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Approximately 38 million people were living with human immunodeficiency virus (HIV) in
2020 and 53% of those infected were female. A variety of virological and immunological
sex-associated differences (sexual dimorphism) in HIV infection have been recognized in
males versus females. Social, behavioral, and societal influences play an important role in
how the HIV pandemic has affected men and women differently. However, biological
factors including anatomical, physiologic, hormonal, and genetic differences in sex
chromosomes can each contribute to the distinct characteristics of HIV infection
observed in males versus females. One striking example of this is the tendency for
women to have lower HIV plasma viral loads than their male counterparts early in infection,
though both progress to AIDS at similar rates. Sex differences in acquisition of HIV, innate
and adaptive anti-HIV immune responses, efficacy/suitability of specific antiretroviral
drugs, and viral pathogenesis have all been identified. Sex differences also have the
potential to affect viral persistence, latency, and cure approaches. In this brief review, we
summarize the major biological male/female sex differences in HIV infection and their
importance to viral acquisition, pathogenesis, treatment, and cure efforts.
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INTRODUCTION

Human immunodeficiency virus (HIV) is a retrovirus that causes acquired immunodeficiency
syndrome (AIDS) by infecting several important immune cell types including CD4+ T lymphocytes
and macrophages (1, 2). Over 50% of people infected worldwide with HIV are female (3). While
depletion of CD4+ T cells and progression to AIDS occurs in both males and females, there are
significant sex-related differences in the course of infection. These “sex differences” have a biological
origin, including hormonal or genetic. This is distinct from gender differences, which generally have
a social or behavioral origin, including gendered socio-economic inequities such as unequal access
to healthcare, financial resources, and education (4–8). While both sex and gender differences are
org May 2022 | Volume 13 | Article 9057731
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important in understanding the HIV pandemic, this review is
focused on biological sex differences that affect HIV infection.

Sexual dimorphism in the mammalian immune system has
long been recognized in the context of infection with many
different pathogens, including influenza viruses, hepatitis B virus,
and the parasite Entamoeba histolytica (9–11). Females often
have more effective immune responses against pathogens but are
also more prone to autoimmune diseases such as multiple
sclerosis, scleroderma, and systemic lupus erythematosus (9,
12, 13). Many important aspects of the mammalian innate and
adaptive immune response have been identified to vary in a sex-
dependent manner, including the activity of key immune-related
signal transduction pathways, the relative numbers of T cells, B
cells and immunoglobulins, and the activation state of different
immune cell subsets (9). Of particular interest, in the context of
HIV, are the higher CD4+ T cell counts observed in both females
compared to males. Females also have higher CD4/CD8 ratios
and their macrophages have higher phagocytic activity and
activation states than those from males (9). Therefore, in
addition to broad immunological effects, sex differences
directly influence the preferred target cells for HIV infection.

Sex differences in HIV infection have largely been attributed
to anatomical, physiologic, hormonal, and genetic differences,
including during pre- and post-adolescence, and in old age
(14). This review will provide a brief overview of the main ways
in which sex-based differences can affect HIV infection,
including during initial acquisition, subsequent viral
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replication, pathogenesis, treatment, and viral reservoirs/cure
approaches (Figure 1).

SEXDIFFERENCES INACQUISITIONOFHIV

With the widespread availability of ART, advent of pre-exposure
prophylaxis (PrEP) and the continued education of HIV
transmission risks, rates of HIV infection in the U.S. are
declining (15). In 2019, the Center for Disease Control and
Prevention (CDC) reported 19% of new HIV diagnoses in the US
to be women (16), and worldwide over half of HIV infected
people are female (6). Heterosexual HIV transmission is the
main mode through which women become HIV-infected (84%)
(16). Generally, receptive partners are at greater risk of
contracting HIV during sexual intercourse due to large viral
loads present in pre-seminal and seminal fluids from untreated
HIV-infected insertive partners (17). Hence, transmission of
HIV to women is more likely than the reverse during
heterosexual intercourse when considering per-sexual-act risk.
In higher-income countries, in the absence of antiretroviral
therapy (ART), male-to-female transmission (0.08%) is double
that of female-to-male (0.04%). In lower-income countries per-
act male-to-female transmission (0.38%) was also higher than
the reverse (0.30%) though this excludes transfer in commercial
sex work (18). A similar trend is observed with insertive (0.17%)
and receptive (1.25%) anal intercourse per-act risk, which may
also be fueling heterosexual transmission (19).
FIGURE 1 | How sex differences can affect different phases of HIV infection. HIV infection progresses from primary infection through a chronic phase that often lasts
years before development of AIDS approximately 10 years after HIV acquisition. ART prevents this disease progression by inhibiting virus replication and reducing
viral loads. Sex differences can affect each phase of this infection as indicated. ART, Antiretroviral therapy; HIV, human immunodeficiency virus; AIDS, acquired
immunodeficiency syndrome; PK, pharmacokinetics; PD, Pharmacodynamics.
May 2022 | Volume 13 | Article 905773

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Moran et al. Sex Differences in HIV
HIV infects cells by binding to the CD4 receptor and a
coreceptor (most commonly CCR5 or CXCR4) (20). CCR5
surface expression on CD4+ T cells is higher in men than
women, potentially contributing to differences in HIV viral load
in infected individuals (21). Langerhans cells are present in the
vaginal mucosa and foreskin of uncircumcised men and have been
shown to transportHIV toCD4+Tcellswithout becoming infected
themselves (22–25). Hence, to lower heterosexual transmission,
there has been a promotion of male circumcision, which reduces
HIV acquisition in men by approximately 60% via several
mechanisms including preventing the loss of epithelial barrier
integrity and reducing the number of Langerhans cells present to
transport the virus to T cells in draining lymph nodes (26–28).

Hormonal changes during menstruation have drastic effects
on vaginal tissue physiology and immunologic characteristics,
and on the vaginal microbiome (9, 29). Estrogen is protective
against simian immunodeficiency virus (SIV) infection in
rhesus macaques, though estrogen seems to have a more
complex concentration-dependent role on inflammation in
humans (30–32). At higher levels, estrogen is thought to be
associated with lower HIV acquisition due to a decrease in
migration of T cells and macrophages, and pro-inflammatory
signal regulation (32, 33). Use of certain contraceptives,
including injectable progestin-only contraceptives in women
have also been associated with increased numbers of HIV target
cells (CCR5+ CD4 T cells) in the cervix and an increased risk of
HIV acquisition (34).

Systematic, meta-analysis, and longitudinal studies have shown
that previous or concurrent infections with certain pathogens,
including herpes simplex virus type two (HSV-2), Trichomonas
vaginalis, Chlamydia trachomatis, Neisseria gonorrhoeae, human
papillomavirus (HPV), orgeneral vaginaldysbiosis, can increase the
risk ofHIV acquisition (35–43). This is in part due to damage to the
epithelia andmucosa caused by pre-existing infections, and also the
associated immune inflammation, which increases the number of
activatedCD4+Tcells andmacrophagespresent (thepreferredhost
cells for HIV) (44). Many sexually transmitted infections increase
HIV infection risk in both men and women, but some are more
prevalent or affect one sex differently from the other. For example,
Trichomonas vaginalis is 10-fold more prevalent and highly
symptomatic in women but is largely asymptomatic (70%) in
men (45). HSV-2 is also more prevalent in women, though HIV
acquisition risk in HSV-2 infected women was comparable to men
(37, 46, 47).

Development of a prophylactic vaccine to provide long-term
protection from HIV infection or a therapeutic vaccine to
suppress virus and prevent disease progression without ART is
a major focus of the HIV field (48–50). Sexual dimorphism is
also present in responses to vaccines, with women responding
better to many vaccines, including influenza, hepatitis A, and
hepatitis B (33, 51). Historically, females have been
underrepresented in HIV vaccine trials which has complicated
analysis of sex as a biological variable in these studies (52).

Together, these anatomic, physiologic, immunologic, and
hormonal differences all contribute to observed differences in
HIV acquisition dynamics in males and females.
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SEX DIFFERENCES IN HIV VIRAL LOAD
AND REPLICATION

Sex-related differences in the mammalian immune system often
involve more frequent and severe infections in males and more
efficient immune responses in females (14). This trend is also
evident in viral infections, including HIV infection (13). Sexual
dimorphism in the immune system is in part associated with
intrinsic genetic differences observed prior to adult maturation
and therefore before strong hormonal influences are widely
evident (14, 53). Females have higher CD4+ T cell counts than
their male counterparts and also have higher CD4/CD8 ratios
(9). In HIV-infected children, females were shown to have lower
HIV RNA levels than males in untreated infection (53). Women
are also reported to have at least 40% lower HIV RNA compared
to their male counterparts, which is most evident earlier in the
course of infection (4, 9, 54, 55). Interestingly, CD4+ T cells do
not show sex-biased differences in their capacity to support HIV
infection in vitro (56). Female primary monocyte-derived
macrophages, however, were shown to be less susceptible to
HIV infection in vitro than male primary macrophages. This is
believed to be dependent on sex differences in host anti-HIV
restriction factor SAMHD1 (56). Although the genes for HIV
entry receptors are not located on sex chromosomes, many
immune genes do lie on the X chromosome, including certain
toll-like receptors (TLRs) (33). Specifically, TLR-7 and TLR-8 are
present in the X-chromosome and can recognize single-stranded
viral RNA (ssRNA), including HIV genomic RNA (33, 57). Due
to the presence of two X-chromosomes in females, one is
normally inactivated during the embryonic stage. However,
errors in this process can occur, with reports of 15-23% of X-
linked genes escaping inactivation, including TLR-7 (58, 59).
Biallelic expression of important X-chromosome genes, like
TLR-7, leads to higher protein levels and might therefore lead
to a more robust innate immune response (33, 59, 60). In female
plasmacytoid dendritic cells, TLR-7 activation with HIV ssRNA
led to the production of higher levels of IFNa, which is
commonly observed in the first week of HIV infection (61–63).
It has also been demonstrated that at low concentrations,
estradiol, an estrogen sex hormone, and progesterone affect
HIV replication by increasing HIV transcription but at high
concentrations they reduce HIV integration (64), although
another study indicates that 17b-estradiol can inhibit HIV
transcription by inducing a complex between b-catenin and
estrogen receptor a on the HIV promoter (65). Hence, sex
hormones can directly affect HIV replication, but their net
effects can be complex and concentration dependent.
SEX DIFFERENCES IN
HIV PATHOGENESIS

During the long “asymptomatic” phase of HIV infection, high
levels of virus replication and CD4+ T cell killing occur, but this
is counterbalanced by the host immune system replenishing
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depleted CD4+ T cells via homeostatic proliferation. Eventually,
this balance is lost and CD4+ T cell numbers decline to the point
that effective immune responses against HIV and other
pathogens can no longer be mounted, resulting in progression
to AIDS (66). Women have higher CD4+ T cell counts, and
lower HIV plasma RNA loads during the asymptomatic phase of
infection, but both males and females progress to AIDS at similar
rates (67–69). Females, however, progress to AIDS at higher rates
when compared to males of equivalent HIV RNA load (67).

Examples of common infections during AIDS include
candidiasis, both bacterial and Pneumocystis jirovecii
pneumonia, cytomegalovirus (CMV), Toxoplasma gondii
infections, and tuberculosis (70–72). Generally, these
opportunistic infections do not have a sex-based bias to either
male or female individuals (73, 74). Yet there are some
exceptions, such as an increased risk of HSV-2 and
toxoplasmosis infection in women (74–77). Certain viral
pathogens can also cause cancer in immunodeficient
individuals. One example is human herpesvirus-8 (HHV-8),
also known as Kaposi sarcoma-associated herpesvirus (KSHV),
which causes Kaposi sarcoma. There is a higher incidence of
Kaposi sarcoma in men than women worldwide, and this trend is
also evident when comparing HIV-infected men and women
(78–80). HPV is common in both women and men but can cause
cervical cancer at elevated rates in HIV-infected females (70, 74).

A very small subset of people are capable of naturally
suppressing HIV to undetectable levels without ART treatment
(elite controllers) (81, 82) or following cessation of ART (post-
treatment controllers) (83). Women have been identified in some
studies to be over-represented in each of these groups, which
may be influenced by multiple genetic and immunologic factors
but is broadly consistent with the enhanced immune responses
against infectious diseases, including HIV, observed in females
(9, 84–86).

In summary, differences in immune responses as well as
exacerbation of infections and cancers that are also sex-biased
in HIV uninfected individuals are features of HIV pathogenesis
in males versus females.
SEX DIFFERENCES IN HIV TREATMENT

Modern ART regimens effectively suppress plasma viral loads
and prevent progression to AIDS in both males and females (87).
However , in some cases the pharmacokinet ic and
pharmacodynamic profiles and side effects of ART differ
between males and females (88–91). This is driven by
differences in body weight, body fat content, extracellular water
content, and many other factors that together can influence drug
efficacy or side effects in men and women (92). Even among
women, plasma concentrations of some antiretroviral drugs may
vary during pregnancy or during different menstrual cycle phases
(88). Consideration of potential teratotoxic effects on the
gestating fetus and efficacy in preventing mother-to-child
transmission of HIV when selecting an ART regimen are also
specific to women (93–95). The immunologic profile of men and
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women can differ during ART. For example, after 48 weeks of
combination ART qualitative and quantitative sex-associated
differences in proinflammatory cytokines have been identified
in plasma (96, 97).

Within the last decade, there have been major developments
in a prophylactic approach to HIV infection. In 2012, the U.S.
Food and Drug Administration (FDA) approved a daily tablet,
which combined tenofovir disoproxil fumarate and emtricitabine
as PrEP (98). This is effective in preventing infection in men and
women (98–100). It does however take longer for women to
achieve maximum protection for receptive vaginal intercourse
(21 days) compared to receptive anal intercourse (7 days) due to
lower concentrations of tenofovir in cervicovaginal tissues than
in rectal tissues (101–103). The composition of the vaginal
microbiome has also been shown to affect the efficacy of some
PrEP approaches. For example, tenofovir gel was three times
more effective at reducing HIV incidence in women with a
vaginal bacterial community dominated by Lactobacillus versus
those with Gardnerella vaginalis, potentially due to metabolism
and inactivation of the drug by Gardnerella vaginalis (104). This
may partially explain why PrEP with tenofovir was found to be
more effective in men than women.
SEX DIFFERENCES IN PERSISTENCE,
LATENCY, AND CURE APPROACHES

One of the primary reasons that HIV infection is not cured by
ART alone is that HIV forms a latent reservoir in resting CD4+ T
cells (105–109). These long-lived latently infected cells encode
non-expressing HIV genomes in their chromosomes, which can
reactivate to produce infectious virus years after they were
initially infected. Depleting this latent reservoir is therefore a
central goal of HIV cure efforts. However, the potential influence
of biological sex has not been a major focus in HIV cure research,
as evidenced by the significant underrepresentation of women in
clinical HIV cure studies (52).

Several studies have evaluated the size of the latent reservoir
in men versus women using different approaches. While total
HIV DNA copy numbers in PBMC do not measure only
activation-inducible, replication-competent, latent HIV
reservoirs (due to the presence of defective or non-inducible
proviruses) (110), HIV DNA levels at the time of treatment
interruption has been shown to predict time-to-rebound upon
cessation of ART in some cases (111). Cross-sectional studies
have demonstrated lower HIV DNA copy numbers in PBMCs
from women than men during ART (110, 112, 113). However, a
prospective study of HIV-infected, ART-suppressed individuals
consisting of 26 well-matched pairs of women and men did not
show significant differences in the frequency of CD4+ T cells
harboring total or integrated HIV DNA (114). Yet this study did
identify increased HIV transcriptional activity in reservoir cells
from men based on multiply spliced HIV transcripts and plasma
viral loads measured by single-copy assays, suggesting the
reservoir may be more quiescent in women. Another study
investigated HIV reservoir size and other characteristics of
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resting CD4+ T cells from matched ART-suppressed men and
women (22 of each sex) with a comprehensive collection of
analyses, including a quantitative viral outgrowth assay, intact
proviral DNA assay, and total HIV DNA measures (115). They
did not find significant differences in the frequency of latent HIV
in resting CD4+ T cells between men and women. Hence, if sex
differences in the size of the replication-competent latent
reservoir in CD4+ T cells are present, they do not appear to be
large enough to readily detect in these relatively small
study populations.

One potential approach for eliminating latently infected cells
is a “kick and kill” strategy, which involves inducing expression
of the latent HIV genome to allow the host cell to be killed by
viral cytopathic effects or the host immune response (105). To
accomplish this, latency reversal agents (LRAs) that reactivate
HIV expression are currently being explored. Interestingly, using
a primary cell in vitro model of HIV latency, it was found that
there were not sex-based differences in latency reversal using five
different compounds (ingenol-3,20-dibenzoate, bryostatin-1, 3-
hydroxy-1,2,3-benzotriazin-4[3H]-one [HODHBt], Pam3CSK4,
and vorinostat) (116). However, comprehensive studies of
different LRA classes in ex vivo latently-infected cells from
ART-suppressed patients or in vivo models have not yet been
performed. An additional study has demonstrated that the
estrogen receptor acts as a potent repressor of latency reversal
(117). This study showed in several model systems that selective
estrogen receptor modulators including tamoxifen, raloxifene,
and fulvestrant can weakly induce proviral reactivation but,
importantly, can also sensitize cells to reactivation with other
LRAs, including IL-15, vorinostat, and TNFa. Using primary
cells from well-matched men and women, they also found that
the total inducible RNA reservoir was smaller in women than
men. These data suggest that targeting estrogen receptor
signaling may be useful in augmenting latency reversal and
depleting reservoir cells (117). As observed for other drugs,
differences between men and women in the pharmacokinetic
and pharmacodynamic properties of individual or combination
LRAs may also occur (4, 92). Proposed “kill” approaches to
eliminate virus host cells after latency reversal include anti-HIV
envelope antibody or immunotoxin therapeutics, augmentation
of immune responses, and cytotoxic T cells bearing chimeric
antigen receptors (105). This “kill” arm of the “kick and kill”
therapy may also be affected by sex differences via the same
mechanisms that distinguish male from female immune
responses in untreated HIV infection (9).

There have been three reported cases of apparent HIV cure
through therapeutic interventions. This includes the two well-
documented cases of the “Berlin Patient” and “London Patient”
who received allogeneic hemopoietic stem cell transplants with
Frontiers in Immunology | www.frontiersin.org 5
CCR5 D32 mutations during their treatment for leukemia or
Hodgkin lymphoma, respectively (118–120). Although the
“Berlin Patient” passed away in 2020 of cancer after 13 years
of undetectable plasma viral loads without ART, the “London
Patient” has remained HIV undetectable since cessation of ART
in 2017 (119–121). In early 2022, the first female patient was
reported to have been potentially cured of HIV following
transplant with cord blood encoding a similar mutation CCR5
D32 for leukemia treatment. At that point she had undetectable
viral loads for 14 months after discontinuing ART (118). The
small number of these potential “cures” does not allow for
systematic comparisons of sex differences, but they do provide
a proof of concept for HIV cure in both sexes.
DISCUSSION

Intrinsic biological differences in males versus females can
markedly influence the course of HIV infection (4, 5, 7). These
sex-related factors affect acquisition of HIV, viral replication,
pathogenesis, and the ART used in pre-exposure prophylaxis or
treatment. The role of sex differences in HIV persistence and
cure approaches is less well-defined. While there have been some
important pioneering studies in this area, there is a pressing need
to understand whether the characteristics or anatomic locations
of persistent HIV reservoirs differ in males versus females during
ART, and whether promising approaches for HIV cure behave
similarly in both sexes. In vivo models (122–124) of HIV
persistence and carefully planned clinical studies that
specifically evaluate sex differences offer opportunities to
achieve this goal and should be a focus of future work.
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