
extracted using the PowerLyzer PowerSoil DNA Isolation 
Kit (Qiagen, Hilden, Germany) as described previously 
(46). Indexed, paired-end DNA libraries were prepared 
using the Nextera XT DNA Library Prep Kit (Illumina, San 
Diego, CA), as per manufacturer’s instructions. Samples 
were sequenced at a depth of 5 Gb on an Illumina Novaseq 
platform with 150 bp paired-end reads. Forward and reverse 
sequences were quality-filtered using Trimmomatic (v0.39), 
and human reads were removed with Bowtie (v2.3.5.1) 
against the NCBI human reference genome release GRCh38 
(51,52). Taxonomic relative abundance was assigned using 
MetaPhlAn (v3.0) (53), while microbial metabolic pathway 
abundance was assigned using HUMAnN (v3.0) against the 
MetaCyc database (53). Sequence data have been entered into 
the European Nucleotide Archive (ENA) at EMBL-EBI under 
accession number PRJEB51408.

www.gracestudy.com.au
www.gracestudy.com.au
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glaf053#supplementary-data
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Microbiome Characterization
The taxonomic relative abundance at the species level was 
used to generate alpha diversity (within-group) and beta 
diversity (between-group) measures. Alpha diversity measures 
included Pielou’s evenness (J′: a score between 0 and 1 where 
scores are influenced more by the evenness of abundant spe-
cies), the Shannon–Wiener diversity (H′): a score of the num-
ber and equal representation of different types of species (54), 
and species richness (d: total number of unique species iden-
tified per participant) and were generated using the “vegan” 
R package (55).

The Bray–Curtis index was calculated to compare microbi-
ome similarity between groups (beta diversity), using square-
root transformed species relative abundance data (PRIMER 6 
[v6.1.16]). For sensitivity analysis, weighted and unweighted 
UniFrac distance matrices (56) were calculated using the 
“calculate_unifrac” MetaPhlAn R script (53). Nonmetric 
multidimensional scaling (nMDS) plots for all beta diversity 
measures were generated using the “vegan” package in R and 
visualized using “ggplot2.”

Microbial Functional Profiling
The functional capacity of the gut microbiota was defined by 
the genetically encoded functional traits detected within the 
metagenome. These MetaCyc pathways from HUMAnN were 
filtered to only analyze those present in >30% of participants. 
Two functional profiling analyses were performed: an untar-
geted analysis of all filtered pathways (n = 400) and a targeted 
analysis based on pathways with a hypothesized functional 
role in CI (n = 70). These included pathways involved in neu-
rotransmitter biosynthesis (n = 2), SCFA production (n = 25), 
and amino acid biosynthesis (n = 43).

Metabolite Profiling
As a confirmatory analysis of microbial functional capacity, 
the metabolomic profile of a randomly selected subgroup of 
individuals (n = 35; n = 11–12/group) was established. Stool 
metabolite analysis was performed on an Agilent 1200 series 
high-performance liquid chromatography system (Agilent 
Technologies) (methods modified from (57,58) and detailed 
in Supplementary Methods). Briefly, metabolite extraction 
and analysis were performed separately for SCFAs and polar 
metabolites. SCFA analysis was performed using an Agilent 
6490 series triple quadrupole mass spectrometer (Agilent 
Technologies), while polar metabolites (a screen for 165 
low-molecular-weight metabolites, eg, amino acids) were ana-
lyzed using an Agilent 6545 series quadrupole time-of-flight 
mass spectrometer (Agilent Technologies). Resultant data 
matrices were imported to the web-based platform Metabo-
Analyst (v5.0) for quality control checks. SCFA data were 
normalized to internal standards, and polar metabolite data 
were log-transformed and median-normalized.

Covariates
Covariates were: days since cognitive assessment (below or 
equal/above the median), age (low, medium, or high tertile), 
sex (male or female), medication history (PBS data avail-
able or unavailable), medications that affect gastrointestinal 
health and are prevalent in aged care facilities (antibiotic use 
[yes or no]; proton pump inhibitor use [yes or no]; opioid 
use [yes or no]; laxative use [yes or no]), meal texture at time 
of cognitive assessment (regular or soft/smooth), and liquid 

texture at time of cognitive assessment (normal/thin or thick). 
Medication use was defined as 2 or more supplies to a resi-
dent within 90 days prior to stool collection.

Statistical Analysis
Both unadjusted and multivariate regression models were 
applied in all analyses. Multivariate-adjusted models 
accounted for time between cognitive assessment and stool 
collection, age, sex, antibiotics, proton pump inhibitors, opi-
oids, laxatives, meal texture, and liquid texture (as detailed 
above).

Beta diversity analysis was performed using permutational 
multivariate analyses of variance (PERMANOVA) on Bray–
Curtis, weighted, and unweighted UniFrac distance matrices 
in an unrestricted permutation of raw data. Only the Bray–
Curtis metric was assessed with the multivariate-adjusted 
model. PERMANOVA analyses were performed using 
PRIMER 6, with 9999 permutations.

Within-individual microbiome variables included alpha 
diversity, phyla-level relative abundance (only those detected 
in >30% of participants), species-level relative abundance 
(only those detected in >30% of participants), metabolic 
pathway abundance (only those detected in >30% of par-
ticipants), and metabolite intensities. All within-individual 
variables were converted to groups consisting of: zero values, 
tertile 1, tertile 2, and tertile 3. Ordinal logistic regression was 
performed to assess the effect of CI on microbiome variables 
using the “MASS” function in R. The odds ratios (ORs) and 
95% confidence intervals for the coefficients of the regres-
sion models were calculated and tested for statistical signif-
icance (p < .05) as CI severity increased, using the PAS-CIS 
score of CI as both a continuous variable (score 0–21) and as 
a categorical variable (classification of mild, moderate, and 
severe) for the predictor variable. False discovery rate (FDR) 
multiple hypothesis testing was conducted with the Benjamini 
and Hochberg method across all profiles using the “p.adjust” 
function in R, at a significant threshold of 0.05. Correlations 
between microbial functional capacity and detected metabo-
lites were calculated by 2-tailed Spearman correlations and 
tested for statistical significance (p < .05).

Results
The study group of 159 participants did not differ from the 
original GRACE cohort in any of the assessed characteristics 
(Supplementary Table 1). CI was classified as mild in 46 indi-
viduals (28.9%) with a median PAS-CIS score of 6.6 (inter-
quartile range [IQR] = 5.0–8.0), moderate in 58 (36.5%; 
PAS-CIS median = 11.0; IQR = 11.0–12.8), and severe in 55 
(34.6%; PAS-CIS median = 18.0; IQR = 17.0–18.8) (Table 
1; Supplementary Figure 2A). Participant age, sex ratio, time 
since cognitive assessment, and use of antibiotics, opioids, 
and laxatives did not differ significantly between CI severity 
categories (p > .05; Supplementary Figure 2B–F). However, 
the number of days that an individual had been residing in 
long-term aged care was significantly higher for those in the 
severe CI group (median = 939 days; IQR = 219–854) com-
pared to the mild CI group (median = 500 days; IQR = 130–
627; p < .05). Proton pump inhibitor usage was significantly 
lower in the severe CI group (p < .05).

Of those with severe CI, 53/55 (96.4%) had a concurrent 
diagnosis of dementia, while 33/58 (56.9%) with moderate 

http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glaf053#supplementary-data
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CI had a dementia diagnosis, and 4/46 (8.7%) for those with 
mild CI.

Gut Microbiome Characteristics Differ by CI 
Severity
Gut microbiome characterization of long-term aged care res-
idents with CI was determined by metagenomic sequencing 
of collected stool samples (Figure 1A). A total of 11 bacterial 
phyla were detected across the 159 stool samples, consisting 
of 186 genera (586 species). The composition and distribu-
tion of taxa was broadly similar with previous studies of aged 
populations (37,59), with high representation of Eggerthella 
lenta, Escherichia coli, Faecalibacterium prausnitzii, and 
Clostridium species (Figure 1B), and genera within the Bac-
teroidota (formerly Bacteroides) and Bacillota (Firmicutes) 
phyla (Supplementary Figure 3).

Following adjustment for time since cognitive assess-
ment, age, sex, medication use, and diet, the fecal micro-
biota composition differed significantly between mild, 
moderate, and severe CI (p(perm) = .0003; R2 = 2.21%; 
Figure 1C; Table 2). This difference was greatest between 
severe CI and mild CI (p(perm) = .0023), and severe CI 
and moderate CI (p(perm) = .0003), and consistent with 
the unadjusted model (Table 2). Repeated analysis using 
weighted and unweighted UniFrac dissimilarity did not 
identify significant intergroup differences, apart from 
between mild and moderate CI groups using weighted 
UniFrac dissimilarity (unadjusted p(perm) = .037; 
Supplementary Figure 4).

Analysis of microbiota diversity identified a positive association 
between CI severity and taxa richness (OR: 1.08 [95% confidence 
interval 1.05, 1.12], q < 0.001) and Shannon–Wiener diversity 
(OR: 1.043 [1.013, 1.073], q < 0.05; Figure 1D). However, there 

was no association between CI severity and Pielou’s evenness 
(OR: 0.985 [0.957, 1.014], q > 0.05; Figure 1D).

To assess whether specific taxa differed with severity and 
classification of CI, phylum-level and species-level relative 
abundances were assessed. Of the 7 phyla present in at least 
30% of participants, 5 differed significantly with CI (Figure 
2). Pseudomonadota (Proteobacteria) (OR: 0.937 [0.909, 
0.965], q < 0.001) and Bacillota (OR: 0.943 [0.915, 0.971], 
q < 0.001) were lower with increasing CI severity (Figure 
2). In contrast, Euryarchaeota (OR: 1.097 [1.065, 1.131], 
q < 0.001), Actinomycetota (Actinobacteria) (OR: 1.066 
[1.035, 1.099], q < 0.001), and Synergistota (Synergistetes) 
(OR: 1.043 [1.008, 1.079], q < 0.05) were higher with 
increasing CI severity (Figure 2).

Bacterial species that were detected in at least 60% of par-
ticipants, and with a relative abundance of at least 0.1%, were 
denoted as “core” taxa (Supplementary Table 2). Of the 586 
microbial species identified across the entire cohort, 30 were 
identified as core in mild CI (Supplementary Figure 5A), 31 in 
moderate CI (Supplementary Figure 5B), and 29 in severe CI 
(Supplementary Figure 5C).

Comparison of species relative abundances identified 50 spe-
cies that differed significantly with CI severity scores (Figure 3). 
Notably, Blautia hydrogentrophica (OR: 1.135 [1.099, 1.173]), 
Catabacter hongkongensis (OR: 1.131 [1.096, 1.168]), and 
Alistipes finegoldii (OR: 1.089 [1.058, 1.121]) had the strongest 
positive association with CI severity (all q < 0.001, Figure 3). 
Further, Collinsella aerofaciens and Methanobrevibacter smithii 
were not only positively associated with CI severity (q < 0.001, 
Figure 3), they were also core species in residents categorized 
with severe CI, but not mild or moderate (Supplementary Table 
2, Supplementary Figures 5 and 6). In contrast, Bacteroides 
uniformis (OR: 0.935 [0.908, 0.962]), Blautia producta (OR: 

Table 1. Study Cohort Characteristics by Severity of Cognitive Impairment

Demographic Mild (n = 46) Moderate(n = 58) Severe(n = 55) Total (n = 159)

Age (years): median (IQR) 87.5 (81.3, 93.6) 90.3 (83.7, 95.0) 87.9 (82.0, 93.0) 88.7 (82.1, 93.5)

Sex: n (%)

 � Female 27 (58.7) 42 (72.4) 40 (72.7) 109 (68.6)

 � Male 19 (41.3) 16 (27.6) 15 (27.3) 50 (31.4)

PAS-CIS: median (IQR) 6.6 (5.0, 8.0) 11.0 (11.0, 12.8) 18.0 (17.0, 18.8) 10.8 (7.0, 18.0)

Time since entry to facility (days): median (IQR) 500 (253.0, 947.5) 704 (299.0, 983.0) 962 (502.0, 1198.0) 681 (360.0, 1015.0)

Dementia diagnosis: % (n)* 8.7 (4) 56.9 (33) 96.4 (53) 56.6 (90)

Memory support unit†: n (%) 0 (0.0) 4 (6.9) 19 (34.5) 23 (14.5)

Meal texture: n (%)

 � Regular 38 (82.6) 44 (75.9) 30 (54.5) 112 (70.4)

 � Soft/smooth 8 (17.4) 14 (24.1) 25 (45.5) 47 (29.6)

Liquid texture: n (%)

 � Normal/thin 42 (91.3) 54 (93.1) 49 (89.1) 145 (91.2)

 � Thick 4 (8.7) 4 (6.9) 6 (10.9) 14 (8.8)

Antibiotics (at least 2 supplied‡): n (%) 10 (21.7) 7 (12.1) 5 (9.1) 22 (13.8)

Proton pump inhibitors (at least 2 supplied‡): n (%) 23 (50.0) 23 (39.7) 12 (21.8) 58 (36.5)

Opioids (at least 2 supplied‡): n (%) 8 (17.4) 12 (20.7) 14 (25.5) 34 (21.4)

Laxatives (at least 2 supplied‡): n (%) 6 (13.0) 6 (10.3) 9 (16.4) 21 (13.2)

Notes: IQR = interquartitle range; PAS-CIS = Psychogeriatric Assessment Scales – Cognitive Impairment Scales.
*Extracted from Aged Care Funding Instrument data.
†Memory support units (also known as dementia units/wards, memory care, or special care units) are secure areas within long-term care facilities specially 
designed to accommodate residents with dementia.
‡Medication use defined as 2 or more supplies of the same medication within 90 days prior to stool collection.
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Figure 1. Gut microbiome of residents of long-term aged care facilities stratified by cognitive impairment (CI). A) Characterization of the gut microbiome 
of long-term aged care residents with cognitive impairment determined by metagenomic sequencing of collected stool samples. B) Taxa bar plot 
of core species grouped by cognitive impairment severity (present in >60% of participants). Species colored by phyla: Actinomycetota = blues; 
Bacteroidota = oranges; Bacillota = greens; Pseudomonadota = purples; non-core species (other) = gray. C) Nonmetric multidimensional scaling plot of 
Bray–Curtis similarity matrix, grouped by CI severity (mild, n = 46; moderate, n = 58; severe, n = 55), showing significant divergence between CI groups 
following multivariate analysis (p(perm) = .0003). D) Odds ratio and 95% confidence interval of effect of CI severity on microbiome diversity (taxa 
richness, Shannon–Wiener diversity, and Pielou’s evenness), following multivariate analysis. Multivariate analysis treated CI severity as a continuous 
variable and adjusted for time since CI assessment, age, sex, antibiotic use, proton pump inhibitor use, opioid use, laxative use, recorded medical 
history, meal texture, and liquid texture. ns = not significant; **q < 0.01; ***q < 0.001 for adjusted p-values following FDR correction. 
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0.916 [0.888, 0.945]), and Blautia wexlerae (OR: 0.940 [0.913, 
0.968]) were among those with the strongest inverse association 
with CI severity scores (all q < 0.001, Figure 3). Faecalibacterium 
prausnitzii, a species previously associated with health outcomes 
in aging (59), was also found to trend lower in this cohort with 
increasing CI severity score, but this did not achieve statistical 
significance (OR: 0.986 [0.958, 1.014], q = 0.421, Figure 3; 
p > .05, Supplementary Figure 6).

The Functional Capacity and Output of the Gut 
Microbiota Differs With CI Severity
Differences in the functional capacity of the gut microbiota were 
identified with increasing CI severity. Four hundred MetaCyc 
pathways were detected in >30% of participants, of which, 70 

were selected based on their potential influence on CI, including 
via mechanisms relating to neurotransmission, immunity, 
and metabolism. Metabolomic analysis of a subgroup of 
individuals (n = 35; n = 11–12/group) confirmed these findings 
(Figure 4A). A total of 165 polar metabolites were detected in 
stool samples from these participants, including 33 metabolites 
classed as amino acids, peptides, and analogues, 50 classed as 
lipids and lipid-like molecules, 18 classed as carbohydrates, 
and 64 classed within other categories (Supplementary Figure 
7A), in addition to 9 SCFAs (Supplementary Figure 7B). 
Pathways inversely associated with CI severity included PWY-
5505, a pathway essential to the production of the primary 
excitatory neurotransmitter glutamate (OR: 0.922 [0.895, 
0.949], q < 0.001), and GLUDEG-I-PWY, a pathway essential 
to the production of the primary inhibitory neurotransmitter 
GABA (OR: 0.962 [0.934, 0.990], q < 0.05, Figure 4B, 
Supplementary Figure 8A). The metabolite and excitatory 
neurotransmitter glutamate was present at lower levels 
in individuals with more severe CI (Figure 4C). Similarly, 
pathways related to the production of immunomodulatory 
SCFAs, including acetate (P461-PWY; OR: 0.877 [0.850, 
0.904], q < 0.001), propionate (P108-PWY; OR: 0.939 
[0.913, 0.966], q < 0.001), and butyrate (PWY-5022; OR: 
0.935 [0.908, 0.962], q < 0.001, Figure 4D) were also lower 
in relative abundance as CI severity increased and particularly 
in individuals classified with severe CI (Supplementary Figure 
8B). The decrease in immune functional capacity corresponded 
with depleted levels of immunomodulating SCFA metabolites 
in individuals with severe CI, including for butyrate (q < 0.01), 
propionate (q < 0.01), and acetate (q < 0.05, Figure 4E; 
Supplementary Figures 8C and 9). Functional pathways related 
to the biosynthesis of amino acids that regulate key metabolic 
processes, such as autophagy, included L-arginine (PWY-5154; 
OR: 0.911 [0.884, 0.938], q < 0.001), L-lysine, L-threonine, 
and L-methionine (P4-PWY; OR: 0.905 [0.878, 0.932], 
q < 0.001), and were among the most depleted at higher CI 
severity (Figure 4F; Supplementary Figure 8D). Production of 
amino acid polar metabolites also decreased with increasing CI 
severity (Figure 4G; Supplementary Figures 8E and 9).

Further exploratory analysis across all functional path-
ways (n = 400) identified 271 statistically significantly altered 
pathways, with multiple pathways related to methanogene-
sis among those of greatest significance and higher relative 
abundance (p < .01, Supplementary Figure 8D; q < 0.001, 

Table 2.  Permutational ANOVA of the Gut Microbiome by Severity of Cognitive Impairment 

Unadjusted Model Multivariate-adjusted Model*

Main Test Pseudo-F Ratio R2 p(perm)† Pseudo-F Ratio R2 p(perm)†

Cognitive impairment‡  1.9646 0.0246 .0002 1.815 0.0221 .0003

Pairwise Test t p(perm)† t p(perm)†

Mild vs moderate 1.0596 .2583 1.1135 .1478

Mild vs severe 1.4474 .0017 1.4228 .0023

Moderate vs severe 1.6304 .0002 1.5265 .0003

Notes:
Bold values indicate statistical significance.*Time since cognitive impairment assessment + age + sex + antibiotic use + proton pump inhibitor use + opioid 
use + laxative use + recorded medication history + meal texture + liquid texture.
†Permutation p-value generated with a PERMANOVA.
‡Degrees of freedom = 2.

Figure 2. Phyla-level differences in the gut microbiome of residents 
of long-term aged care by cognitive impairment. Odds ratio and 
95% confidence interval of effect of cognitive impairment severity 
on phyla relative abundance. Colors indicate bacterial phyla: 
blue = Actinomycetota; green = Bacillota; purple = Pseudomonadota; 
gray = non-core species. Performed by multivariate analysis treating 
CI severity as a continuous variable and adjusting for time since 
cognitive impairment assessment, age, sex, antibiotic use, proton 
pump inhibitor use, opioid use, laxative use, recorded medical history, 
meal texture, and liquid texture. #Denotes phyla with recently amended 
names: Actinomycetota (Actinobacteria), Synergistota (Synergistetes), 
Bacillota (Firmicutes), and Pseudomonadota (Proteobacteria). *q < 0.05; 
***q < 0.001 for adjusted p-values following FDR correction.

http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glaf053#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glaf053#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glaf053#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glaf053#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glaf053#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glaf053#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glaf053#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glaf053#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glaf053#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glaf053#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glaf053#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glaf053#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glaf053#supplementary-data


The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 2025, Vol. 80, No. 7 7

Supplementary Table 3). The relative abundances of metage-
nomic pathways and the levels of associated metabolites were 
also positively correlated (Supplementary Figure 10).

Discussion
We report significant associations between characteristics 
of the fecal microbiome and the severity of CI in residents 
of long-term aged care facilities. Microbiome CI severity-
associated traits were identified even after adjustment for 
age, sex, prior medication exposure, and diet. Individuals 
with more severe CI exhibited a greater representation of the 
Actinomycetota phylum and Methanobrevibacter smithii, 
and a lower prevalence of Bacteroides uniformis, a reduced 
capacity for synthesis of SCFAs, neurotransmitters (glutamate 
and GABA), and amino acids that are essential for autophagy, 
and an increased capacity for methanogenesis. These findings 
identify microbial factors potentially influencing aging-
associated cognitive decline and present opportunities for 
prediction and treatment of CI.

Changes in intestinal microbiology can influence neu-
roplastic changes in the brain via a range of mechanisms 
(18–21). Many of these pathways relate to the production of 
specific factors by the gut microbiota, including the biosyn-
thesis of immunomodulatory metabolites and neurotransmit-
ters (24,60), amino acid metabolism (61,62), and the release 
of proinflammatory cytokines (60,63,64).

We assessed the potential influence of the gut microbiome 
of participants to neurophysiology through 2 complemen-
tary strategies. The first was the analysis of the metagenome, 
representing the functional capacity of microbes within the 
gut to produce particular metabolites. The second was a con-
firmatory analysis of the fecal metabolome, representing the 
output of the combined metabolic activity of the gut micro-
biota. Each of these processes identified factors that were sig-
nificantly associated with CI severity, and notably, positive 
correlations between metabolite levels and the prevalence of 
genes involved in their biosynthesis was widespread.

A lower capacity for microbial biosynthesis of the neu-
rotransmitters, glutamate and GABA, was evident in those with 
more severe CI. Levels of both factors have been associated 
with CI previously (9,65–68). The gut microbiome mediates 
neurological homeostasis via multiple key pathways, includ-
ing through metabolism and production of neurotransmitters, 
such as glutamate, GABA, dopamine, and serotonin. These 
neurotransmitters can then directly innervate intestinal neural 
pathways or circulate peripherally to the brain (21,69,70).

Severe CI was also associated with reduced capacity for 
bacterial biosynthesis of the SCFAs butyrate, acetate, and 
propionate. SCFA production is known to be important for 
normal cognitive function and in preventing neuroinflamma-
tion (60,71,72). Previous studies have identified an associa-
tion between a reduced capacity for SCFA biosynthesis and 
the development of a chronic and systemic inflammatory 
state, commonly referred to as “inflammaging,” involving 
increased circulation of IL-6, TNF-α, and C-reactive protein 
(73–75). Inflammaging, particularly in the brain, is associated 
with decreased neuronal arborization, numbers of neurons 
and synapses, and overall brain cortical volume (76) and has 
been implicated in the acceleration of dementia onset (77,78), 
and the rate of neurological deterioration (79,80).

In contrast to a decreased capacity for SCFA synthesis, 
we observed a greater capacity for methanogenesis with 
increasing CI severity. This relationship was apparent from 
the representation of methanogenic pathways within the 
metagenome, and from the increased relative abundance of 
species, such as Methanobrevibacter smithii, in those with 
severe CI. Increasing capacity for methanogenesis within the 

Figure 3. Species-level differences in the gut microbiome of residents 
of long-term aged care by cognitive impairment. Odds ratio and 
95% confidence interval of effect of cognitive impairment severity 
on species relative abundance. Colors indicate bacterial phyla: 
blue = Actinomycetota; orange = Bacteroidota; green = Bacillota = green; 
gray = other. Performed by multivariate analysis treating CI severity as 
a continuous variable and adjusting for time since cognitive impairment 
assessment, age, sex, antibiotic use, proton pump inhibitor use, opioid 
use, laxative use, recorded medical history, meal texture, and liquid 
texture. ns = not significant; *q < 0.05; **q < 0.01; ***q < 0.001 for 
adjusted p-values following FDR correction. Mild, n = 46; moderate, 
n = 58; severe, n = 55.
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Figure 4. Specific functional differences relating to neurotransmission, immunity, and metabolism in the gut microbiome of residents of long-term 
aged care by cognitive impairment. A) Metagenomic and metabolomic profiling of microbiome functional capacity and output for long-term aged 
care residents with cognitive impairment in relation to neuronal communication (B, C), immunity (D, E), and metabolism (F–G). Odds ratio and 95% 
confidence interval of effect of cognitive impairment severity on functional pathway relative abundance and metabolite normalized abundance. 
Performed by multivariate analysis, treating CI severity as a continuous variable, and adjusting for time since cognitive impairment assessment, age, 
sex, antibiotic use, proton pump inhibitor use, opioid use, laxative use, recorded medical history, meal texture, and liquid texture. The abundance of key 
pathways and metabolites grouped by cognitive impairment severity involved in neurotransmission, immunomodulation, and metabolism are shown. 
ns = not significant; *q < 0.05; **q < 0.01; ***q < 0.001 for adjusted p-values following FDR correction. Pathways: mild, n = 46; moderate, n = 58; 
severe, n = 55. Metabolites: mild, n = 12; moderate, n = 11; severe, n = 12.
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gut microbiome has been reported previously in 2 cohorts of 
centenarians (81,82), as well as in rodent models of aging 
(83). While the clinical consequences of increased methane 
production in the gut are poorly understood, high levels are 
associated with functional constipation (84), diverticulosis 
(85), and colon cancer (86).

The gut microbiome in participants with more severe CI 
was found to be depleted in its capacity to synthesize amino 
acids, particularly L-arginine. The availability of arginine 
is critical to the regulation of autophagy (87), the cellular 
process that involves the recycling of nutrients from mac-
romolecules in response to nutrient deficiency (88) and the 
removal of damaged material from the cellular environment 
(89). Genetic polymorphisms in genes involved in the regu-
lation of autophagy have been linked to a number of neu-
rodegenerative diseases, including Alzheimer’s, Parkinson’s, 
Huntington’s, and Lewy body diseases, frontotemporal 
dementia, and amyotrophic lateral sclerosis (90–94). The con-
version of arginine to putrescine, spermidine, and spermine 
by intestinal microbes promotes autophagy (95–97) and the 
significant reduction in arginine biosynthesis capacity is con-
sistent with the contribution of suppressed autophagy to the 
development and progression of age-related disease. Severe 
CI was also associated with a reduced capacity for microbial 
production of the essential amino acids, L-valine and L-lysine. 
Impaired L-valine production has been linked with declining 
neurological health previously (98), and diet supplementation 
with L-lysine and L-valine has been shown to improve cogni-
tive and psychological function in older adults (99).

Microbial functions, such as those associated with CI 
severity, can often be performed by many different mem-
bers of the gut microbiota. This phenomenon is referred to 
as functional redundancy and can result in relationships 
between individual microbial species and host measures 
of disease being less strong than those based on conserved 
microbial functional traits. Despite this, we observed a num-
ber of discrete bacterial taxa that were significantly asso-
ciated with CI. In particular, Methanobrevibacter smithii 
and Alistipes finegoldii were more prevalent in those with 
severe CI, while Bacteroides uniformis was less highly repre-
sented. As above, Methanobrevibacter smithii is associated 
with higher methane production (100) and has been iden-
tified as an inflammatory and cardiometabolic biomarker 
(101). While the precise mechanisms of Alistipes species in 
health and disease are still unclear (102), clinical studies of 
inflammatory diseases have shown Alistipes finegoldii trig-
gers intestinal inflammation and decreases SCFA-producing 
bacteria, potentially playing a pathogenic role in chronic 
diseases (102–104).

We also observed severe CI to be associated with a lower 
prevalence of bacterial taxa that are considered broadly 
beneficial. These included Bacteroides uniformis, which is 
associated with reduced risk of colorectal cancer (105) and 
inflammatory bowel disease (106), and Blautia species, which 
have the potential to inhibit the growth of pathogenic bacte-
ria in the intestine and reduce inflammation (107,108). Taxa 
that have been previously associated with aspects of cogni-
tion, such as Collinsella aerofaciens (44), were more prevalent 
in those with severe CI. However, other bacterial taxa asso-
ciated with aspects of aging, frailty, and cognitive decline in 
previous studies, including Faecalibacterium prausnitzii (59), 
Eubacterium rectale (44,109), and Escherichia coli (110–
112), were not associated with CI severity in our cohort.

In addition to the relative abundance of different bacterial 
species, analysis of the broad structure of the gut microbiota 
can also be informative. We assessed 3 different alpha diver-
sity measures, Shannon–Wiener diversity, Pielou’s evenness, 
and species richness, that together provide an overview of 
microbiota structure. While evenness, which represents the 
relative differences in the abundance of various species in the 
community, was not associated significantly with CI sever-
ity, Shannon–Wiener diversity and species richness were both 
higher in severe CI. Studies of the gut microbiota in aging 
have previously reported reduced diversity in older age. For 
example, Verdi and colleagues identified significantly lower 
fecal microbiota diversity to be associated with longer reac-
tion times (in cognitive assessments) in an independently liv-
ing aged cohort (4). Similarly, Wasser and colleagues reported 
reduced alpha diversity in those with Huntington’s disease 
(34), while 2 other studies have reported no significant rela-
tionship between CI severity and alpha diversity (39,113). In 
our analysis, where age was adjusted for, a contrary effect was 
observed, consistent with an association between CI and spe-
cific microbiome changes that is separate to wider microbial 
shifts that are typical in later life.

Our study used the ACFI assessment tool to ascertain 
CI severity. This tool has been employed by the Australian 
Commonwealth Government as a basis for care funding for 
all residents of long-term care facilities across Australia since 
2008, is completed by trained assessors, and includes the PAS-
CIS (a validated and consistently applied tool of CI in aged 
care). However, there are limitations to this tool. People may 
not be comprehensively assessed for CI if they have a sensory/
speech impairment, are non-English speaking, or have severe 
CI beyond the scope of the instrument, which can include a 
concurrent diagnosis of dementia or mental disorder (47,48). 
The ACFI is also designed for funding purposes, not clini-
cal care or epidemiological surveillance, which likely results 
in underreporting of these chronic health conditions (114). 
Finally, the tool is deployed at entry into aged care and not 
consistently reevaluated, leading to potential inconsistent time 
periods in CI assessment. In this study, the mean time between 
CI assessment and stool collection (16 months), and differ-
ences in mean time between groups, is within a period where 
clinically significant changes to CI are estimated to be min-
imal (115,116). Nevertheless, time between stool collection 
and CI assessment was included as a potential confounding 
variable in all analyses, as has been shown previously (117).

Our study had other limitations that should be considered. 
First, we were able to relate changes in intestinal microbi-
ology to cognitive function, but not to specific aspects of 
host neurological pathophysiology. Second, the relationships 
identified between taxonomic and functional features of the 
intestinal microbiome and CI are associative and whether 
they contribute directly to the development and progression 
of CI remains to be established. Third, the possibility that CI 
severity drives alterations in microbiome composition, medi-
ated by factors such as dementia medications, changes in food 
preparation for those with dysphagia, and isolation to locked 
wards for residents with severe behavioral care needs, cannot 
be excluded based on the current analysis. Indeed, changes in 
behavior associated with psychiatric conditions in other con-
texts, particularly those relating to diet, have been shown to 
contribute to disease-specific gut microbiome markers (118).

While our analysis involved participants from 5 facili-
ties in metropolitan South Australia, the findings are likely 
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to be representative of a wider phenomenon. Alignment 
of the GRACE cohort to the comprehensive Registry of 
Senior Australians (ROSA) (119), a cohort that includes 
over 2.8 million Australians (including those in long-term 
aged care), supported the representative nature of our study 
cohort (119).

Conclusions
We report age-, sex-, antibiotic-, and diet-independent 
microbial markers of severe CI. Our analysis implicates 
multiple gut microbiome–brain pathways in aging-
associated cognitive decline, including those involved in 
inflammation, neurotransmission, and autophagy. These 
findings raise the possibility of identifying cognitive decline 
and slowing its rate of progression via microbiome-targeted 
therapeutic interventions.

Supplementary Material
Supplementary data are available at The Journals of 
Gerontology, Series A: Biological Sciences and Medical 
Sciences online.
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