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� Abstract
Nuclear texture analysis measures the spatial arrangement of the pixel gray levels in a
digitized microscopic nuclear image and is a promising quantitative tool for prognosis
of cancer. The aim of this study was to evaluate the prognostic value of entropy-based
adaptive nuclear texture features in a total population of 354 uterine sarcomas. Isolated
nuclei (monolayers) were prepared from 50 mm tissue sections and stained with
Feulgen-Schiff. Local gray level entropy was measured within small windows of each
nuclear image and stored in gray level entropy matrices, and two superior adaptive tex-
ture features were calculated from each matrix. The 5-year crude survival was signifi-
cantly higher (P< 0.001) for patients with high texture feature values (72%) than for
patients with low feature values (36%). When combining DNA ploidy classification
(diploid/nondiploid) and texture (high/low feature value), the patients could be strati-
fied into three risk groups with 5-year crude survival of 77, 57, and 34% (Hazard Ratios
(HR) of 1, 2.3, and 4.1, P< 0.001). Entropy-based adaptive nuclear texture was an
independent prognostic marker for crude survival in multivariate analysis including
relevant clinicopathological features (HR 5 2.1, P 5 0.001), and should therefore be
considered as a potential prognostic marker in uterine sarcomas. VC 2014 The Authors.
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UTERINE sarcomas are rare tumors, comprising about 3% of uterine cancers (1–4)

and 7% of all soft tissue sarcomas reported (5). Most uterine sarcomas are aggressive

tumors, but there are marked differences in survival between the histological types

(1,2). However, the histological diagnosis of uterine sarcomas is challenging (2) and

because of the rarity of the disease, the experience in diagnosing these tumors is lim-

ited for most pathologists. Most studies on prognostic factors in uterine sarcomas

include a small number of cases and results are conflicting. There is currently no con-

sensus on the significance of various prognostic factors (1,6) and optimal treatment

(6). Tumor stage and mitotic index (MI) are reported to be important prognostic

factors in uterine sarcomas (1,2). However, information on the use of preoperative

imaging for staging purposes is lacking, and therefore uterine sarcomas are still surgi-

cally staged (1). Calculation of MI is a labor-intensive method based on subjective

manual classification of nuclei into cell cycle stages and has been shown to have a

low reproducibility (7,8). Therefore, there is a need for new reliable prognostic fac-

tors in uterine sarcomas (1).

In digital pathology, the field of nuclear texture analysis (nucleotyping) gives

information about the spatial arrangement of the pixel gray levels in a digitized
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microscopic nuclear image, and it is well documented that

such analysis is showing promising results as a novel diagnos-

tic and/or prognostic marker (9). The aim of the current study

was to evaluate the prognostic value of adaptive nuclear tex-

ture features based on local gray level entropy (10) in a series

including all uterine sarcomas in Norway during the period

1970–2000 (2,11). To our knowledge there are no other publi-

cations on nuclear texture analysis in uterine sarcomas.

In the field of nuclear texture analysis, it is common to

evaluate a large number of features on a limited training set of

clinical cases, without testing the chosen classifier on an inde-

pendent validation set. This easily leads to false or overopti-

mistic results (9,12). Identifying a few consistently valuable

features is important as it improves classification reliability

and enhances our understanding of what we are measuring.

Most published work in this field is based on features devel-

oped from the pixel gray level co-occurrence matrix (GLCM)

(13) and from the gray level run length matrix (GLRLM) (14),

and on fractal texture methods (9,15). In the GLCM and

GLRLM texture analysis methods, statistics on the relation

between the pixel gray level values in digital images are stored

in matrices (9). Predefined, nonadaptive texture features that

directly describe the probability distribution within the matrix

are extracted and they indirectly describe the image texture.

Each feature may be seen as a weighted sum of the probability

matrix elements, and by varying the weighting function differ-

ent aspects of the texture can be extracted. These static

weighting functions extract information from predefined

parts of e.g., the GLCM, indifferent to whether or not these

parts actually contain useful information for discriminating

between two clinical classes.

Walker et al. (16) proposed several methods for computa-

tion of adaptive features (AF) based on a multi-scale co-

occurrence matrix and an associated discrimination matrix.

Through a series of methodical articles (9,17,18), our group

has established a unified approach to extracting only two

superior adaptive texture features from matrices. This AF

extraction is based on a Mahalanobis class distance matrix

and a class difference matrix, which are computed from the

training set images of two clinical classes and define the two

adaptive weighting functions. The AF extract information

from the parts of the matrix that actually contain information

about the texture differences between the two clinical classes.

In Ref. (17), we found that the new AF extraction scheme as

applied to four relevant texture analysis methods (e.g., GLCM

and GLRLM) outperformed the classical predefined texture

features when applied to the most difficult set of 45 Brodatz

texture pairs.

Yogesan et al. (19,20) introduced the use of predefined,

nonadaptive texture features computed from gray level

entropy matrices (GLEM) as a new prognostic tool in an

effort to predict, which patients with metastatic prostate can-

cer that were most likely to respond to hormone treatment.

Dunn et al. (21) applied adaptive nuclear textural features

extracted from GLEMs for the assessment of dysplasia in Bar-

rett’s oesophagus, and found that these features differentiated

dysplastic and nondysplastic cases. We also found that adapt-

ive GLEM nuclear features were of independent prognostic

significance for relapse-free survival in early stage ovarian can-

cer (10).

In a recent study on the same material as used in the cur-

rent study, disease stage was found to be the most important

prognostic factor for all tumor histology types (1,2). The

prognosis of patients with leiomyosarcoma (LMS) at Stage I

was also significantly related to tumor size and MI, and the

prognosis of patients with endometrial stromal sarcoma (ESS)

at Stage I was related to MI and tumor cell necrosis. Kildal

et al. (11) analyzed DNA ploidy as a prognostic marker in the

same series, and found that DNA ploidy was useful as a prog-

nostic marker in patients with LMS and adenosarcoma (AS).

In the current study, we evaluated the prognostic value of

adaptive entropy-based features in the population based series

of 354 cases of uterine sarcomas, and studied the relation

between nuclear texture, DNA ploidy, b-catenin expression

(22), and clinicopathological features of the sarcomas.

MATERIALS AND METHODS

Patients

This retrospective study was performed on tissue samples

from 354 uterine sarcomas (11). A total of 587 uterine sarco-

mas were registered from 1970 to 2000 at the Norwegian Can-

cer Registry, which gathers information on all cancer events in

Norway (2,11). Survival dates were provided by the Cancer

Registry on 31st October 2007 for all patients. The tumors

were reclassified by an experienced gynecological pathologist

(VMA) according to the World Health Organization (WHO)

recommendations (23), and the diagnosis of uterine sarcoma

was confirmed in 419 of the 587 patients (2). The observation

time for patients still alive was a minimum of 82 months (2).

Of the 419 patients, 354 cases could be included in this study,

29 cases were not admitted to surgery, tissue blocks with

tumor material could not be obtained in 15 cases, and DNA

ploidy classification could not be obtained in 21 cases because

of poor quality of the tumor material) (11). A more detailed

description of the material has been given previously (2). The

study was approved by the Regional Ethics Committee.

Cell Nuclei and Imaging

Paraffin-embedded tissue fixed in 4% buffered formalin

was used for preparation of nuclei suspension. At histologic

review, representative areas with (the most aggressive) tumor

tissue and without necrosis, hemorrhage, or inflammation

were selected for analysis. Monolayers (isolated nuclei) were

prepared from one or more 50 mm sections using a modifica-

tion of Hedley’s method (24). The nuclei were stained with

Feulgen-Schiff according to an established protocol (25).

A DNA ploidy system, which consisted of a Zeiss axio-

plan microscope equipped with a 40/0.75 objective lens

(Zeiss), a 546 nm green filter and a high-resolution digital

camera (C4742-95, Hamamatsu Photonics, Japan) with 1,024

3 1,024 pixels/image and a gray level resolution of 10 bits/

pixel, was used to capture each image field. Shading correction

was performed for each such image field. The pixel resolution

was 166 nm/pixel on the cell specimen. Each nucleus was
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segmented from the background using a global threshold and

the segmented nuclei were stored in galleries in each case.

Trained personnel performed a screening of the nuclei and

selected tumor nuclei for the analysis. Stromal nuclei, necrotic

nuclei, doublets, and cut nuclei were discarded. The

mean number of measured tumor nuclei per case was 1,229

(278-3,972), and the median number of nuclei was 1,295.

Training and Validation Data Sets

The data set was randomly divided into a training set

(n 5 175) and a validation set (n 5 179), and then balanced

for histology type by moving seven LMS cases from the vali-

dation set to the training set and five ESS and two AS cases

from the training to the validation set. The training set cases

were grouped into two different prognostic classes. The

patients who survived for at least 5 years (n 5 92, 52.6%) were

defined as members of the good prognosis class, whereas the

patients that died within 5 years (n 5 83, 47.4%) were defined

as members of the poor prognosis class. The training set,

where the prognosis of each case was known, was used for

designing classifiers based on single texture features, whereas

the independent validation set was used for evaluation of the

classifiers. The validation set included 92 (51.4%) good and

87 (48.6%) poor prognosis cases. The training set was also

used in a search for useful combinations of texture with DNA

ploidy (11), b-catenin expression (22), and relevant clinicopa-

thological parameters (2), and only parameters that were sig-

nificant for 5-year crude survival were applied on the

complete data set.

Nuclear Texture Analysis

2D GLEM. 2D GLEMs (9,10,19) were computed from all

nuclear images (Fig. 1a). The GLEM element P(i,j) contains

the normalized frequency of a local first order gray level

entropy value j within a window of size w3w centered around

a pixel with gray level value i (19). The gray level entropy is

defined as

j52
XG

i51

PðiÞ3log PðiÞ; 0 < PðiÞ � 1

where PðiÞ is the normalized frequency of occurrence of gray

level i within the window and G is the number of gray level

re-quantization levels in the image. The entropy measures the

gray level non-uniformity within the window. Homogeneous

structures will give low entropy values whereas inhomogene-

ous structures will give high entropy values. The number of

gray levels in the nuclear images was reduced by re-

quantization to 64 before computation of the GLEMs (10).

In the current study, we extracted seven predefined, non-

adaptive texture features (19) from GLEM matrices computed

for w515. Each of these features is defined as a weighted sum

of the GLEM element values, where the weighting is based on

either the value of the matrix element [entropy homogeneity

(EH), entropy non-normality (ENN)] or the position in the

matrix [average entropy (AE), low-entropy emphasis (LEE),

high-entropy emphasis (HEE), low gray-level entropy empha-

sis (LGEE), high gray-level entropy emphasis (HGEE)]. Each

case (patient) was represented by the median feature value

computed from all nuclei/case.

AF from 2D GLEM. As an alternative to the nine prede-

fined, nonadaptive features defined in Ref. 19, we extract only

Figure 1. (a) The computation of a gray level entropy matrix

(GLEM). 1: A moving window of size w3w pixels is centered

around each pixel in a nuclear image, 2: For each position in the

image, the gray value ðiÞ of the center pixel and the gray level

entropy value ðjÞ of the pixels within the window are extracted, 3:

i and (the scaled) j are used as indexes in the GLEM, and the fre-

quency of obtaining different i; jð Þ-patterns (entropy patterns) is

accumulated, and 4: The final GLEM is normalized by dividing

each element in the matrix by the total number of pixels in the

nuclear image. (b) Computation of a 3D patient matrix. 1,2: For

each nucleus representing a given patient, a 2D GLEM is com-

puted, and 3: a 3D patient matrix using the nuclear area group

(a51210) as a third axis is accumulated. The 3D patient matrix is

normalized by dividing each element by the number of nuclei rep-

resenting the patient. (c) Entropy patterns that are emphasized in

the computation of (left) AF4Dpos and (right) AF4Dneg using area

groups a5225.
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two AF from each GLEM (10,21). The nuclear images were

grouped into 10 area groups a51; 2; . . . ; 10, according to the

number of pixels in the nucleus (where a51 corresponds to a

nuclear area of 1,000–1,999 pixels; a52; nuclear area of

2,000–2,999 pixels, . . ., a510; nuclear area >10,000 pixels)

(10,18). By using area groups we avoid problems caused by

mixing data from cells having different nuclear area (18), and

we can compute our features from the area groups that con-

tain most of the prognostic information (10,18).

Our AF extraction consists of two steps: (i) Computation

of a GLEM Mahalanobis class distance matrix and a GLEM

class difference matrix between the two prognostic classes.

Only the training set cases were included in the computation

of these matrices. (ii) Extraction of two AF from the GLEM of

each nuclear image. This feature extraction is based on the

computed class distance and difference matrices from step (i).

Step (i): Computation of adaptive weighting functions. For

each cell nucleus from a patient, a 2D GLEM was computed,

using a window size of 15315 pixels. The nuclear images

from the n-th patient of class xc (c 5 1,2; x1 5 good progno-

sis, x2 5 poor prognosis) give a set of average patient matrices

Pn(i,j|a, xc), for a 51, . . ., 10. On the basis of these patient

matrices, we then calculate average matrices over all the N(a,

xc) training set patients in each area group of the two classes

�Pði; jja;xcÞ5
1

Nða;xcÞ
XNða;xc Þ

n51

Pnði; jja;xcÞ;

a51; . . . ; 10; c51; 2

On the basis of these matrices, we compute a GLEM class

difference matrix in each area group (see Fig. 2a for the matrix

computed from a 5 3)

DPði; jja;x1;x2Þ5�Pði; jja;x1Þ2�Pði; jja;x2Þ; a51; . . . ; 10

and a GLEM class variance matrix in each area group of the

two classes

r2
P ði; jja;xcÞ5

1

Nða;xcÞ21

3
XNða;xc Þ

n51

fPnði; jja;xcÞ2�Pði; jja;xcÞg2; a51; . . . ; 10; c51; 2

and finally the GLEM Mahalanobis class distance matrices

JPði; jja;x1;x2Þ5 2
f�Pði; jja;x1Þ2�Pði; jja;x2Þg2

r2
Pði; jja;x1Þ1r2

Pði; jja;x2Þ

" #1=2

;

a51; . . . ; 10:

The class distance matrices will now have higher values

in those parts of the GLEM domain where there are class-

discriminating differences, making them more useful as

weighting functions than longer lists of previously predefined

static weighting functions.

Step (ii): Computation of AF. For each nuclear image, we

extract two AF from the 2D GLEM by using the 2D squared

Mahalanobis class distances as weights, and the disjoint posi-

tive/negative parts of the 2D class difference matrix as the

domains of the weighted summations. Class distance and dif-

ference matrices were selected according to the nuclear area

(area group a) of each nucleus

AF2Dpos5
X

DPði;jja;w;x;x2Þ>0

Pði; jjaÞ½J 2
Pði; jja;x1;x2Þ�

AF2Dneg5
X

DPði;jja;w;x1;x2Þ<0

Pði; jjaÞ½J 2
Pði; jja;x1;x2Þ�

Figures 2b and 2c show the squared Mahalanobis distan-

ces computed from the training set of uterine sarcomas. These

figures illustrate, which parts of the GLEM that were empha-

sized in the computation of each feature. Each case (patient)

was represented by the (scalar) mean value of the texture fea-

ture values extracted from GLEM matrices of all nuclei within

area groups a5224 (10,18). Because the two AF extract infor-

mation from the parts of the matrix where the statistical dif-

ferences between classes are highest, and take into account,

which way the differences go, we have obtained a compact fea-

ture set. Thus, we avoid the computation of a long list of ad

hoc features based on predefined, static weight functions, fol-

lowed by some feature selection strategy.

Jensen-Shannon divergence between GLEMs. To quantify

how similar the GLEM of a given nucleus was to each of the

two class average GLEMs, we computed the Jensen-Shannon

divergence (26) from the nuclear GLEM to these average mat-

rices, thus getting two distance measures per nucleus, JSGood

and JSPoor. We also computed the difference between these dis-

tances, JSDiff 5 JSGood – JSPoor, where a negative JSDiff corre-

sponds to nuclei with GLEMs more similar to the average

good prognosis matrix, whereas a positive JSDiff corresponds

to GLEMs more similar to the average poor prognosis matrix.

We also computed the proportion of nuclei (within area

groups a5224) with negative JSDiff of each of the training set

cases.

AF from 4D patient matrices. For each nucleus represent-

ing a given patient, a 2D GLEM was computed, and a 3D

patient matrix P(i,j,a|w) using the nuclear area group a as a

third axis was accumulated. The 3D patient matrix was

normalized by dividing each element by the number of

nuclei representing the patient (Fig. 1b). Such 3D patient

matrices were computed for several different window

sizes w55; 7; . . . ; 31, and a 4D patient matrix P(i,j,a,w) was

obtained by concatenating the 3D matrices computed for the

14 window sizes (10).

Assuming that the n-th patient of class xc, gives a 4D

patient matrix Pn(i,j,a,w|xc) we then calculate an average

matrix over all the training set patients in each class xc, and

two 4D class variance matrices. On the basis of these matrices,

we compute a 4D class difference matrix and a 4D Mahalano-

bis class distance matrix in the same manner as described for

2D matrices. Finally, we extract two AF (AF4Dpos, AF4Dneg)
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from each 4D patient matrix by using the squared 4D Mahala-

nobis class distances as weights, and the disjoint positive/neg-

ative parts of the 4D class difference matrix as the domains of

the weighted summation. In the current study, the AF are

extracted from a single 4D matrix per patient (10), using area

groups a5225 in the computation of the features (Fig. 1c).

Implementation. The texture analysis method was imple-

mented in Matlab (R2012b). A fast version of our code for

computation of GLEMs was implemented in Java and called

from the Matlab program.

Classification

To evaluate the prognostic value of each AF, minimum

Euclidean distance classifiers (9) based on single features were

constructed to classify each case (patient) into the prognosis

classes. The classification results were then used as input to

survival analysis. The classifiers were designed on the training

data set. The correct classification rate (CCR), sensitivity, and

specificity on the training set were estimated by resubstitution,

and the classifiers that were significant in univariate analysis

were evaluated on the separate independent validation set

(holdout validation) (9,12).

Figure 2. (a) The difference between average gray level entropy matrices (GLEMs) computed from the good and poor prognosis training

cases. Positive (red, yellow)/negative (dark blue) values in the matrix correspond to entropy patterns that are more/less probable for good

compared to poor prognosis cases. (b, c) Entropy patterns that are given the largest weights (squared Mahalanobis class distances) in the

extraction of (b) AF2Dpos and (c) AF2Dneg. (d) Histogram of difference between Jensen-Shannon distances, JSDiff 5 JSGood – JSPoor based

on nuclei from two example cases. The part of the histogram with positive y-values (negative JSDiff) corresponds to nuclei with GLEMs

more similar to the average good prognosis matrix, whereas the part of the histogram with negative y-values corresponds to nuclei with

GLEMs more similar to the average poor prognosis matrix. (e) Two example nuclei with corresponding GLEMs. The entropy patterns that

contributed most to the AF2Dpos feature value (i.e., positive differences in the class difference matrix and squared Mahalanobis dis-

tances> 0.3) are visualized as yellow pixels in the nuclei. The feature AF2Dpos gives a relatively “high” feature value for the example cell

(number 343) from the good prognosis case M05-041 and a low feature value for the cell (number 238) from the poor prognosis cases

M05-017. In the pseudo-3D representation of the nuclei, the inverse gray level (1,024 gray levels) of each pixel represents the height on the

z-axis (i.e., black pixels correspond to maximum height). The illustrated matrices were computed from nuclei within area group a53; i.e.,

nuclei with nuclear area of 3,000–3,999 pixels.
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For comparison, predefined features from GLEM matri-

ces were extracted and minimum Euclidean distance classifiers

based on single features and combinations of two and three

features were constructed. Bootstrap estimates of CCR, sensi-

tivity, and specificity (resampling with replacement, 10,000

iterations) were computed by dividing the training set into

several smaller training (46 good and 42 poor prognosis cases)

and test (46 good and 41 poor prognosis cases) sets.

Statistical Analysis

The SPSS statistical package (SPSS Statistics 20) was used

for survival analysis. Survival of patients was estimated using

univariate Kaplan-Meier analysis. Crude survival was calcu-

lated from date of diagnosis to death or end of (5-year)

follow-up. The log-rank test was used for test of equality of

survival distributions for the different levels of each feature.

The Cox proportional hazards regression model was used for

both univariate and multivariate analyses. P-values <0.05

were considered statistically significant.

The variables were grouped as follows: histological sub-

type as LMS, ESS, AS, undifferentiated uterine sarcomas

(UUS), or other sarcomas; DNA ploidy as diploid/nondiploid;

MI as below (�)/above 10 per 10 high-power field (HPF);

tumor extent as confined to uterus (Stage I)/not confined to

uterus (Stages II–IV); tumor size as below (�)/above 10 cm;

tumor margins as pushing or infiltrating; cellular atypia as

mild, moderate or severe; tumor necrosis as present or absent,

hyaline necrosis as present or absent, and vascular invasion as

present or absent (11). The texture feature (AF4Dpos) was

grouped as high/low feature value based on an optimal thresh-

old identified in the training set. b-catenin expression was

grouped as positive/negative membranous, cytoplasmic and

nuclear (22).

RESULTS

All adaptive texture features were significant for crude

survival in Cox univariate analyses based on the training set,

and were also found to be significant when evaluated on the

independent validation set. The best texture feature (AF4D-

pos) classified the training cases into good or poor prognosis

with a CCR of 67%, and the validation cases were classified

with a CCR of 68% (Table 1), and this feature was selected for

further analyses. The 5-year crude survival, as computed from

the complete data set, was significantly higher (P <0.001) for

patients with high texture feature value (72%) than for

patients with low feature value (36%, Fig. 3a). When combin-

ing DNA ploidy category (diploid/nondiploid) and texture

(high/low feature value), the training set patients could be

stratified into tree risk groups: a low risk group for cases clas-

sified as DNA diploid, a medium risk group for nondiploid

cases with high texture feature value, and a high risk group

for nondiploid cases with low texture feature value, and this

result was verified on the validation set. The 5-year crude sur-

vival computed for the complete data set for the three risk

groups were 77% (n 5 110), 57% (n 5 69), and 34%

(n 5 175), with relative HR of 1, 2.3, and 4.1 (P< 0.001),

respectively (Fig. 3b).

The CCR bootstrap estimates of the predefined, nona-

daptive GLEM features were about 50% for AE, LEE, HEE,

and ENN and about 55% for LGEE, HGEE, and EH. Combi-

nations of two and three features did not increase the CCR

values.

Univariate analyses were performed separately on

patients with tumors of the two largest histology types (Figs.

3c–3f), whereas the other types were too small for similar

analysis. The 5-year crude survival for patients with LMS were

65% for tumors with high texture feature value compared to

34% for patients with LMS with low feature value (HR 5 2.4,

P< 0.001). The 5-year crude survival for patients with Stage I

LMS tumors were 69% versus 42% for tumors with high ver-

sus low texture feature value (HR 5 2.2, P 5 0.002). The 5-

year crude survival was 82% for ESS patients with high feature

value and 50% for patients with low feature value (HR 5 3.5,

P 5 0.006), and the 5-year crude survival for patients with

Stage I ESS were 90% versus 67% for patients with high versus

low texture feature value (HR 5 3.7, P 5 0.067).

Texture was significant in multivariate analysis (Table 2).

Figures 3g–3q show survival curves based on texture, stratified

for the relevant clinicopathological features that were signifi-

cant for 5-year crude survival on the training data set. b-

catenin expression was not found to be significant for 5-year

crude survival when including only the training cases.

Figure 4 shows survival curves for the three risk groups

based on tumor size and MI that were defined for Stage I LMS

cases in the study of Abeler et al. (2), and also survival curves

based on texture, stratified for these risk groups.

Figure 2 illustrates the difference in nuclear texture

between the two prognostic classes. The entropy-patterns

were more homogeneous in nuclei from patients with a good

prognosis (Fig. 2b), whereas entropy patterns in nuclei from

poor prognosis patients showed more variation (Fig. 2c).

The average proportion of nuclei with negative JSDiff (i.e.,

with entropy matrices more similar to the average good

prognosis matrix compared to nuclei with more deviating

patterns) were 76.9% for the 92 good prognosis and 58.1%

for 83 poor prognosis training set cases. Figures 2d and 2e

Table 1. The correct classification rates (CCR), sensitivity, and

specificity obtained by minimum Euclidean classifiers based on

single texture features, and hazard ratios and P-values obtained

by Cox proportional hazard regression model of the 175 training

cases (92 good prognosis and 83 poor prognosis) and the 179 val-

idation cases (92 good prognosis and 87 poor prognosis).

FEATURE:

CCR

(%)

SENS.

(%)

SPEC.

(%)

HR (95% CI)

(5-YEAR)

P

(5-YEAR)

Training

AF2Dpos 61 53 67 1.83 (1.19–2.81) 0.006

AF4Dpos 67 73 61 2.93 (1.80–4.78) <0.001

Validation

AF2Dpos 65 61 68 2.17 (1.41–3.34) <0.001

AF4Dpos 68 74 63 2.96 (1.84–4.78) <0.001

CI, confidence interval; HR, hazard ratio.
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illustrate the difference in texture between two example

training set LMS cases with different prognosis. The propor-

tion of nuclei with negative JSDiff were higher for the good

prognosis case M05-041 (85% within area Group 3) than for

the poor prognosis case M05-017 (64%, Fig. 2d). The figure

also illustrates an example of mapping windows contributing

to the entropy matrices back to cell nuclei. The entropy pat-

terns that were given the largest weights in the extraction of

AF2Dpos (as shown in Fig. 2b) were identified, and the pixels

in two example nuclei that contributed to these patterns

were identified and visualized (Fig. 2e). These patterns

occurred 811 times (for 25% of the nuclear pixels) in the

nucleus from the good prognosis case and zero times in the

nucleus from the poor prognosis case.

Figure 3. Kaplan-Meier 5-year crude survival curves based on texture. (a) Survival curves are based on the complete data set (n 5 354),

HR 5 2.9 (2.1–4.1), (b) Survival curves based on a combination of texture (high/low value) and DNA ploidy category (diploid/nondiploid)

on the complete data set. Survival curves based on (c) all LMS cases (n 5 222), HR 5 2.41 (1.56–3.72) (d) LMS Stage I (n 5 173), HR 5 2.25

(1.35–3.75) (e) all ESS cases (n 5 78), HR 5 3.47 (1.43–8.38), and (f) ESS Stage I (n 5 52), HR 5 3.65 (0.91–14.64). Five-year crude survival

curves based on texture stratified for (g) tumor extent; tumor confined to the uterus (n 5 267 cases), (h) tumor spread outside the uterus

(n 5 87), (i) MI; 0–10 per 10 high power field (n 5 207), (j) >10 per 10 high power field (n 5 143), (k) tumor size; �10 cm (n 5 260) (l) above

10 cm (n 5 75), (m) tumor necrosis; absent (n 5 86), (n) present (n 5 264), (o) cellular atypia; mild (n 5 106), (p) moderate (n 5 130), and (q)

severe (n 5 112). P-values were estimated by the log-rank test and hazard ratios were estimated by the Cox model.
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Figure 3. (Continued)
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DISCUSSION

In the field of cancer medicine, much current effort goes

into the development of predictive genetic profiling tests for

common cancers. The rationale here is that because all cancers

are believed to originate in genomic alterations, it could be

possible to identify clusters of genes whose activity is

enhanced or depressed in patients having a good prognosis, or

in patients whose cancer will fail to respond to a specific ther-

apy regime. A similar rationale supports the use of quantita-

tive image-based DNA ploidy measures because it appears

that a tumor’s ability to metastasize is connected to the pres-

ence within it of cell lines with aneuploidy DNA content. Such

large-scale genomic instability must correlate with large-scale

rearrangement of interphase nuclear chromatin. Nuclear tex-

ture analysis reflects such large-scale chromatin rearrangement

and is therefore interesting as a potential method of choice for

the prediction of significant clinical outcomes (9,15,27). In

general, the literature on nuclear texture analysis supports this

idea, though there are methodological challenges related to

the large number of possible features that can be measured,

just as there are difficulties with approaches to the same prob-

lem that are based on genomic profiling (9,28). In the current

study, we computed a compact set of superior adaptive

nuclear texture features based on local nuclear gray level

entropy. The training set of 175 patients was used for design-

ing classifiers based on single texture features. When evaluat-

ing the classifiers on the validation set of 179 patients, we

obtained similar classification results as obtained on the train-

ing set (Table 1). The strength of using separate training and

validation data sets is that an eventual overfitting during

training will be showed by testing (9). The only true reliable

estimate of the performance of a classifier is obtained from

separate training and validation sets (12,28,29). When com-

paring the adaptive nuclear texture feature extraction

approach with the more conventional predefined features

extracted from the same entropy matrices, we found that both

single nonadaptive features and feature combinations were

outperformed by our low dimensional AF extraction

approach.

When comparing crude survival for diploid (n 5 28) and

nondiploid (n 5 194) LMS tumors, Kildal et al. (11) found

that the difference did not reach statistical significance

(P 5 0.051), whereas texture gave significantly better 5-year

crude survival (P< 0.001) for LMS with tumors with high fea-

ture values (65% survival, n 5 75) compared to low feature

values (34%, n 5 147, Figs. 3c and 3d). Kildal et al. (11) found

that 5-year crude survival for diploid ESS cases was 83% and

nondiploid ESS cases was 40% (P< 0.001). Texture gave simi-

lar results for these tumors, 82% 5-year crude survival for the

60 cases with high feature values and 50% survival for the 18

cases with low feature values (P 50.003, Figs. 3e and 3f).

Abeler et al. (2) performed a histopathological review of

all cases (uterine sarcomas in Norway between 1970 and

2000) and examined the possibility of overdiagnosis of leio-

myomatous tumors. The diagnosis of uterine sarcomas was

confirmed in 419 (71%) cases, whereas most of the 168

excluded cases got a revised diagnosis (28 benign leiomyoma,

29 cellular leiomyoma, 15 atypical leiomyoma, 20 leiomyoma-

tous tumor of uncertain malignant potential, two inflamma-

tory myofibroblastic tumor, three LMS outside uterus 1

benign leiomyoma in the uterus, 14 carcinoma, 16 carcino-

ma 1 leiomyomatous tumor, one lymphoma). Because of this

diagnostic uncertainty, we have chosen to develop our

Table 2. Five-year crude survival related to nuclear texture,

tumor extent, MI, tumor size, tumor necrosis, cellular atypia, hya-

line necrosis, vascular invasion, tumor margins, and tumor type.

UNIVARIATE

ANALYSIS:

MULTIVARIATE

ANALYSIS
FEATURE: P HR (95% CI) P

Texture:

High value <0.001 1.0 0.001

Low value 2.1 (1.4–3.2)

Tumor extent:

Confined to the uterus <0.001 1.0 <0.001

Spread outside the uterus 2.7 (1.8–4.0)

MI:

0–10 high-power field <0.001 1.0 <0.001

>10 high-power field 2.3 (1.6–3.4)

Tumor size:

0–10 cm <0.001 1.0 0.003

>10 cm 1.8 (1.2–2.6)

Tumor necrosis:

Present <0.001 1.0 0.122

Absent 1.5 (0.9–2.6)

Cellular atypia:

Mild <0.001 1.0 0.478

Moderate 1.4 (0.7–2.6)

Severe 1.2 (0.6–2.3)

Hyaline necrosis:

Present 0.045 1.0 0.770

Absent 1.1 (0.7–1.5)

Vascular invasion:

Present 0.023 1.0 0.116

Absent 1.3 (0.9–1.9)

Tumor margins:

Pushing 0.040 1.0 0.300

Infiltrating 1.3 (0.8–2.0)

Tumor type:

LMS <0.001 1.0 0.066

ESS 0.7 (0.3–1.5)

AS 1.4 (0.5–3.7)

UUS 0.6 (0.3–1.5)

Other sarcomas 2.3 (1.2–4.4)

P value: Univariate analysis; crude survival analysis (log-

rank), Multivariate analysis; Cox proportional regression model;

HR, hazard ratio; CI, confidence interval.

Missing values; tumor size 19, cellular atypia 6, MI 4, tumor

necrosis 4, hyaline necrosis 12, vascular invasion 21 and tumor

margins 16.

LMS, leiomyosarcoma; ESS, endometrial stromal sarcoma;

AS, adenosarcoma; USS, undifferentiated uterine sarcoma.

Other sarcomas include 10 sarcoma not otherwise speci-

fied, four rhabdomyosarcoma, two giant cell tumors with/without

LMS and one PEComa.

Original Article

Cytometry Part A � 87A: 315�325, 2015 323



prognostic marker based on nuclear texture independently of

histological type. However, we have shown that nuclear tex-

ture is of prognostic value both independently of histological

types and also within the two types tested.

In a multivariate analysis, including nuclear texture,

tumor extent, MI, tumor size, tumor necrosis, cellular atypia,

hyaline necrosis, vascular invasion, tumor margins, and tumor

type, only nuclear texture, tumor extent, MI, and tumor size

were found to be of independent prognostic significance for

crude survival (Table 2). Texture contained additional prog-

nostic information in combination with each of the clinicopa-

thological features that were significant in univariate analysis

of the training data set (Figs. 3g–3q). Abeler et al. (2) found

that tumor size and MI were significant prognostic markers

(P< 0.001) in leiomyosarcomas confined to the uterus (Stage

I) and that these parameters allowed for a separation into

three risk groups with marked differences in prognosis. In the

current study, we have shown that nuclear texture contained

additional prognostic information when stratified for the two

largest risk groups (Figs. 4b and 4c).

In several studies (9,10,17,18), we have found a differ-

ence in chromatin structure between cell nuclei from differ-

ent clinical classes. In the current study, we have found that

the entropy patterns were more homogeneous in nuclei

from patients with a good prognosis, whereas entropy pat-

terns in nuclei from poor prognosis patients showed more

variation. GLEM class difference matrices showed that the

tumor nuclei from patients with good prognosis have a

higher probability of higher gray level values and lower local

entropy values compared to nuclei from patients with poor

prognosis (Fig. 2a). These findings were also observed in a

study of tumors from patients with early ovarian cancer

(10), and in a study on dysplasia in Barrett’s oesophagus,

we found that entropy patterns in nuclei from dysplastic

cases showed more variation than in nuclei from nondys-

plastic cases (21).

In digital pathology, the concept of entropy is useful for

describing and quantifying the heterogeneity in digital images

of cancer tissue and nuclei (27,30). It is not unreasonable to

believe that the mutations of the genome and epigenetic

Figure 4. Kaplan-Meier 5-year crude survival curves for risk groups based on MI and tumor size for (a) LMS Stage I (n 5 165). Crude sur-

vival based on the texture stratified for (b) risk Group 1; LMS Stage I (n 5 69), (c) risk Group 2; LMS Stage I (n 5 95) and (d) risk Group 3;

LMS Stage I (n 5 19). The risk groups were defined as in Ref. (2): low risk: tumor size� 10 cm and MI� 10 per high power field (HPF),

medium risk: either tumor size> 10 cm or MI> 10 per 10 HPF, high risk: tumor size> 10 cm and MI> 10 per HPF. P-values were estimated

by the log-rank test.
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alterations that occur during carcinogenesis will increase the

randomness and spatial entropy inside the nucleus. Therefore,

with increasing malignant potency of a tumor an increase in

entropy is both expected and observed in cytological and his-

tological preparations in diagnostic and prognostic studies

(27). Several studies have also shown that the fractal dimen-

sion of chromatin in routinely stained histological or cytologi-

cal preparations increases in various neoplasias during

carcinogenesis and tumor progression, and is higher in

patients with poor prognosis compared to patients with good

prognosis (15). Both fractal dimension and gray level entropy

quantify the complexity of the chromatin texture in digital

images (31). However, the relation between fractal dimension

computed from the complete nucleus and local entropy com-

puted within small windows needs to be investigated further.

This study showed that adaptive nuclear texture features

based on local entropy are independent prognostic markers

for crude survival in uterine sarcomas. Given these results,

these features should be considered as a potential prognostic

marker in uterine sarcoma. On the basis of the result in the

current study, together with results from earlier studies on

ovarian cancer (9,10,18) and Barrett’s oesophagus (21), we

believe that nuclear texture is a more general prognostic

marker that is promising because of its ability to measure

large scale genomic instability in cancer cell nuclei. Further

studies are required to investigate the underlying mechanisms

behind these results, and how pixel-based texture features link

to large-scale rearrangement of interphase nuclear chromatin.
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