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Abstract: Agronomic traits such as biomass yield and abiotic stress tolerance are genetically complex
and challenging to improve through conventional breeding approaches. Genomic selection (GS) is an
alternative approach in which genome-wide markers are used to determine the genomic estimated
breeding value (GEBV) of individuals in a population. In alfalfa (Medicago sativa L.), previous
results indicated that low to moderate prediction accuracy values (<70%) were obtained in complex
traits, such as yield and abiotic stress resistance. There is a need to increase the prediction value
in order to employ GS in breeding programs. In this paper we reviewed different statistic models
and their applications in polyploid crops, such as alfalfa and potato. Specifically, we used empirical
data affiliated with alfalfa yield under salt stress to investigate approaches that use DNA marker
importance values derived from machine learning models, and genome-wide association studies
(GWAS) of marker-trait association scores based on different GWASpoly models, in weighted GBLUP
analyses. This approach increased prediction accuracies from 50% to more than 80% for alfalfa
yield under salt stress. Finally, we expended the weighted GBLUP approach to potato and analyzed
13 phenotypic traits and obtained similar results. This is the first report on alfalfa to use variable
importance and GWAS-assisted approaches to increase the prediction accuracy of GS, thus helping
to select superior alfalfa lines based on their GEBVs.

Keywords: genomic selection; WGBLUP; Medicago sativa

1. Introduction

Alfalfa (Medicago sativa L.) is an autotetraploid (2n = 4x = 32) perennial forage crop
with a genome size of 800–1000 Mb [1]. However, alfalfa breeding is complicated by its
high heterozygosity, polysomic inheritance, and out-crossing nature, which hinder the
creation of inbred lines. Alfalfa breeding goals target improvement of forage yield, quality,
and tolerance to biotic and abiotic stresses. This process requires the selection of perennial
plants that can maintain biomass productivity and quality over several years. Therefore,
traits must be evaluated over multiple harvests each year for several years. Consequently,
genetic gain is slower compared to annual crops. In addition, alfalfa breeding programs
have largely focused on recurrent phenotypic selection (PS) in field environments to
improve quantitative traits of interest. However, this approach is constrained by breeding
population size, genotype × environment interactions, or low heritability of the trait, thus
hindering the development of superior varieties.

One promising alternative to recurrent PS is indirect selection based on the use of
molecular markers generated, for example, via genotyping by sequencing (GBS) [2]. Mark-
ers closely linked to quantitative trait loci (QTL) can then be used for marker-assisted
selection (MAS) in breeding programs. Initially, QTLs are detected through genetic map-
ping or genome-wide association studies (GWAS), where marker-trait associations that
exceed specific thresholds are declared statistically significant (Figure 1a). However, MAS
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is primarily effective for traits controlled by relatively few genes with large effects. For
complex traits (e.g., stress tolerance or yield) in elite populations, it can be difficult to
clearly identify QTL with major effect because the trait is often controlled by multiple loci
possessing small effects.
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Figure 1. Indirect selection based on molecular markers. (a) Generalized Manhattan plots illustrating a comparison of
GWAS effectiveness in simple (left) vs. complex traits (right). Note: Bold dashed line indicates minimum threshold to select
significant markers. A significant signal (i.e., QTL) was identified in the simple trait (left panel), while no defined QTL was
identified for the complex trait. Therefore, genomic selection (GS) is more appropriate and practical for complex traits.
(b) Common parametric and non-parametric models used in GS and their computational requirements. GBLUP, genomic
best linear unbiased prediction; RRBLUP, ridge-regression BLUP; RF, random forest; SVM, support vector machine; MLP,
multilayer perceptron; CNN, convolutional neural network; RNN, recurrent neural network.

Soil salinity is one of the major environmental factors limiting the productivity of
alfalfa. Genomic tools have been applied to identify important genetic factors that influence
salt tolerance in alfalfa. Genetic loci associated with salt stress tolerance have been identi-
fied from different studies. Yu et al. (2016) identified 23 markers and 14 functional genes
associated with germination under salt stress [3]. Liu et al. (2017) identified 42 markers as-
sociated with forage yield, plant height, leaf chlorophyll content, and stomatal conductance
under salt stress [4]. Liu et al. (2019) identified 49 markers associated with forage yield,
plant height, leaf relative water content, and stomatal conductance under salt stress [5].
Most recently, Medina et al. (2020) identified 27 markers associated with biomass yield and
plant vigor under salt stress [6]. Those results highlighted the genetic complexity of salt
stress response in alfalfa.

Conventional breeding strategy for improving salt tolerance of alfalfa is time con-
suming and less effective. Genomic selection (GS) offers the potential to shorten alfalfa
breeding and selection cycles. GS is a promising alternative to determine the genetic
potential or breeding value of an individual based on whole-genome markers (Figure 1a).
This method follows the infinitesimal model, which assumes that a quantitative trait is
determined by an infinite number of unlinked and non-epistatic loci, each one with a very
small effect that satisfies normality and linearity [7]. This technique uses both parametric
and non-parametric statistical models to determine associations of phenotypic trait values
with genome-wide molecular markers. This information is subsequently used to predict
future breeding values (i.e., genomic-estimated breeding values, GEBVs) for each indi-
vidual in a population based on their genome-wide marker profile/genotype [8]. Hence,
rapid marker-based selection cycles can replace some time-intensive phenotypic selection
cycles to accelerate genetic gain. In this paper, we review different GS models and their
application to polyploid crops. We also demonstrate the implementation of GS models on
a real dataset of alfalfa and potato to identify improved approaches to implement GS in
different breeding programs.
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2. Statistical Methods in GS

There is a wide repertoire of parametric and non-parametric models to obtain GEBVs
that differ in complexity, accuracy, and computational requirements (Figure 1b). Some
phenotypic traits are highly complex and more difficult to predict using their genetic
information, therefore, accuracy in GS modeling is a cornerstone. Model accuracy metric is
calculated as the Pearson’s correlation coefficient (rGEBV:y) between GEBVs in a training
population and observed phenotypes in a testing population. Determining a GEBV can be
solved as a regression:

y = Xβ + e (1)

where y is a vector (n× 1) of phenotypic outcomes in n observations, X is a matrix (n× p)
with p number of markers or predictors in n observations, β is the vector (p × 1) of
marker effects and e is a vector of residual effects. In GS, however, molecular markers
or predictors (p) are greater than observations (n), generating a large p small n problem
(p� n). Therefore, estimation of marker effects via multiple regression by ordinary least
squares is not possible. To resolve this issue, multiple methods have been developed to
handle the high dimensionality of the genomic data. Shrinkage models, such as best linear
unbiased prediction using ridge-regression (RRBLUP) [9] or genomic best linear unbiased
prediction (GBLUP) [10], are the most popular models used in GS. Both of these models
assume that the effect of all single nucleotide polymorphism (SNP) markers is normally
distributed with equal variance [9]. Bayesian and least absolute shrinkage and selection
operator (LASSO) models assume that some SNPs have large or moderate effects, and
others have small or null effects [11]. Finally, machine learning (ML) models like random
forest (RF), support vector machine (SVM) and deep learning (DL) algorithms do not
assume linearity in the model. ML models can use nonlinear kernels to capture complex
SNP–SNP interactions and nonlinear relationships.

2.1. Ridge-Regression Best Linear Unbiased Prediction (RRBLUP)

The RRBLUP is a shrinkage method to obtain GEBVs by incorporating genomic
information into BLUP using ridge regression (RR). This model has been implemented in
the R package RRBLUP [9]. Prediction equations used by RRBLUP assume a priori that all
loci explain equal amounts of the genetic variation. The core of the RRBLUP package is the
function mixed.solve, which solves any mixed model of the form:

y = Xβ + Zu + e (2)

where y is a vector (n× 1) of phenotypic outcomes in n observations, X is a matrix (n× p)
with p number of markers or predictors in n observations, β is a vector (p× 1) of fixed
effects, u ∼ N

(
0, Kσ2

u
)

is a vector (n × 1) of random effects distributed normally with
mean zero and variance σ2

u and K is a positive semidefinite matrix, Z is a design matrix
(n × p) for the random effects, and e ∼ N

(
0, Iσ2

e
)

is a vector (n × 1) of residual effects
distributed normally with mean zero and variance σ2

e and I is the identity matrix.

2.2. Genomic Best Linear Unbiased Prediction (GBLUP)

GBLUP measures the relationship between individuals with the aid of marker data.
The difference with RRBLUP is the use of a marker-based relationship matrix named the
genomic relationship matrix (GRM) or G matrix [12]. The G matrix defines the covariance
between known relatives in a population, based on DNA marker information. The mixed
model for GBLUP analysis uses the following formula:

y = 1µ + Xβ + Zg + e (3)
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where y, X, β and e were defined in Equation (2), µ is the overall mean, g ∼ N
(

0, Gσ2
g

)
is

a vector (n× 1) of random effects distributed normally with mean zero and variance σ2
g

and G is the G matrix, which can be obtained according to the approach of VanRaden [13]:

G =
ZZ′

2Σpi(1− pi)
(4)

where Z is an identity matrix for the markers and pi is the observed minimum allele
frequency (MAF) of all individuals genotyped. However, Yang et al. (2010) combined the
information on all SNPs (i) coded as 0 = AA, 1 = BB, 2 = AB according to alternative allele
dosage to calculate the relationship between individuals j and k into a GRM (Gijk) using a
weighting scheme based on allele frequencies:

Gjk =
1
N∑

i
Gijk =


1
N ∑

i

(wij−2pi)(wik−2pi)

2pi(1−pi)
, j 6= k

1 + 1
N ∑

i

w2
ij−(1+2pi)wij+2p2

i
2pi(1−pi)

, j = k
(5)

where Gjk is the G matrix averaged over all SNP positions in the genome, N is the number
of markers, wij is the element of W pertaining to marker i and individual j, and wik is
the element of W pertaining to marker i and individual k. The Gijk or GRM produces the
off-diagonal (j 6= k) and diagonal (j = k) elements [14]. Based on this approach, Slater et al.
(2016) proposed a full autotetraploid model to obtain the G matrix:

Gjk =


1 + 1

M∑
i

(wij−pi)(wik−pi)

pi(1−pi)
, j 6= k

1 + 1
M∑

i

w2
ij−2piwij+p2

i
pi(1−pi)

, j = k
(6)

where M is the number of markers × 5 and pi is the frequency of each genotype. The
genomic relationship matrices described are based on identity-by-state and simply measure
the similarity of alleles between individuals [15].

Analysis results from RRBLUP and GBLUP can be similar; however, GBLUP is more
computationally efficient than RRBLUP. GBLUP requires a G matrix of dimensions n× n
(where n is the number of individuals in the population), whereas RRBLUP requires a
genotypic matrix n×m (where m is the number of markers) with high dimensionality. In
summary, GBLUP does not provide marker effects but is more time/memory efficient than
RRBLUP.

Weighted Genomic Best Linear Unbiased Prediction (WGBLUP)

The GBLUP method usually assumes that all SNPs explain the same fraction of
genetic variance. However, traits are affected by different genetic architectures associated
with SNPs that possess varying effects (e.g., major SNPs). To account for varying effects
of different SNP alleles, the weighted GBLUP (WGBLUP) method was developed to
incorporate unequal weights for all SNPs [16]. The G∗ matrix is constructed as follows:

G∗ =
ZDZ′

2Σpi(1− pi)
(7)

where the asterisk symbol (G∗) is used to differentiate the weighted G matrix from the
regular G matrix, Z is an identity matrix for the markers, D is a diagonal matrix, where
each element of the diagonal corresponds to SNP weights, and pi is the observed minimum
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allele frequency (MAF) of all genotyped individuals. To obtain the D matrix, each element
of this matrix is defined as:

D =

 w1 · · · 0
...

. . .
...

0 · · · wn

 (8)

where w is weight based on SNP effects from different methods. SNP weights can be
obtained from Bayesian Regressions with good results [17]. Other methods to determine
weights for SNPs include prioritization based on Wright’s fixation scores (Fst) [18]. The
Fst score measures the level of genetic differentiation between populations based on a
change in allele frequencies. When Fst scores were used to compute relative weights,
prediction accuracy increased up to 5%. Ren et al. (2021) developed several methods to
optimize WGBLUP by the generation of different weighted G matrices. They noted that the
choice of an optimal GBLUP matrix will depend on the number of loci controlling the trait.
Results indicated that estimated marker-variance-weighted (EVW)-GBLUP was superior
for traits controlled by loci of a large effect, and absolute value of the estimated marker-
effect-weighted (AEW)-GBLUP was better for traits controlled by loci with moderate
effect [19].

2.3. Bayesian Models

Bayesian models applied to GS do not assume a normal distribution of marker effects.
Instead, they assume that few markers will have large effects on the trait, allowing markers
to have different effects and variances. Bayesian models impose stronger shrinkage towards
zero on small SNP effects and less shrinkage on relatively large SNP effects. The BGLR R
package implements a large collection of Bayesian models [20]. The Bayesian models for
continuous variables are represented by the equation:

yi = 1µ +

m

∑
j=1

xijβ j + ei (9)

where yi is the vector of adjusted phenotypic observations {y1, . . . , yn}, µ is the overall
mean for the trait, m is the number of markers or SNPs, xij is the ith genotype for jth SNP,
β j is a vector for the effect of the jth SNP, and ei is a vector of residual effects with assumed
normal distribution e ∼ N

(
0, Iσ2

e
)
, where σ2

e is the residual variance and I is the identity
matrix. Bayes A, B, Cπ, and Bayesian LASSO (BL) are the most common models used. All
models assume different prior distributions for SNP effects (Table 1).

Table 1. Different prior distributions for Bayesian models.

Model Prior Distribution ‡ Ref.

Bayes A β j ∼ t
(

d fβ, Sβ

)
[8]

Bayes B β j =

{
1/2γλ exp

(
−λ|β j |

)
(1− γ)

f or β j 6= 0
f or β j = 0 [21]

Bayes Cπ β j|π, σ2
β j

{
β j ∼ 0

β j ∼ N
(

0, σ2
β j

) with prob π
with prob (1− π)

[22]

Bayesian LASSO β j ∼ DE
(
λ2, σ2

e
)

[23]
‡; β j, is the additive effect of the jth; t, scaled-t distribution; d fβ, degree of freedom; Sβ, scale parameters; γ, fraction of the SNPs that are
in linkage disequilibrium with a quantitative trait locus; SNP; π, probability of the marker effect equal to zero; DE, double exponential;
λ, parameter of exponential distribution.
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2.4. Machine Learning Models

Machine learning is a field that involves the application of computer algorithms and
statistical models to interpret and predict large datasets. Algorithmic modeling is a rapidly
developing discipline with strong potential to provide accurate and informative analyses
or predictions using large and complex data sets [24]. These models are widely used to
solve problems across different disciplines, such as medicine, genomics, natural language
processing, and stock market forecasting. Compared with classical statistical models, ML
models have fewer assumptions about normality and distribution of data. One important
remark is that ML models are being developed much faster than their interpretability,
developing a new field to be explored. The most common problem with ML algorithms
is data overfitting, which results in models that poorly predict the behavior of future
data. To avoid this problem, it is necessary to use a robust validation method, such as
cross-validation, which provides an indication of performance on new data. SVM and RF
are the most common ML models for classification and regression in GS [25,26].

2.4.1. Support Vector Machine (SVM)

SVM is a machine learning algorithm used in classification or regression problems [27].
The objective of SVM is to find the best hyperplane with the maximal margin in an n-
dimensional space (genotypic matrix) with respect to a given collection of data (phenotypic
values) and predict the correct classification/regression of unseen examples. Support vector
regression (SVR) is an application of the SVM. In SVR, each n-dimensional input vector (xi)
of p SNP markers is associated with a yi as response variable (e.g., yield), where xi ∈ Rp

and yi ∈ R. Then, linear regression f (x) is performed using the following equation [28]:

f (x) = w′x + b (10)

where, w is a vector of unknown weights (i.e., regression coefficients) and b is the bias. The
training data is used to learn w. The coefficients w and b are estimated by minimizing the
following regularized loss function R(C) [10]:

R(C) =
1
2
‖w2‖+ C

n

∑
i=1

Lε(yi − f (xi)) (11)

where ‖w2‖ = w’w, represents model complexity, and C is a positive cost parameter
specified by the user. C determines the trade-off between model complexity and training
error, yi − f (xi) is the error associated with ith training data point and Lε is the empirical
error measured by ε-intensive loss-function:

Lε(yi − f (xi)) =

{
0 i f |yi − f (xi)| < ε

|yi − f (xi)| − ε otherwise
(12)

where the loss function is zero (“insensitive”) for any absolute error smaller than a prede-
fined value ε. For an error value larger than ε, the loss function is the difference between
the absolute error and ε. ε-SVR solutions is sparseness, with a fraction of errors equal to
zero and thereby vanishing in the final model f (x) and only absolute errors > 0 are relevant
and used as “support vectors”. f (x) can be assumed as linear or non-linear. For non-linear
functions, the data can be mapped into a higher dimensionality space using a kernel space.
In nonlinear SVR modeling, different kernels can be used to increase the predictive power
of the model. The kernel function provides a solution to the classification/regression
dataset by adding an additional dimension to the data. Different kernel functions can
be selected to transform input data to feature space. Commonly used kernels in SVM
include linear, polynomial, radial basis function (RBF), and sigmoidal kernels (Table 2). In
high-dimensional data (i.e., microarrays or GS), the RBF kernel is preferred [28].
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Table 2. Kernels used in support vector machine (SVM) model. Meta-parameters used for tuning
include gamma (γ), degree of polynomial (d) and intercept (α).

Kernel Formula ‡

Linear K
(

xi, yj

)
= xT

i yj

Polynomial K
(

xi, yj

)
= γ

(
xT

i yj + α
)d

Radial basis function K
(

xi, yj

)
= e−γ‖xi−yj‖2

Sigmoidal K
(

xi, yj

)
= tan h

(
γxT

i yj + α
)

‡; xi , yj are two vectors in the n-dimensional space.

2.4.2. Random Forest (RF)

The RF method is a machine learning model for classification and regression problems
based on the identification of an objective function and its optimization [29]. The objective
function measures the distance between the RF output and desired scores to modify
internal parameters to reduce this error. Random forests consist of numerous independent
decision trees that are independently trained using a random subset of data. The final
prediction is calculated as the average values over all the trees. The RF model attempts
to reduce the computational cost to train the model, capture complex interactions and
reduce the over-fitting risk in the data [26]. In each decision tree, multiple binary filters are
applied to create a bifurcation generating branches and a treelike structure. Every point
where the samples are filtered is called a decision node. Optimization in RF consists of
determining the best way to split samples at decision nodes based on the predictors. RF can
optimize four different hyperparameters to increase the predictive power of the model: total
number of observations (N), total number of predictors (M), subset of predictors chosen for
determining a decision tree (mtry), and total number of decision trees to generate the RF
(ntree). Subsequently, RF creates a series of filters based on the predictor variables. Gini
impurity score (as described below) and mean squared error are used to select the best
variables in decision nodes.

The RF approach can provide accurate predictions with complex genomic datasets. A
very useful feature in the RF model is a function-designated, variable importance metrics,
which ranks each SNP’s impact according to the trait. Two approaches to computing
variable importance include mean prediction accuracy decrease when a variable/marker is
removed, and the mean decrease in impurity (or Gini importance). Gini impurity measures
how well a potential split is able to separate the samples of two classes at a particular node.
Important limitations when using RF algorithms for GS involve slower processing time
when a large number of trees are chosen for the model, or the number of SNP markers
is too high. For RF analysis, we observed that a processing limit was reached when the
genotypic matrix was composed of more than 10,000 markers.

2.4.3. Deep Learning (DL)

Deep learning is a subfield of machine learning with great success in natural language
processing, image recognition, or virtual assistance [30]. The DL architecture uses several
layers of nonlinear processing units called hidden layers. Hidden layers allow the network
to capture higher-order interactions from the data. This method uses artificial neural
network architecture where the perceptron is the fundamental unit for comparison as a
neuron in a biological neural network. The implementation of DL in genomic selection
is recent, and some studies have reported a modest increase in prediction accuracy in
comparison with parametric and non-parametric models [31–34]. In theory, deep learning
could perform better for traits with large epistatic effects and low narrow-sense heritability,
a concept which is reinforced by the high predictive ability of mixed models as prediction
machinery [35]. Numerically encoded SNPs are the inputs to the first layer to produce a
centered vector of phenotypes. The most common DL models used in GS are multilayer
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perceptron neural network (MLP), convolutional neural network (CNN), and recurrent
neural networks (RNN).

The formal description of MLP is a feed-forward DL model composed of multiple
perceptrons ordered in hidden layers in a directed graph. In MLP, each layer is fully
connected with the next one by nonlinear activation functions, such as rectified linear unit
activation function (ReLU), to minimize the mean square error. MLP is flexible because
no assumption is made about the joint distribution of inputs and outputs. CNN is a
special case of a neural network that uses convolution instead of full matrix multiplication
in the hidden layers. The convolution is a function that can be defined as an “integral
transform” to reduce the number of hyperparameters to be estimated. CNN was proposed
to accommodate situations where input variables are distributed along a space pattern
resembling an SNP matrix. CNN seems to perform best in GS because it can detect patterns
in the genotypic matrix, discovering correlations between adjacent SNPs. In addition,
CNN appears to perform better when epistatic components are important and the narrow-
sense heritability is low [34]. It is important to note that DL depends on an adequate
hyperparameter choice and high-performance computing with graphics processing units
(GPUs) architecture, which can be challenging to implement in small breeding programs.

2.5. Other Models

Klápště et al. (2020) presented a strategy to generate a marker-based relationship
matrix that prioritized markers using Partial Least Squares (PLS). This approach down-
weighs noisy predictors, but does not remove them from the model. The advantage of
PLS is that it deals with multicollinearity and can handle several response variables at a
time. The authors used PLS-Canonical Analysis (PLS-CA) for constructing marker-based
relationship matrices with different numbers of markers. This strategy attempts to improve
the accuracy of traits with low heritability by taking advantage of the genetic covariance
common across all investigated traits. In order to perform the marker selection by PLS-CA,
all individuals in the training population must be phenotyped for all traits that will be
included in the analysis [36].

The incorporation of staking ensemble ML (SEML) in GS is a promising alternative
to increase the predictive ability of ML models. The SEML method uses a meta-learning
algorithm to determine how to best combine the predictions from two or more base ML
models. Hence, SEML has the potential to generate predictions with better performance
than any single model [37]. Liang et al. (2021) tested the prediction accuracy of the SEML
approach using three ML models: SVM, kernel ridge regression, and elastic net in Loblolly
pine, beef, and dairy cattle. On average, there was an increase of 7.70% in prediction
accuracy in nine traits tested. However, Bayes B demonstrated higher prediction accuracies
for some traits, including milk fat percentage or tree stiffness [38].

3. Genomic Selection in Polyploids

GS requires high-quality genome-wide markers to determine GEBVs. Two types of
high-throughput genotyping methods can be employed: SNP arrays and GBS. There are
SNPs arrays with different marker densities in potato [39] and wheat [40]. Alfalfa also has
an array with 9277 SNPs [41]. However, its use has not been widely adopted, and GBS is
currently the best option to obtain genome-wide markers. During the genotyping process
by GBS, different types of markers, such as single nucleotide polymorphisms (SNPs),
insertions/deletions (indels), or short tandem repeats (STRs) can be obtained. Genome-
wide markers can then be arrayed in a genotypic matrix of m samples and n markers. The
genotypic matrix can be filtered to retain only biallelic SNPs, which are the most abundant
and stable markers for identifying QTLs associated with traits of interest [42].

Allele dosage counts alternative allele frequency for each biallelic SNP. In diploid
species the genotypic matrix is coded as {0, 1, 2}, reflecting if a given marker is present in
the homozygous reference (AA), heterozygous (AB), or homozygous alternate (BB) allelic
state. For biallelic SNPs in polyploid species with ploidy N, the biallelic dosage is N + 1 and
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the genotypic matrix is coded as {0, . . . , N}. Genotype calling in autotetraploids requires
bioinformatics tools to distinguish among five possible genotypes (AAAA, AAAB, AABB,
ABBB, BBBB) with biallelic SNPs coded as {0, 1, 2, 3, 4}. There are several R packages, such
as polyRAD [43], superMASSA [44], FitTetra 2.0 [45] or Updog [46], with which to obtain
allele dosage in numeric format from variant call format file (vcf) format. Some of these
R packages, such as Updog, require users to specify genotype priors [46] to accurately
calculate the allele dosage and distinguish between all possible genotypes. However, the
most common option is to use high depth sequence reads (e.g., ~60×) which leads to
98.4% accuracy in genotypic calls [47] The effects of marker allele dosage on phenotype
for genomic selection have been reported previously. Slater et al. (2016) described three
different models for GS in autopolyploids: additive autotetraploid, pseudodiploid, and
full autotetraploid. In the additive autotetraploid model, the allele dosage has an additive
effect, and 0, 1, 2, 3, 4 corresponds to AAAA, AAAB, AABB, ABBB, BBBB, respectively.
In the pseudodiploid model, all heterozygous genotypes (AAAB, AABB, ABBB) have the
same effect of 1 on the genotypic variation, while the two homozygotes AAAA and BBBB
have an effect of 0 and 2, respectively. Finally, the full autotetraploid model assumes that
each genotype has its own effect with five possible effects per marker, assuming that the
markers are fitted as random effects [15]. In addition, Rosyara et al. (2016) developed
GWASpoly, a software for genome-wide association studies in autopolyploids. GWASpoly
has different assumptions over allele dosages and conducts the hypothesis tests for each
marker using six models (general, diploidized general, diploidized additive, additive,
simplex dominant, and duplex dominant models) (Table 3).

Table 3. Coding effect assumptions of GWASpoly models according to allele dosage in biallelic SNPs.

Allele Dosage ¶ AAAA AAAB AABB ABBB BBBB

Numerical Code 0 1 2 3 4

GWASpoly Models Phenotypic Effect §

Diplo-additive 0.00 0.50 1.00

Diplo-general ‡ 0.00 0.00 < x <1.00 1.00

Additive 0.00 0.25 0.50 0.75 1.00

1-dom-ref (A > B simplex) 1.00 1.00 1.00 1.00 0.00

2-dom-ref (A > B duplex) 1.00 1.00 1.00 0.00 0.00

1-dom-alt (B > A simplex) 0.00 1.00 1.00 1.00 1.00

2-dom-alt (B > A duplex) 0.00 0.00 1.00 1.00 1.00

General † No restrictions
¶, allele dosage A is coded as the reference allele and B is coded as the alternative allele; §, phenotypic effects
are scaled from 0.00 to 1.00; ‡, for the diplo-general model all heterozygotes have the same effect (x), but x is not
constrained to be halfway between the homozygous effects; †, the general model has no restrictions on the effects
of the different dosage levels.

Amadeu et al. (2019) evaluated the inclusion of dominance effects for genomic
prediction in autotetraploid crops. They reported that a full autotetraploid model, including
additive and dominance effects jointly modeled into a unique general effect, increased the
total genetic variance explained [48]. In potato, different covariance genomic marker- and
pedigree-based matrices, designated G and A, respectively, were tested to identify additive
and nonadditive genetic effects and to improve the accuracy in GS. A matrix (also known
as numerator relationship matrix) was calculated from a 13-generation pedigree. The A
matrix was defined as a matrix containing kinship coefficients among all individuals in
the population, multiplied by four. They reported that the G matrix was superior to the A
matrix and adding allele dosage information increased the prediction accuracy. Finally, the
use of a pseudodiploid matrix reduced the prediction accuracy by 0.13, on average [49].
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In the autotetraploid forage grass Panicum maximum, de C. Lara et al. (2019) compared
the predictive ability of six GS models in six traits using tetraploid and pseudodiploid
allele dosages and a minimum depth of 25 reads. Additionally, multiple harvests were
modeled with a variance-covariance matrix for genotypes nested across harvests, treating
the genotypes as a random factor. The incorporation of correlations among harvests
provided a better fit for the traits analyzed. Including the tetraploid dosage also produced
higher predictive accuracy compared with pseudodiploid dosages. In autotetraploids
with highly mixed ploidy, such as sugarcane and sweet potato, the incorporation of allele
dosage information increased model predictive abilities up to 140% in comparison to
using diploidized markers [50]. The accuracy of different models showed few changes to
ploidy or allele dosage information in sugarcane on sweet potato. In sugarcane, the Brix
trait possessed the highest mean predictive accuracy (0.24) using the GBLUP model that
included allele dosage. In sweet potato, prediction accuracies were moderate to high. For
example, color saturation had the highest mean predictive ability (0.75) using a G model
with allele dosage information.

In blueberry (Vaccinium spp.), several approaches have been evaluated to improve
the genomic selection process, because the conventional breeding pipeline takes up to
12 years [35,51,52]. Implementation of GS in the early stages of the breeding program
could shorten the cycle time to nine years and increase the expected genetic gain by
86%. De Bem Oliveira et al. (2019) compared diploid, tetraploid, and continuous allele
dosages at the individual plant level for the application of genomic selection in potato and
blueberry. In general, there was no difference among the models tested, but continuous
genotypes resulted in a better predictive ability for some traits, such as fruit firmness,
fruit scar, and fruit diameter. Furthermore, the use of a marker-based relationship matrix
generated better predictions than a pedigree-based relationship matrix (A matrix). Ferrão
et al. (2021) reported similar prediction accuracies of GBLUP for four traits using two
genotype calling approaches (dosage and ratio) and two read-depth scenarios (6× and
60×). They also observed that combining allele dosage for low to mid sequencing depths
(6×–12×) produced similar accuracies to that obtained by high read-depth (60×). The use
of mid sequencing depths will allow modifying economic resource allocation to increase
the number of individuals genotyped.

Enormous progress has been made during the last few years in the application of GS
approaches to polyploids. In alfalfa, GS has been tested in different traits using parametric
and non-parametric models. Table 4 summarizes the progress that has been made towards
applying GS in multiple polyploids, including alfalfa. Although yield is the main trait
in alfalfa breeding programs, other agronomic traits, such as forage quality and plant
regrowth, have also been tested [53]. Furthermore, use of an allele dosage genotype matrix
has been reported to improve prediction accuracies of forage quality [54] and yield under
salt stress [6]. The current challenge is to implement GS in breeding programs and to
evaluate increases in GS-derived genetic gain in comparison with PS-derived materials.
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Table 4. Recent achievements in genomic selection (GS) in polyploid crops.

Crop Ploidy Trait § GS Method Acc ‡ Notes Author

Avena sativa Allohexaploid Seed lipid content MK-BLUP 0.48 Use of additive marker effects of Bayesian models during the
construction of G matrix [55]

Brassica napus Alloteteraploid Seed yield GBLUP 0.69 Several agronomic and seed quality traits were tested [56]

Coffea arabica Allotetraploid Canopy diameter GBLUP 0.40 18 agronomic traits were tested. Diploid dosage assumed [57]

Eucalyptus nitens Paleotetraploid Wood density MVGLUP † 0.77 Marker selection in multivariate analysis. Requires uses
multiple traits highly correlated [36]

Medicago sativa Autotetraploid Yield RRBLUP 0.66 Multi-environment trials over two generations. First report of
GS in alfalfa. [58]

Medicago sativa Autotetraploid Yield SVM 0.35 Six GS models were tested. First report of machine learning
models in alfalfa [59]

Medicago sativa Autotetraploid Leaf crude protein RRBLUP 0.40 Nine alfalfa forage quality traits were tested by five GS
models [54]

Medicago sativa Autotetraploid Fall plant height Bayes B 0.65 15 quality traits and 10 agronomic traits were tested using
three GS models [53]

Medicago sativa Autotetraploid Yield under salt stress SVM 0.50 Multi-environment trials with seven yield measurements.
Eight GS models were tested [6]

Panicum maximum Autotetraploid Organic matter Bayes B-TD 0.39 Genomic selection using tetraploid dosage (GS-TD) vs.
diploid dosage (GS-DD) [60]

Solanum tuberosum Autopolyploid Yield GBLUP 0.55 Incorporation of additive and digenic dominant G covariance
matrix [49]

Solanum tuberosum Autopolyploid Tuber weight RKHS 0.59 Four agronomic tuber traits were tested by eight GS models [61]

Sugarcane Octaploid and
decaploid Fiber GBLUP 0.44 Inclusion of additive and non-additive genetic components

for GS [62]

Triticum aestivum Allohexaploid Grain yield GBLUP 0.47 Multi-trait selection for grain yield and protein content [63]

Triticum aestivum Allohexaploid Grain yield GBLUP 0.53 GWAS markers as fixed effects in GS models. [64]

Vaccinium corymbosum Autotetraploid Weight GBLUP 0.49 Comparison of allele dosage with depth sequencing: 6×–60×) [35]
§ For multiple traits, the trait with the highest predictive accuracy was selected; ‡, predictive accuracy measured as Pearson’s correlation; MK-BLUP, multi-kernel trait-specific BLUP; MVGLUP, Multi-trait model
GBLUP; SVM, support vector machine; Bayes B-TD, Bayes B with tetraploid allele dosage; RKHS, Reproducing Kernel Hilbert Space; † In multi-trait genomic selection (MT-GS) a secondary trait that is genetically
correlated with the primary trait is incorporated in the prediction model, to predict the primary trait with higher accuracy.
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4. Case Study: Logan 2020 Population

In this review, we tested some models of GS using the dataset of alfalfa previously
published [6]. Datasets were collected from a multi-parental population generated to
select lines tolerant to salt stress. Forage yield under salt stress was measured over seven
harvests in 265 individuals for two years. Each harvest was spatially corrected by a two-
dimensional P-spline mixed model with the Mr.Bean web application [65] using the SpATS
package [66]. Multiple best linear unbiased estimator (BLUE) values were adjusted in
multi-environmental trials using Factor Analytic II covariance structure [67] with ASReml
R software [68]. A genotypic matrix of 6796 high-quality GBS-derived SNP markers was
obtained using NGSEP v4.0.0 software [69] with parameters previously reported in [6].
SNPs were coded from 0 to 4 according to allele types using the Sommer R package [70].

A GS approach using regression analysis between phenotypes (y) and a genotypic
matrix was transformed by eight different models ( f (X)). These included: RRBLUP, Bayes
A, B, C, Bayesian Lasso (BL), GBLUP using two G matrices (VanRaden [VR] [Equation (4)]
and full-autotetraploid [FA] [Equation (6)]), RF and SVM (Figure 2a). All models were
compared for execution time and Pearson’s correlation using ten-fold cross-validation
with the GROAN R package [71]. Execution time is an important factor to consider for
GS modeling when computing power is limited. Consequently, system time (seconds)
was measured for each model with cross-validation. The fastest models were GBLUP
and RRBLUP with an average of 0.06 s, whereas SVM and RF required 10.57 and 12.99 s,
respectively. More time was required for ML models when a grid search was used to
estimate the best values for hyperparameters such as cost and sigma in SVM, or mtry in
RF. However, time was reduced to 1.90 s with cross-validation in the SVM training model
when hyperparameters were previously defined. Prediction accuracy was approximately
0.3 among the GS models RRBLUP, Bayes A, B, C, BL, RF, GBLUP-VR, and GBLUP-
FA. The SVM model possessed the highest accuracy (0.46), in agreement with previous
reports [6,59].

Variable importance values or SNP weights were obtained using SVM and RF models
with the Caret R package [72], or by retrieving −log10 p-values resulting from six models of
the GWASpoly R package (i.e., general, diploidized general, diploidized additive, additive,
simplex dominant and duplex dominant models [Table 3]) [73]. SNP weights were used as
input in a D diagonal matrix [Equation (8)] for the construction of a G∗ matrix [Equation (7)]
in the WGBLUP model (Figure 2b,c). Pearson’s correlation among variable importance
values of different models was measured to identify models with similar SNPs weights.
Diploidized additive and diploidized general models had the highest Pearson’s correlation
(0.87), followed by additive and diploidized additive models (0.74). Variable importance
values derived from RF had low correlations across all models tested (Figure 2c). Prediction
accuracies for GBLUP with two G matrix and 10 WGBLUP models were compared by
measuring Pearson’s correlation 10 times with ten-fold cross-validation. The incorpora-
tion of variable importance values in WGBLUP increased prediction accuracies. Pearson
correlations ranged from a low of 0.32 in GBLUP-VR (no variable importance values) to
0.63 in WGBLUP-SVM, with the highest prediction accuracy (0.83) achieved when −log10
p-values from the additive GWASpoly model were used as a weight vector (Figure 2d).
Thus, incorporation of a diagonal matrix D with variable importance values to the G matrix
increased GS predictive ability almost three times without increasing computational time.
This is the first report using SNPs weights to increase the prediction accuracy of GS in
alfalfa. Our results suggest that including SNP marker −log10 p-values derived from the
additive GWASpoly model in a WGBLUP model may benefit prediction accuracy and
selection for improvement of complex traits in alfalfa breeding programs.
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Figure 2. Optimization of GS models. (a) GS model accuracy measured as Pearson’s correlation after 10-fold cross-validation
for biomass yield under salt stress. Computing time was measured as system time in seconds to run one cross-validation.
(b) Example of variable importance values derived from SVM for 10 randomly chosen SNPs. (c) Pearson’s correlation
for 6796 SNPs weights obtained by variable importance (SVM, RF) or by −log10 p-values of different GWASpoly models.
(d) Accuracy of GBLUP (GBLUP VR and GBLUP FA) and WGBLUP models. Accuracy was measured 10 times using
Pearson’s correlation with 10-fold cross-validation. SNP weights for WGBLUP were obtained from variable importance
values (SVM, RF) or −log10 p-values of different GWASpoly models. RRBLUP, best linear unbiased prediction using
ridge-regression; BL Bayes LASSO; GBLUP, genomic best linear unbiased prediction; VR, VanRaden G matrix; FA, full
autotetraploid G matrix; RF, random forest; SVM, support vector machine; WGBLUP, weighted GBLUP; 1-dom-alt and
1-dom-ref, simplex dominant models; 2-dom-alt and 2-dom-ref, duplex dominant models; diplo-general, diploidized
general; diplo-additive, diploidized additive.

5. Case Study: Potato Diversity Panel

To ensure that our approach is useful in other polyploid crops, we extended GS
analysis in potato. RRBLUP, GBLUP and, WGBLUP models were evaluated in potato
using supplemental files from [73]. Phenotypic data consisted of 13 agronomic traits
evaluated in 187 lines of the SolCAP potato diversity panel were used. The genotypic
matrix was generated by an Infinium SNP array containing 3521 markers with allele dosage.
The genotypic matrix was transformed to digital format using the sommer R package [70].
The GBLUP and WGBLUP models were tested using the VanRaden G matrix [Equation (4)]
and the WGBLUP equation [Equation (7)], respectively. Six different D matrices were
generated according to the SNP −log10 p-values from six models of the GWASpoly (i.e.,
general, diploidized general, diploidized additive, additive, simplex dominant, and duplex
dominant models [Table 3]). G matrices were constructed using the function Gmatrix
from the AGHmatrix R package [74]. Prediction accuracies for RRBLUP, GBLUP, and
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WGBLUP models were compared by measuring Pearson’s correlation 10 times with 10-fold
cross-validation using the GROAN R package (Table 5) [71].

Table 5. Comparison of genomic selection (GS) models in 13 phenotypic traits collected in the SolCAP potato diversity
panel. Mean and standard deviation of Pearson’s correlation obtained by 10-fold cross validation in 10 replicates. SNP
weights for WGBLUP were obtained from −log10 p-values of different GWASpoly models.

Trait RRBLUP GBLUP
WGBLUP

1-d-a 1-d-r 2-d-a 2-d-r General d-Gen d-Add Additive

Chip color 0.723 0.721 0.826 0.798 0.859 0.850 0.867 0.849 0.855 0.896
(±0.014) (±0.015) (±0.009) (±0.011) (±0.007) (±0.013) (±0.008) (±0.009) (±0.007) (±0.007)

log10 fructose 0.682 0.676 0.819 0.785 0.845 0.833 0.868 0.839 0.855 0.895
(±0.024) (±0.025) (±0.014) (±0.017) (±0.007) (±0.011) (±0.011) (±0.015) (±0.003) (±0.008)

log10 glucose 0.678 0.668 0.796 0.809 0.855 0.849 0.875 0.844 0.848 0.91
(±0.017) (±0.030) (±0.009) (±0.016) (±0.009) (±0.009) (±0.009) (±0.011) (±0.013) (±0.007)

Malic acid 0.602 0.598 0.751 0.745 0.802 0.801 0.838 0.808 0.826 0.876
(±0.016) (±0.027) (±0.021) (±0.022) (±0.021) (±0.016) (±0.011) (±0.016) (±0.009) (±0.007)

Sucrose 0.539 0.519 0.676 0.675 0.702 0.716 0.725 0.722 0.739 0.806
(±0.024) (±0.034) (±0.011) (±0.022) (±0.019) (±0.015) (±0.023) (±0.011) (±0.019) (±0.011)

Total yield 0.132 0.117 0.401 0.413 0.418 0.428 0.470 0.492 0.504 0.584
(±0.023) (±0.041) (±0.026) (±0.030) (±0.031) (±0.017) (±0.029) (±0.030) (±0.030) (±0.028)

Tuber eye depth 0.495 0.478 0.605 0.655 0.693 0.717 0.740 0.693 0.736 0.812
(±0.026) (±0.019) (±0.029) (±0.016) (±0.025) (±0.014) (±0.020) (±0.020) (±0.018) (±0.007)

Tuber length 0.826 0.821 0.891 0.884 0.899 0.889 0.904 0.908 0.912 0.928
(±0.012) (±0.014) (±0.006) (±0.009) (±0.006) (±0.012) (±0.008) (±0.008) (±0.005) (±0.009)

Tuber shape 0.775 0.780 0.865 0.853 0.886 0.863 0.896 0.89 0.891 0.922
(±0.018) (±0.017) (±0.010) (±0.013) (±0.008) (±0.005) (±0.010) (±0.008) (±0.009) (±0.006)

Tuber size 0.501 0.499 0.641 0.650 0.679 0.663 0.666 0.661 0.679 0.742
(±0.024) (±0.027) (±0.019) (±0.020) (±0.020) (±0.022) (±0.024) (±0.022) (±0.019) (±0.021)

Tuber width 0.635 0.638 0.752 0.749 0.782 0.772 0.805 0.789 0.803 0.847
(±0.023) (±0.021) (±0.020) (±0.021) (±0.016) (±0.018) (±0.012) (±0.015) (±0.013) (±0.017)

Vine maturity
95 days

0.288 0.286 0.550 0.538 0.603 0.589 0.668 0.632 0.65 0.746
(±0.035) (±0.042) (±0.028) (±0.020) (±0.022) (±0.028) (±0.022) (±0.019) (±0.025) (±0.017)

Vine maturity
120 days

0.321 0.323 0.495 0.569 0.636 0.633 0.669 0.616 0.666 0.755
(±0.047) (±0.024) (±0.026) (±0.021) (±0.021) (±0.013) (±0.025) (±0.023) (±0.026) (±0.019)

RRBLUP, best linear unbiased prediction using ridge-regression; GBLUP, genomic best linear unbiased prediction using VanRaden G matrix;
WGBLUP, weighted GBLUP; 1-d-a and 1-d-r, simplex dominant models; 2-d-a and 2-d-r, duplex dominant models; d-gen, diploidized
general; d-add, diploidized additive.

Higher prediction accuracies in all 13 agronomic traits of potato were obtained using
the WGBLUP model with SNP −log10 p-values derived from the additive GWASpoly
model. Traits of glucose, tuber length, or tuber shape showed accuracies higher than 0.9. It
is important to point out that traits of tuber length or tuber shape had high accuracies (0.82
and 0.78 respectively using RRBLUP and GBLUP models) and the use of the WGBLUP
model increased the prediction accuracy up to 0.93. Total yield had low prediction accu-
racies with RRBLUP or GBLUP models (0.132 and 0.117, respectively), and the use of the
WGBLUP model increased prediction accuracy by almost five times (Table 5). These results
agree with our previous results in alfalfa (Figure 2).

6. Conclusions

Genomic selection is a breeding strategy that predicts the genomic estimated breed-
ing value (GEBV) of individuals in a population using genomic-wide genetic markers.
A significant advantage of GS is the ability to select superior individuals in a popula-
tion at very early stages in a breeding cycle based on their genotype, versus conducting
lengthy/expensive phenotyping trials prior to each selection cycle. For instance, in a
simulated wheat breeding program, selection based on GEBVs for grain yield tripled the
genetic gain compared with PS [75]. In alfalfa breeding programs, GS can be implemented
in elite large germplasm panels with genotyped individuals to decrease PS efforts, thus
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reducing overall selection cycle time and accelerating variety development. However,
determining correct GEBVs relies on prediction accuracy, which can vary according to a
combination of phenotypic trait, genotypic information, and the statistical model. Conse-
quently, GS research efforts have focused heavily on evaluating prediction accuracies of
multiple parametric and non-parametric models to develop robust strategies that can be
used in testing populations. Once robust modeling strategies are developed, GS has the
potential to accumulate thousands of favorable alleles to develop climate-resilient crops
with high yield potential. Additionally, as genotyping is required only once for a given
population, multiple traits can be associated with the same genotypic matrix to determine
GEBVs for each trait, thus making GS a valuable approach in multi-trait selection [76].

There is a need to explore new methodologies to improve molecular and bioinformatic
tools for the application of GS in polyploid crops. The development of new approaches
to obtain high-quality genome-wide markers will help to resolve the genetic architecture
of complex traits. For example, the PRINCESS platform uses long-read sequencing to
detect SNPs, indels, or methylation sites with high accuracy [77]. In GWAS and GS, the
number of individuals in a population is crucial to maximize statistical power. Therefore,
researchers search for genotyping methods that optimize the balance between cost, sample
size, and the number of SNPs. In this regard, GBS is a relatively affordable genotyping
methodology. However, for polyploid crops, there is a need for high-coverage sequencing
(i.e., read-depth) to accurately estimate allele dosage, which increases genotyping cost.
Biallelic SNPs are commonly used in polyploid GS because they are the most abundant
type and are easier to transform into a numerical format for developing a genotypic matrix.
However, during the construction of the vcf file, ~20% of high-quality SNP markers are
discarded because they are not biallelic. Additionally, indels or simple sequence repeats
(SSR) could add important information to GS model to increase prediction accuracy.

Parametric models such as RRBLUP assume that all SNPs have an effect on a specific
trait, but the actual effect of each SNP is very small (heavy shrinkage) [9]. Although
multiple loci have an effect on a complex trait, they often have different weights. Thus,
identifying trait-specific weights for SNP marker alleles should increase prediction accuracy
in GS models such as WGBLUP. Such outcomes have been demonstrated in animal breeding
research [78,79], but not in polyploid crops. In this regard, utilizing a variable importance
approach based on −log10 p-values for the additive GWASpoly model for alfalfa yield
under salt stress was the best strategy to generate a diagonal matrix D. For this complex
trait, we present empirical evidence demonstrating that the WGBLUP model increased
prediction accuracy by almost 3 times compared to RRBLUP, GBLUP, Bayesian or ML
models. Finally, we expanded the use of the WGBLUP model to 13 agronomic traits of
potato and demonstrated the increase in prediction accuracy up to five times in complex
traits, such as yield. The WGBLUP approach is simple, does not require high-performance
computing, and can be applied to different crops to predict breeding values and accelerate
selection cycles.
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