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Nicotine, the primary psychoactive component of tobacco

products, produces diverse neurophysiological, motivational,
and behavioral effects through several brain regions and

neurochemical pathways. Various neurotransmitter systems
have been explored to understand the mechanisms behind

nicotine tolerance, dependence, and withdrawal. Recent
evidence suggests that glutamate neurotransmission has an

important role in this phenomenon. The aim of the present
review is to discuss preclinical findings concerning the role

of N-methyl-D-aspartate (NMDA) receptor neurotransmission
in mediating the behavioral effects of nicotine, tolerance,

sensitization, dependence, and withdrawal. Based on preclinical
findings, it is hypothesized that NMDA receptors mediate the

common adaptive processes that are involved in the
development, maintenance, and expression of nicotine

addiction. Modulation of glutamatergic neurotransmission
with NMDA receptor antagonists may prove to be useful in

alleviating the symptoms of nicotine abstinence and facilitate
tobacco-smoking cessation.
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INTRODUCTION

Tobacco smoking is a powerfully addictive

behavior with underlying addiction to nicotine. It

is far more common than addiction to cocaine,

heroin or alcohol.1 Nicotine, a natural alkaloid

(1-methyl-2-[3-pyridyl] pyrrolidine) present in

tobacco leaves, is considered to be the major

psychoactive and dependence-producing substance

in tobacco products.2-5 Like other drugs of abuse,

chronic consumption of nicotine has been shown

to produce both tolerance and dependence in

humans.1 In recent years, the use of tobacco has

taken a great toll on youth and society. Over three

million smoking related deaths are reported

annually worldwide. It has been projected that

over the coming 30 - 40 years, tobacco will become

the largest single health problem worldwide,

causing 8.4 million deaths annually.2 Therefore, it

is very important to develop interventions that

can reduce and prevent tobacco use. An under-

standing of the mechanisms by which tobacco

addiction occurs is an essential component of this

goal.

Chronic use of nicotine and other drugs of

abuse leads to three well-known consequences:

tolerance, diminished responsiveness to the same

dose of nicotine; sensitization, an increase in an

effect of a drug with chronic use; and physical

dependence, a neuroadaptive physiological change

resulting from chronic drug exposure, such that

the absence of the drug results in an unpleasant

withdrawal syndrome.3,4 Since the identification of

nicotine as the primary psychoactive component

of tobacco smoke, a great deal of research has

been undertaken to unravel the neuropharmacolo-

gical, anatomical, and behavioural underpinnings

of its psychoactive effects. Various neural path-

ways and transmitter systems have emerged to

explain the psychoactive and addictive properties

of nicotine. Recent studies suggest those excitatory

amino acid systems and, in particular, N-methyl-

D-aspartate (NMDA) receptors, may have an
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important role in this phenomenon. This review

will focus on recent advances in our understanding

of the role of NMDA receptors in the behavioral

changes that occur following long term nicotine

use, including tolerance, sensitization, and physical

dependence.

NMDA RECEPTORS

Glutamate is a primary excitatory neuro-

transmitter for the majority of CNS receptors and

is involved in the regulation of variety of neural

functions. These receptors have been divided into

two major types: metabotropic and ionotropic,

based on their biochemical, pharmacological, and

molecular profiles.5 Metabotropic receptors

(mGluRs) are coupled through G-proteins to the

intracellular second-messenger system, whereas

ionotropic glutamate receptors contain ligand-

gated ion channels that mediate rapid changes in

sodium, calcium, and potassium permeability.

Ionotropic receptors are further divided into three

major subtypes: NMDA, -amino-3-hydroxy-5-α

methylisoxazole-4-propionic acid (AMPA), and

kainate, as defined by the affinities of these

synthetic ligands. Of the ionotropic glutamate

receptors, the NMDA subtype has been the most

extensively characterized. The NMDA receptor

consists of a central ion channel and several

modulatory sites to which neurotransmitters and

drugs can bind and affect receptor activity.6 Key

sites on the receptor include the competitive site,

the glycine site, the noncompetitive site, and the

polyamine site. Each of the binding sites (glutamate,

glycine, polyamine) has been used as a potential

target for the development of both receptor and

sub-type selective compounds.

Binding of an excitatory amino acid to the com-

petitive site on the receptor complex opens the ion

channel and allows entry of calcium ions into the

neuron. When calcium enters the neurons, it can

activate a variety of calcium-dependent enzymes

and thereby modify neuronal function.
7
Competi-

tive antagonists for the NMDA receptor such as

LY274614, AP-7, and CPPP selectively block this

glutamate recognition site. Activation of NMDA

receptors by competitive site agonists requires

coactivation of the glycine site on the complex. In

other words, activation of the receptor by

glutamate is facilitated by the binding of the

co-agonist glycine to an allosteric site on the

receptor complex. The noncompetitive or phency-

clidine (PCP) binding site is located within the ion

channel. Drugs acting at this site such as PCP or

MK-801 block ion movement through the channel

and prevent the influx of calcium, thereby antago-

nizing the activation of the NMDA receptor. The

final key site is the polyamine site. Drugs acting

at the polyamine site noncompetitively affect

receptor activity.8,9 Studies based on molecular

cloning have shown that the NMDA subtype of

glutamate receptor is a heteromultimeric channel

consisting of NR1, NR2, and NR3 subunits in

various combinations.10,11 The channel contains

discrete recognition sites for glutamate, glycine,

divalent cations, polyamines, and a site within the

channel. NMDA antagonists are structurally

diverse, and act on these multiple, allosterically

coupled recognition sites.12 NMDA receptors with

different NR1 and NR2 subunit combinations

have different electrophysiological and pharma-

cological properties.10 Moreover, the NR1 subunits

are formed from a single gene product with eight

splice variants, whereas NR2 subunits form four

different gene products (NR2A, NR2B, NR2C, and

NR2D).13 NMDA receptors show distinct distri-

bution patterns in the adult rat brain compared

with the developing brain, suggesting that there

might be different populations of neurons with

unique NMDA receptor subunit compositions and

distinct pharmacological properties.14,15

It is now well established that NMDA receptors

are widely involved in neural and behavioural

plasticity.
16
NMDA receptors have been implicated

in several different forms of drug-induced neural

and behavioural plasticity, including the develop-

ment of tolerance, sensitization, or physical de-

pendence to a variety of psychoactive drugs

including amphetamine, cocaine, nicotine, ethanol,

benzodiazepines, barbiturates, and cannabinoids.17-20

At present, a significant number of NMDA

antagonists and modulators are being developed.

Several of those agents are already approved for

clinical use, or are in the late stages (phase II/III)

of clinical trials.21,22 Moreover, some of the

medications that have been in clinical use for

many years have recently been discovered to have
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some NMDA antagonist properties (e.g. desimi-

pramine, memantine, amantadine, and dextro-

methorphan).

NMDA RECEPTORS AND DEVELOPMENT
OF NICOTINE TOLERANCE

Chronic administration of nicotine results in

tolerance and dependence in both humans and

rodents.23,24 In the past, the evaluation of nicotine

tolerance and withdrawal has been attempted

using various models, including operant schedules

of reinforcement,25,26,27 place preference,28 auditory

startle,29 and activity,30 as well as discriminative

stimulus effects of nicotine.31 However, the

behavioral effects observed in these models in

rodents appear to be complex and varied. The

equivocal results obtained in these studies may be

due to differences in dosage, sex or age of the test

animal, route of drug administration, time of

evaluation, animal strain used, or the behavioral

test employed in the respective study.32 Nicotine

elicits biphasic inhibitory-stimulatory effects on

locomotion in a baseline-dependent fashion.33 In

contrast to certain other behavioral effects of

nicotine, tolerance does not appear to develop to

the stimulant and reinforcing actions.34 The

locomotor stimulant action is rather weak in drug-

naïve animals, and becomes more pronounced

with repeated administration as tolerance develops

to the initial depressant action of the drug.34

Further, behavioral tolerance develops rapidly

with both acute and chronic administration.35,36

Morley and Garner have demonstrated that

chronic administration increases locomotor activity

in the light phase, but not in the dark phase, of

the diurnal cycle.37

Research to date does suggest an interaction

between central nicotinic and dopaminergic

systems.
38

Evidence implicating dopamine in

behavioral effects of nicotine addiction has come

from studies utilizing the neurotoxin 6-hydroxy-

dopamine to produce lesions of forebrain

dopamine systems.39 In vitro and in vivo studies

show that nicotine can stimulate the release of

dopamine in the ventral tegmental area (VTA),

striatum, and nucleus accumbens.
40,41

These effects

of nicotine also show some selectivity for the

mesolimbic as compared with the nigrostriatal

branch of the dopamine system. It is thought that

the activation of the mesolimbic dopamine system

induced by nicotine underlies the reinforcing and

stimulant effects of this drug.42 Behavioral studies

with procedures such as drug discrimination

reveal evidence for similarities between the effects

of nicotine and drugs that are known to act as

direct or indirect dopamine agonists.43 An inter-

pretation of the extinction-like effect of dopamine-

receptor antagonists in terms of impairment of

associative stimulus-reward learning has also

been provided.44 Further, selective dopamine

antagonists D1 and D2 can also attenuate some of

the behavioral effects of nicotine, including

stimulation of locomotor activity,45 nicotine self-

administration,46,47 and the nicotine discriminative

stimulus in rats.48 Jain et al. studied the effect of

selective dopaminergic drugs in nicotine tolerance

and suggest that tolerance to nicotine may be

mediated through a selective dopamine D2

receptor.49

The mechanisms by which tolerance to the

effects of nicotine develops are not fully under-

stood. However, biochemical studies have shown

that chronic exposure to nicotine increases high

affinity binding of nicotinic agonists to brain

tissue and induces chronic tolerance to many of

the drug’s behavioral and physiological effects.50

The increase in receptor number (upregulation)

has been interpreted as a compensation for agonist-

induced desensitization of nicotinic acetylcholine

receptors (nAChRs), and this prolonged desensiti-

zation has been proposed as the mechanism of

chronic tolerance to nicotine.
51,52

Other work has

shown that nicotine exposure over hours to days

upregulates high-affinity nicotine binding to

receptors through a posttranslational mechanism

thought to increase receptor numbers. Nicotine

exposure causes a four to sixfold higher binding

to alpha4beta2 receptors that does not correspond

to any significant change in the number of surface

receptors or a change in the assembly, trafficking,

or cell-surface turnover of the receptors. Such

upregulation might alter the functional state of

the receptors.53

As noted above, both in vivo and in vitro studies

show that nicotine can release dopamine, but only

a few studies have examined the effects of chronic
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treatment on this measure. Maisonneuve et al.

demonstrated that single doses of nicotine induce

reversible acute tolerance to nicotine- induced

release in the nucleus accumbens that peaks after

one hour and is lost by three hours after nicotine

administration.54 This time-course explains the

failure of some studies to observe tolerance

between doses of nicotine repeated over 24

hours.55,56 Further, the results of the studies

carried out by Blackburn et al. and Carboni et al.

indicate that chronic exposure to nicotine does not

result in complete tolerance to nicotine-induced

stimulation of dopamine release in the nucleus

accumbens.57,58 These results are apparently at

odds to those of Hildebrand et al., who under

similar conditions did not observe a significant

increase of dialysate conditions.59

Recently, the effects of NMDA receptor anta-

gonists on tolerance have been extensively studied,

particularly with opiates.60 Several studies have

also indicated that antagonists acting at various

modulatory sites of the NMDA receptor reduce

tolerance development to the analgesic effects of

opiates.61 More recently, such inhibitory effects on

the development of morphine tolerance have been

documented for the clinically used compounds

memantine and dextromethorphan.62,63 NMDA

antagonists also affect tolerance to the effects of

alcohol.64 The repeated co-administration of

NMDA receptor antagonists MK-801 (dizocilpine) or

D-CPPene (SDZ EAA 494; 3-(2-carboxypiperazin-

4-yl)-1-propenyl-1-phosphonic acid) with nicotine

attenuates the development of tolerance to the

locomotor depressant,65 and aversive effects of

nicotine in rats.66 Tolerance to some of the

behavioral effects (learning impairment, ataxia)

also develops when NMDA antagonists are

administered chronically.67 There are no published

reports on whether cross-tolerance exists between

opioids or psychostimulants and NMDA anta-

gonists. Preliminary data suggest that cross-

tolerance to selected effects exists between NMDA

antagonists and alcohol in laboratory animals.68,69

Cross-tolerance blockade, as in the case of agonist

substitution therapy, can be very effective in

decreasing drug use and in preventing relapse

following initial exposure in abstinent patients.

In summary, research studies do indicate the

potential role of NMDA receptors in tolerance to

different effects of opiates and ethanol. However,

data from tolerance studies for nicotine have been

limited. Additional studies are needed to under-

stand the role of the NMDA receptor in nicotine

tolerance.

NMDA RECEPTORS AND DEVELOPMENT
OF NICOTINE SENSITIZATION

An alternative phenomenon in addictive behavior

is termed sensitization or reverse tolerance.

Sensitization refers to a progressive enhancement

of species-specific behavioral responses that occurs

with repeated drug administration and typically is

seen in behavioral effects such as locomotor

activity and stereotypy in animals.70 Recent

evidence suggests that repeated injections of drugs

that lead to locomotor sensitization enhances a

variety of processes related to drug addiction.71,72

Locomotor sensitization may represent sensitiza-

tion of an underlying reward/incentive system.73,74

Some of the phenomena manifested in humans

with alcohol and drug dependence (e.g. craving,

impact of environmental stimuli) seem to be

intensified with progressive drug use and there-

fore are believed to be a result of sensitization.73

These processes may contribute to the maintenance

of a pathological behavior and play a role in

relapse to drug use after a period of abstinence.

Historically, the impetus for studying glutamate’s

role in addiction came from studies of behavioral

sensitization. The long lasting nature of behavioral

sensitization may be attributable to persistently

enhanced responsiveness of neurons that innervate

the nucleus accumbens, such as dopamine neurons

from the VTA and glutamate neurons from the

prefrontal cortex and basolateral amygdala.75,76

The mechanisms of the adaptive response to

nicotine are not fully understood. Repeated

exposure to nicotine has been shown to cause

behavioral sensitization associated with an

enhanced reactivity of nucleus accumbens dopamine

neurons,77-79 as well as cross-sensitization to other

addictive drugs.
80,81

However, other studies did

not find such sensitization effects shortly after

repeated nicotine exposure.82,83 These discordant

findings could be attributable to the time depen-

dence of drug-induced changes.
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Recent evidence suggests that NMDA-mediated

neurotransmission is involved in the development

of behavioral sensitization of psychostimulants,

opioids, and nicotine.84,85 As reviewed by Wolf,86

several investigators have found that co-admini-

stration of non-competitive NMDA receptor

antagonists such as dizocilpine (MK-801), during

repeated injections of these addictive drugs

interferes with the development or subsequent

expression of locomotor sensitization. In a series

of experiments, Shoaib, Stolerman, and colleagues

demonstrated that repeated co-administration of

0.3 mg/kg dizocilpine along with 0.4 mg/kg

nicotine during several sensitization sessions

attenuated sensitization to the locomotor stimulant

effect of nicotine.87,88 This co-administration of

dizocilpine also prevented sensitization of nicotine-

induced dopamine release in the nucleus

accumbens and the sensitized increase in nicotinic

receptors in a variety of areas, including the nucleus

accumbens,65 that normally occurs with repeated

injections of nicotine. However, pretreatment with

dizocilpine alone caused a modest enhancement

of the behavioural response to a subsequent acute

dose of nicotine. Similarly, co-administration of

another competitive NMDA antagonist, D-CPPene

(2.0 mg/kg), along with 0.4-mg/kg nicotine,

attenuated sensitization to the nicotine-induced

dopamine release in the nucleus accumbens.

There was no enhanced locomotor response that

could be attributed to nicotine pretreatment when

D-CPPene was co-administered with nicotine.

However, pretreatment with D-CPPene alone

enhanced the locomotor response to an acute dose

of nicotine. Although Shoaib et al. interpret this

effect as indicating that dizocilpine has blocked

the development of locomotor sensitization to

nicotine,65,88 more recent evidence indicates that

similar effects of co-administration of dizocilpine

on the subsequent expression of locomotor

sensitization to other drugs may be due to

state-dependency.89-91 In other words, animals

repeatedly injected with a combination of dizo-

cilpine/nicotine may become sensitized to the

combination (and to nicotine), but subsequently

fail to express sensitization to nicotine alone, as

nicotine does not sufficiently reproduce the

sensitized dizocilpine/nicotine state. To resolve

this controversy, Kelsey et al. attempted to

determine if the effects of the glutamate NMDA

receptor blocker dizocilpine (MK801) on nicotine

locomotor sensitization are due to a blockade of

the development of sensitization or to state-

dependency.92 They concluded that co-administra-

tion of a low dose of dizocilpine can block the

development of locomotor sensitization to

repeated injections of nicotine without producing

state-dependency, and thus NMDA receptor

activation appears to be critical for the develop-

ment, but not the subsequent expression, of

nicotine locomotor sensitization. These findings

are in accordance with the studies described

earlier.87 More recently, Shim and coworkers

studied the role of nitric oxide synthase inhibitors

and NMDA receptor antagonists in nicotine-

induced behavioral sensitization in the rat.93 They

found that pretreatment with the NMDA receptor

antagonist MK-801 during the nicotine induction

phase also blocked hyperactivity to nicotine

challenge. These results are consistent with

previous data demonstrating that pretreatment

with MK-801 blocks the development of sensitiza-

tion to drugs of abuse including nicotine, cocaine,

amphetamine or methamphetamine.94 Furthermore,

these results also demonstrate that nicotine-

induced behavioral sensitization requires the

activation of NMDA receptors not only for its

development, but also for its expression. Since

nitric oxide (NO) is known to be formed as a

results of the activation of NMDA receptors,

followed by Ca2+ influx and stimulation of

Ca
2+
/calmodulin-dependent NOS,

95
long-term

behavioral changes produced by nicotine can be

mediated by the activation of NMDA receptors

followed by the formation of NO. Therefore,

blockade of NMDA receptors and NO formation

can result in the development of nicotine-induced

sensitization.

All together, there appears to be general agree-

ment that NMDA receptor antagonists inhibit the

development of nicotine sensitization. NMDA

receptor antagonists have also been found to

inhibit the development of sensitization to the

stimulant effects of other drugs of abuse like

morphine, amphetamine, and cocaine.4,18,20,70 This

finding indicates that glutamate receptor stimula-

tion is a necessary step in the cascade of cellular

changes leading to sensitization. These results are
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very intriguing, suggesting that NMDA receptors

may be involved in sensitization to a variety of

different drugs of abuse. Understanding the

mechanisms underlying sensitization is of parti-

cular interest to the field of substance abuse,

because this process may be involved in the

craving that arises from repeated drug exposure.89

NMDA RECEPTORS AND DEVELOPMENT
OF NICOTINE PHYSICAL DEPENDENCE

Withdrawal from nicotine following chronic use

results in abstinence syndrome, which reaches

peak intensity within 24 hours.96,97 This syndrome

is characterized by a variety of symptoms including

irritability, anxiety, difficulty concentrating, rest-

lessness, impatience, excessive hunger, insomnia,

drowsiness, and craving for nicotine. Withdrawal

reactions can be elicited either by termination of

chronic administration of the drug or by acute

challenge with the nicotinic receptor antagonist

mecamylamine.98,99 Evidence suggests rodent

models of nicotine abstinence syndrome are

potentially useful for research to understand the

mechanisms of nicotine dependence and to screen

proposed interventions to aid in smoking cessation.

The few rat models that have been developed rely

upon changes in conditioned behavioral responses

or changes in body weight and food consumption

to measure withdrawal intensity.100,101 However,

the behavioral response of rodents to nicotine

using these models is complex and varied. As

mentioned above, acute injections of nicotine can

depress locomotor activity,
102

while chronic

administration can increase locomotor activity.
103

Behavioural tolerance rapidly occurs with both

acute and chronic nicotine administration.104 This

model is based primarily upon the frequency of

spontaneous behavioral signs observed in nicotine-

dependent rats after termination of nicotine.

Abstinence behaviour is characterized by signs

such as teeth chatter, chewing, gasps, abdominal

writhes, body shakes, tremors, ptosis, and seminal

ejaculation.105 In addition, the administration of

mecamylamine to rats that have been chronically

treated with nicotine using an osmotic minipump

induces various withdrawal signs such as

teeth-chattering, chewing, abdominal wriths, gasps,

ptosis, wet shake, and tremors.106 Moreover, this

model is similar to widely used rat models of

opiate abstinence syndrome and is analogous to

methods used to quantify nicotine abstinence in

humans. 107,108 In various preclinical studies,

mecamylamine has been used to precipitate an

abstinence syndrome in nicotine-dependent rats.

Mecamylamine has been shown to act as a non-

competitive as well as competitive antagonist to

nicotine.109-111 It has also been reported to potently

reverse many actions of nicotine including locomotor

effects, tremors,112,113 analgesia,114 hypothermia,115

cardiovascular actions,116 and effects on operant

behaviour.117 In addition, mecamylamine potently

attenuates the discriminative stimulus properties

of nicotine in experimental animals and in human

smokers.118,119

There have been several attempts to clarify the

mechanisms involved in nicotine dependence.120,121

Nicotine withdrawal precipitates a deficit in brain

reward function, as measured by elevations in

intracranial self-stimulation (ICSS) reward thre-

sholds similar to that observed in rats undergoing

withdrawal from other drugs of abuse.122

Avoidance and alleviation of this deficit in brain

reward function has been proposed as a motiva-

tional factor contributing to craving, relapse, and

continued tobacco consumption in human

smokers.97,122 Despite intense investigation into the

mechanisms by which acute nicotine use produces

its rewarding defects, the mechanisms mediating

the reward deficits associated with nicotine

withdrawal remain unclear.

Most drugs of abuse have been shown to

stimulate excitatory glutamatergic transmission

throughout brain reward circuitries.123 Increase in

glutamatergic transmission has been shown to

play an important role in mediating the positive

reinforcing actions of addictive drugs.124 Nicotine

is thought to act at several loci within the

mesolimbic system in order to increase dopamine

release within the nucleus accumbens (NAcc) and

thereby produce its rewarding effects.125,126

Initially, nicotine acts at nAChRs located on

dopamine neurons in the VTA, and increases their

firing rates.
127

Nicotine also acts at presynaptic 7α

nAChRs located upon glutamate efferents that

arise within the prefrontal cortex (PFC) to increase

glutamate release in the VTA.128,129 This enhanced
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glutamate release then acts at NMDA and non-

NMDA receptor sites on postsynaptic dopamine

neurons and increases their firing rate. Finally,

nicotine also acts at 7 nAChRs located onα

dopamine cell bodies in the VTA and on

presynaptic terminals in the NAcc to increase

dopamine release.130 Accordingly, blockade of

glutamatergic transmission reduces nicotine’s

stimulatory action on mesoaccumbens dopamine

transmission and attenuates the rewarding actions

of nicotine and other drugs of abuse.131-133

More recently, it has been documented that

neuroadaptations that occur during prolonged

exposure to drugs of abuse, which give rise to the

deficits in brain reward function associated with

withdrawal, may reside in the same neural

elements that mediate the acute rewarding actions

of these drugs.134 In contrast to nicotine’s acute

stimulatory effects, however, nicotine withdrawal

attenuates mesoaccumbens dopamine transmis-

sion,59 an action likely to contribute to the reward

and motivational deficits associated with nicotine

withdrawal.97 These findings are further supported

by studies carried out by Balfour et al.27

In addition to its role in mediating the rewarding

effects of drug like nicotine, there is also evidence

that glutamate is involved in drug dependence

and withdrawal states.135,136 For instance, co-admi-

nistration of the NMDA receptor antagonist MK-

801 blocks the development and/or expression of

opiate,137 ethanol,138 and benzodiazepine depen-

dence.139 Recently, the role of glutamate transmis-

sion, particularly the involvement of metabotropic

glutamate receptors in nicotine withdrawal, has

been investigated. Group II mGluRs are inhibitory

receptors located at presynaptic and postsynaptic

locations.140 Stimulation of mGluR2/3 decreases

glutamate release throughout the hippocampus,

striatum, and cortex.141-143 Interestingly, behavioral

experiments with laboratory experiments have

shown that the Group II mGluR selective agonist

LY 354740 ameliorates the increase in acoustic

startle response observed in rats undergoing

nicotine withdrawal.144 This observation led the

authors to suggest that enhanced glutamate

release may play a role in mediating the aversive

aspects of nicotine withdrawal reflected by an

increase in startle reactivity.
144

It is also noteworthy that acute nicotine

treatment increases the release of glutamate in

various brain sites including the VTA,128 NAcc,77

PFC,145 and hippocampus,146 whereas acute

LY354740 decreases glutamate release. In fact,

because withdrawal effects are most often

opposite in direction to acute drug actions,147 it

might be expected that nicotine withdrawal

would be associated with deficits in glutamate

transmission. It is therefore somewhat surprising

that a drug that acts to decrease glutamate release

ameliorates nicotine withdrawal, particularly

because activation of glutamate receptors plays a

role in mediating the rewarding actions of

nicotine.148,149 One possible explanation could be

that glutamate release is increased only in certain

brain sites and not in others and that LY 354740

selectively decreases glutamate release involved in

facilitating enhanced startle reactivity. Another

possibility could be that mGluR2/3 may be ex-

pressed on presynaptic terminals that release a

neurotransmitter other than glutamate that

enhances startle reactivity during nicotine with-

drawal.150,151 Therefore, LY 354740 may act at these

putative mGluR2/3 hetero receptors to block this

release and thereby block the enhanced startle

reactivity observed during nicotine withdrawal.

A more recent review by Balfour also concluded

that repeated nicotine injections increase extra-

cellular dopamine in both the accumbal medial

shell and core and lead to burst firing of

dopaminergic neurons evoked by the drug.152 This

conclusion is further supported by the observation

that stimulation of NMDA receptors on dopamine

neurons in the VTA enhances the proportion of

the cells that exhibit burst firing.153 The increases

in dopamine efflux in both the accumbal shell and

core evoked by either acute or repeated nicotine

injections are suppressed or abolished by the

administration of NMDA receptor antagonists

prior to the nicotine injection, suggesting a pivotal

role of glutamate in nicotine’s reinforcing effects.154

Thus, although the molecular and cellular

mechanisms underlying the response are different,

nicotine shares with amphetamine and cocaine the

ability to elicit a substantial and sustained increase

in dopamine overflow into the extracellular space

between the fibers of the accumbens. It seems

reasonable to conclude that this common response

to the drugs may be of fundamental importance
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to their ability to cause dependence.

In summary, like opiate withdrawal syndrome,

nicotine withdrawal syndrome is a complex

phenomenon, characterized by several different

signs and symptoms. Glutamate may play a role

in mediating nicotine withdrawal. Evidence is

lacking to suggest that NMDA receptor antagonists

inhibit the development of nicotine withdrawal

syndrome as a whole or a subset of signs and

symptoms. It will be useful to clarify the impact

of NMDA receptor antagonists on these effects,

both individually and collectively, in order to

better understand the potential role of NMDA

receptors in the development of these different

signs and symptoms and their relationship to one

another.

NMDA receptors and ligands (agonists/anta-

gonists/partial agonists) have been implicated in

the phenomenon of tolerance, dependence, and,

possibly, the management of nicotine dependence.

However, the evidence is still highly equivocal,

and various other neurochemical mechanisms

such as dopamine, cannabinoids, serotonin,

acetylcholine, adrenergics, and GABAergics have

also been implicated in these phenomena. These

receptors and neurotransmitters alone and in

combination with NMDA receptors and ligands

could be the target for development of future

intervention strategies for nicotine dependence.

CONCLUSION

In conclusion, addiction to nicotine is a complex

behavioural phenomenon that produces diverse

neurophysiological, motivational, and behavioural

effects through several brain regions and

neurochemical pathways. In spite of decades of

research, the mechanisms underlying nicotine

tolerance, physical dependence, and withdrawal

are still not well understood and several questions

remain. A substantial amount of preclinical research

suggests the role of glutamatergic, particularly

NMDA receptor, neurotransmission in mediating

the behavioural effects of alcohol and other drugs

of abuse. In animal models, NMDA receptor

antagonists modulate many of the effects of the

chronic administration of psychostimulants, opioids,

benzodiazepines, and alcohol. NMDA antagonists

alleviate physical as well as motivational aspects

of the withdrawal syndrome, attenuate ongoing

drug dependence, and reduce tolerance to several

effects of the drug and to the environment in

which the drug effect was experienced. This

research also supports the therapeutic potential of

NMDA receptor antagonists in alcohol and

substance use disorders. Preclinical research

studies examining the effects of NMDA receptor

antagonists on tolerance, sensitization, and

physical dependence of nicotine, though limited,

are encouraging. These observations suggest that

NMDA receptors are involved in the neural

changes that underlie the development of tolerance,

sensitization, and physical dependence to nicotine.

Hypotheses linking all of the abused substances

and nicotine to a common neural circuit and

dopaminergic neurotransmitter system have also

been suggested. NMDA receptor neurotransmission

may interact with dopaminergic pathways, and

both systems may play a role in mediating the

CNS effects of a variety of substances of abuse,

including nicotine. Moreover, nicotine shares

many of the properties of a psychostimulant drug

of dependence, and it seems reasonable to

conclude that this explains the addictive potential

of the drug and its role in the neurobiology of

tobacco dependence. Furthermore, animal studies

also demonstrate commonalities between nicotine

withdrawal and opiate abstinence syndrome.

Results of preclinial research conducted so far

suggest the therapeutic potential of NMDA

receptor antagonists in alcohol and substance use

disorders. The progress in applying results of

these preclinical studies to the development of

clinical medication has been slow but noteworthy.

Preliminary clinical studies treating opioid

dependence with drugs like dextromethorphan

and memantine in both detoxification and relapse

prevention have been encouraging.155 The clinical

data regarding the treatment of cocaine dependence

are very limited, although some clinical controlled

studies have demonstrated beneficial effects of

amantadine on cocaine-craving and symptoms of

cocaine withdrawal.156-158 It is important to

emphasize that amantadine has significant actions

at nicotinic and sigma receptors as well as

enhancement of noradrenergic transmission at the

doses necessary to block NMDA receptors.159
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Collins et al. studied the effect of memantine on

cocaine self-administration and suggested that

non-competitive antagonists may potentiate acute

effects of cocaine.160 Their study has several

limitations, however, and further laboratory

studies and a clinical trial may help to determine

whether memantine will have an advantage over

amantadine for the treatment of cocaine depen-

dence. In addition, NMDA antagonist action of

the naturally occurring alkaloid ibogaine has been

reported, and it has been found to be effective in

the treatment of morphine, heroin, alcohol,

nicotine, and stimulant abuse.161,162

All together, there are currently a limited

number of available medications to treat nicotine

dependence and other substance abuse disorders.

Despite recent advances in the understanding of

the neurobiological basis of these disorders and

the development of new psychotherapeutic

approaches, a lack of viable pharmacological

treatments persists. It seems likely that most of

the drug therapies introduced to date as aids to

smoking cessation act on some but not all of these

mechanisms, and this explains why none have

proved as efficacious as therapists or smokers

would like. At this stage, it is too early to com-

ment on the potential usefulness of NMDA

receptor antagonists for nicotine dependence.

Several questions remain regarding nicotine

addiction. NMDA receptor antagonists might be

useful as pharmacological adjuncts in the treatment

of nicotine addiction, but further research is

needed.
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