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Abstract

Data deposition to NCBI Genomes: This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank
under the accession AMXX00000000 (SMACv1.0, unscaffolded genome assembly). The version described in this paper is the
first version (AMXX01000000). The scaffolded assembly (SMACv1.1) has been deposited at DDBJ/EMBL/GenBank under the
accession AOUJ00000000, and is also the first version (AOUJ01000000). Strong biological interest in traits such as the
acquisition and utilization of speech, cognitive abilities, and longevity catalyzed the utilization of two next-generation
sequencing platforms to provide the first-draft de novo genome assembly for the large, new world parrot Ara macao (Scarlet
Macaw). Despite the challenges associated with genome assembly for an outbred avian species, including 951,507 high-
quality putative single nucleotide polymorphisms, the final genome assembly (.1.035 Gb) includes more than 997 Mb of
unambiguous sequence data (excluding N’s). Cytogenetic analyses including ZooFISH revealed complex rearrangements
associated with two scarlet macaw macrochromosomes (AMA6, AMA7), which supports the hypothesis that translocations,
fusions, and intragenomic rearrangements are key factors associated with karyotype evolution among parrots. In silico
annotation of the scarlet macaw genome provided robust evidence for 14,405 nuclear gene annotation models, their
predicted transcripts and proteins, and a complete mitochondrial genome. Comparative analyses involving the scarlet
macaw, chicken, and zebra finch genomes revealed high levels of nucleotide-based conservation as well as evidence for
overall genome stability among the three highly divergent species. Application of a new whole-genome analysis of
divergence involving all three species yielded prioritized candidate genes and noncoding regions for parrot traits of interest
(i.e., speech, intelligence, longevity) which were independently supported by the results of previous human GWAS studies.
We also observed evidence for genes and noncoding loci that displayed extreme conservation across the three avian
lineages, thereby reflecting their likely biological and developmental importance among birds.
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Introduction

Despite the biological importance of numerous non-model and

non-agricultural species worldwide, current research programs for

many of these species include minimal genome-wide sequence and

polymorphism data, thereby limiting the implementation of

genomic approaches for addressing biological questions in these

species [1]. The avian order Psittaciformes is but one example of

an underserved biological group, with some genomic resources

that have recently become available via completion of the Puerto

Rican parrot genome (Amazona vittata) [2], and the Budgerigar

(Melopsittacus undulatus budgerigar) sequencing initiative (http://

aviangenomes.org/budgerigar-raw-reads/). Notably, Psittaci-

formes is comprised of three families: the Psittacidae (true parrots),

Cacatuidae (cockatoos), and Strigopidae (New Zealand parrots)

[3]. Within the Psittacidae alone, there are over 300 divergent

species that display substantial geographic, phenotypic, cognitive,

and behavioral variation [4–7], yet little is currently known about

the individual genomes of these unique avian species. Relative to

other avian families, Psittacidae has been estimated to contain the

highest number of threatened or endangered bird species [8–9],

thus making their study a high priority for future conservation

efforts. Moreover, the conservation status of this family has

strongly catalyzed research in many important biological areas

including phylogenetics, population genetics, natural history,

nutrition, and conservation biology [10–14].

To date, the most well-funded and routinely studied avian

genomes provide representation from the orders Galliformes
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(Gallus gallus, chicken; Meleagris gallopavo, turkey) and Passeriformes

(Taeniopygia guttata, Zebra finch) [15–17], with recent efforts

providing some genomic insight into the Psittacidae [2] (http://

aviangenomes.org/budgerigar-raw-reads/), which in conjunction

with this study, are expected to be important for investigating key

features of this family, such as longevity and intelligence [5–7,18].

The estimated time since divergence for members of Psittaciformes

and the chicken (G. gallus; Galliformes) is approximately 122–125

MYA, whereas Psittaciformes and Passeriformes (Zebra finch; T.

guttata) diverged more recently (78–119 MYA; for review see

http://www.timetree.org/) [19–20]. Importantly, the generation

of new avian genome assemblies, such as those representing the

flycatchers (Ficedula spp.) [21], Darwin’s finch (Geospiza fortis;

http://gigadb.org/darwins-finch/), the Budgerigar http://

aviangenomes.org/budgerigar-raw-reads/), and additional species

of Psittacidae will provide substantial comparative and evolution-

ary insight into avian variation in traits such as longevity, body

size, intelligence, and adaptability [4–7,9,12–13,17–18]. Given

ongoing conservation initiatives [22–24], natural history studies

[24–26], and population genetics research [11,27–28] for the

scarlet macaw (Ara macao; Pscittacidae), we chose this species for

genome sequencing, assembly and annotation, thus providing a

new representative model for the genomic information content of

large neotropical psittacines.

Herein, we hypothesized that an avian multi-platform draft de

novo genome assembly could be rapidly generated with limited

funding, and subsequently found evidence to support this

hypothesis, with aspects of our final results (i.e. N50 contig size,

largest contig, total sequencing cost, etc) directly compared to

several well annotated and established avian assemblies [15–17].

In the absence of existing cDNA libraries generated from multiple

scarlet macaw tissues, we also hypothesized that a custom in silico

approach was sufficient to predict a large number of gene

annotation models, theoretical transcripts, and corresponding

putative proteins for the investigated species, with our final results

providing strong support for this hypothesis as well. To

comparatively assess the information content and organization of

the scarlet macaw genome, we aligned the new draft de novo

assembly with the chicken and zebra finch genomes, and also used

comparative chromosome paints derived from flow sorted chicken

macrochromosomes (autosomes 1–9 and the sex chromosomes Z

and W) to establish the homologous chromosome segments in a

female scarlet macaw. The results of our study directly facilitate a

genomics research program for the scarlet macaw, and may also

serve to enable modern genomics research in other avian species.

Results and Discussion

Cytogenetics and ZooFish
Cytogenetic analyses indicate that the scarlet macaw diploid

chromosome number is most likely 2n = 62–64, as inferred from

chromosome counts in three individuals including the female

scarlet macaw selected for sequencing (‘‘Neblina’’; Figure 1). All

investigated birds had 22 macrochromosomes, which included 10

pairs of autosomes and the sex chromosomes, and approximately

40–42 microchromosomes, the numbers of which varied due to

technical reasons such as metaphase overlaps, variation in staining,

and chromosome spreading. According to the centromere position

for A. macao macrochromosomes (AMA): AMA1 and 8 were

designated as metacentric, AMA2, 3, 4, 5, 6, 7, 10, Z and W as

submetacentric, and AMA9 as acrocentric (see Figure 1, Figure 2,

Figure S1). These findings are similar but not identical to the

earlier description of scarlet macaw chromosomes [29] where

2n = 70 was proposed as the approximate diploid number, and the

submetacentric macrochromosomes were designated as subtelo-

centrics. We further characterized the scarlet macaw genome by

using comparative chromosome paints generated from flow sorted

chicken macrochromosomes (1–9) as well as GGA-Z and GGA-W

[30] to establish the homologous chromosome segments between

the two avian species (Figure 2; Figure S1). All chicken

chromosome paints provided discrete signals that were exclusive

to their GGA chromosome of origin, as verified by their

application to chicken metaphase spreads (i.e., positive controls;

Figure S1). When applied to scarlet macaw metaphase spreads,

individual chicken chromosome paints hybridized predominantly

to a single macrochromosome pair, with the exception of GGA1

and GGA4, which hybridized to three and two scarlet macaw

chromosomes, respectively (Figure 2). These results are compatible

with Zoo-FISH experiments conducted between chicken and a

variety of other avian species where a high degree of conserved

synteny has been observed for the macrochromosomes, with the

exception that GGA1 and GGA4 each tend to share homology

with 2 or 3 chromosomes in other bird species [31]. As expected,

no hybridization signal was detected with a GGAW probe

(Figure 2; Figure S1) because, similar to the Y chromosome in

mammals [32], the euchromatic sequences of the avian W

chromosome are not sufficiently conserved to enable Zoo-FISH

across distantly related bird species [33–34]. Perhaps the most

interesting results obtained from our Zoo-FISH experiments are

the complex rearrangements associated with scarlet macaw

macrochromosomes AMA6 and AMA7 (Figure 2), which support

the hypothesis that translocations, fusions, and intragenomic

rearrangements are major factors associated with karyotype

evolution among parrots (Psittaciformes) [35]. Moreover, the

specific order of chromosome repatterning observed for AMA6,

with syntenic, alternating signals derived from GGA7 and GGA6

paint probes (Figure 2), respectively, is unique in terms of the

previously described rearrangements in Pscittaciformes [35],

whereas the comparative configuration of AMA7 is similar to

that previously described for the budgerigar (Melopsittacus undulates)

[35]. Using a synthetic PNA probe for telomeric repeat sequences

[34], we observed clear hybridization signal at the terminal ends of

all scarlet macaw chromosomes (Figure S1). Moreover, no

interstitial telomeric hybridization signal was detected, which is

consistent with previous cytogenetic observations for the California

condor, house sparrow, blue jay, and lesser adjutant stork [34,36],

but differs from observations in the chicken, Bell’s vireo, red-tailed

hawk, and Inca dove, where both centric and interstitial telomeric

repeat signals have been observed (for review see [34,36–37]). In a

final comparative analysis, we determined the location of the 5.8S,

18S, and 28S ribosomal RNA gene cluster, also known as the

nucleolar organizer region (NOR), and observed three discrete

scarlet macaw microchromosome pairs possess NORs (Figure S1),

which was somewhat unexpected given the single microchromo-

some NOR previously observed for the California condor and the

chicken [34]. However, relatively few avian species have been

investigated for the distribution of NORs [38], and therefore, it is

possible that three discrete microchromosome NORs may exist in

other avian species.

Genome Sequencing and de novo Assembly
Herein, we developed a genome sequence for ‘‘Neblina,’’ a

female wild-caught scarlet macaw of unknown age that was

originally seized by the United States Fish and Wildlife Service

upon discovery of an illegal importation from Brazil. Currently,

Neblina resides in Blank Park Zoo (Des Moines, IA). Unlike

several other avian genomes that have benefitted from the

establishment and utilization of BAC libraries, linkage and/or

Scarlet Macaw Genome
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radiation hybrid (RH) maps, and cDNA libraries from multiple

tissues [15–17], the draft scarlet macaw genome was derived solely

from the de novo assembly of multi-platform next-generation

sequencing data, thus representing a rapid approach to enabling

efficient, large-scale genomics research programs in avian species

for which classical genomic tools and resources (i.e. Maps, BACs,

cDNA libraries) are limited. To maximize the recovery and

precision of genome-wide sequence information in the absence of

any genome maps, we assembled and analyzed the genome in

two steps as follows: 1) Generation of a simple de novo assembly

without scaffolding; 2) Generation of a de novo assembly with

scaffolding via paired-reads. Emerging trends in avian genomics

demonstrate that diverse analytical approaches have been

successfully used [2,21] (Geospiza fortis; http://gigadb.org/

darwins-finch/; http://aviangenomes.org/budgerigar-raw-reads/

) to deliver new avian genome assemblies, with this study further

supporting this concept, but also pointing out some limitations

in genome characterization, as a function of not generating both

a simple de novo and scaffolded genome assembly.

Figure 1. Consensus Scarlet Macaw (Ara macao) Karyotype. Cytogenetic analyses indicate that the scarlet macaw diploid chromosome
number is 2n = 62–64, as inferred from chromosome counts of multiple cells derived from three individuals, including the sequenced female macaw
(Neblina). All investigated scarlet macaws had 22 macrochromosomes, which included 10 pairs of autosomes and the sex chromosomes, and
approximately 40–42 microchromosomes, the numbers of which varied due to technical reasons such as metaphase overlaps, variation in staining,
and chromosome spreading.
doi:10.1371/journal.pone.0062415.g001
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Sequence data generated and utilized for this assembly were

derived from three next-generation sequencing procedures as

follows: Roche 454 GS-FLX with Titanium Chemistry (Roche;

Branford, CT), Illumina Genome Analyzer IIx (GAIIx; v5

Chemistry; Illumina Inc.; San Diego, CA), and the Illumina

HiSeq 2000 (v2 Chemistry; Illumina Inc.; San Diego, CA). Using

knowledge of avian genome size (nuclear DNA content, C-value)

derived from comparative flow cytometry [39] in conjunction with

physical knowledge of several modern avian genome assemblies

(i.e., size; base pairs) [15–17], we estimated the scarlet macaw

nuclear genome to be approximately 1.11–1.16 Gigabase pairs

(Gbp) in size. Notably, this estimate does not fully account for the

apparent lack of completeness associated with existing avian

genome assemblies (i.e., collapsed repeats), but does provide a

useful benchmark for determining whether the overwhelming

majority of the scarlet macaw genome was captured via de novo

assembly. Collectively, more than 426 million trimmed sequence

reads derived from four different sequencing libraries were used in

the assembly process (Table 1), which yielded $26X theoretical

genome coverage (1.11–1.16 Gbp) as input data for the multi-

platform assembly. Based on the estimated genome size for scarlet

macaw, these data represent .1X genome coverage in Roche 454

long reads, and #25X coverage in total Illumina reads (GAIIx and

HiSeq 2000; see Table 1).

We utilized 426,112,203 trimmed sequence reads in a hybrid de

novo assembly that was conducted using the CLC Genomics

Workbench (v4.8, 4.9; Finlandsgade, Dk). Details regarding the

multi-step assembly procedure, including specific workflows that

reduce the potential for contig misassembly, are described in the

Methods. Collectively, our first-generation simple de novo assembly

(SMACv1.0) contained 1.035 Gbp distributed across 282,983

unscaffolded contigs with N50 size of 6.37 Kbp (kilobase pairs;

Table 2; Table S1; Genbank Accession AMXX00000000), which

is similar to features of the unscaffolded Puerto Rican parrot

genome [2]. Thereafter, and for comparison, we also generated a

second de novo genome assembly (CLC Genomics Workbench v4.9)

which included the addition of a scaffolding algorithm imple-

mented during the final steps of the assembly process. Briefly, the

scaffolding procedure used paired reads spanning two contigs to

estimate the distance between the contigs, and also to determine

their relative orientation. Scaffolding was performed using a

greedy approach in which the smallest gaps between contigs were

closed first during an iterative process, with scaffolding taking

advantage of both paired-end and mate-pair reads, but with strict

enforcement of the specified paired distances and read orientations

(see Methods). Our first generation scaffolded de novo genome

assembly (SMACv1.1) contained 1.205 Gbp (including gaps; N’s)

distributed across 192,790 contigs, with a N50 contig size of

15.97 Kbp (Table 2; Table S2; Genbank Accession

AOUJ00000000). Collectively, $90% of the assembled genome

was captured within 95,000 contigs (Figure 3). We use the term

‘‘contigs’’ in relation to the final products of the scaffolded genome

assembly because not every genomic sequence contig was actually

joined to another via read-based scaffolding. Altogether, 140,453

(72.9%) final contigs were longer than 1 Kbp, and the largest

scaffolded de novo contig assembled was 177,843 bp (Table 2).

Figure 2. Chicken-Scarlet Macaw (Ara macao) Comparative Chromosome Painting (ZooFISH). Using chicken flow sorted macrochromo-
somes (GGA1-GGA9) as well as GGAZ and GGAW, the homologous chromosome segments of the scarlet macaw were established via fluorescent in
situ hybridization. All flow sorted probes were validated via hybridization to chicken metaphase spreads (see Figure S1).
doi:10.1371/journal.pone.0062415.g002
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These results are similar to those achieved for the Puerto Rican

parrot [2] and domestic turkey [16]. Based on the estimated size of

the scarlet macaw genome (1.11–1.16 Gbp), it is apparent that the

vast majority of the genome was captured (Table 2). Summary and

comparative data involving major characteristics of the simple and

scaffolded de novo genome assembly for the scarlet macaw are

presented in Table 2, which includes a comparison with the initial

releases of two established and well annotated avian genomes.

To evaluate the concordance between the two scarlet macaw

assemblies, we mapped the simple de novo contig sequences onto

the scaffolded assembly using two procedures: 1) Utilization of the

large gap read mapper within the CLC Genomics Workbench

(v4.9), which was limited to mapping sequences #7,999 bp

(n = 251,604); and 2) Implementation of the blastn algorithm for

sequences $8,000 bp (n = 31,379). Altogether, we mapped

263,777 simple de novo contigs (93.2%) onto the new scaffolded

genome, with .62% that displayed ungapped read mappings.

However, the total simple de novo contigs which could be mapped

onto the scaffolded assembly is actually underestimated by 4.9%,

since 13,875 contig mappings were considered invalid by the CLC

large gap read mapper. Invalid mappings resulted from multiple

nonconsecutive alignments for discrete segments of each contig,

and/or the presence of inverted internal segments relative to the

scaffolded reference genome. Examination of these and other

discrepancies (i.e., gaps) provided evidence for collapsed repeats as

well as heterozygosity within some repetitive and nonrepetitive

regions (i.e., insertion/deletion). A reference table summarizing

the genomic positions of all mapped simple de novo contigs within

the scaffolded assembly was generated and is available for

reference (Table S3).

Comparative Genome Alignment, Predicted Repeat
Content, and SNP Prediction

Initially, we aligned 99.97% of the scarlet macaw simple de novo

contigs (SMACv1.0; n = 282,904/282,983 contigs) to the available

chicken reference genome (G. gallus 2.1) via blastn, with median

genome-wide summary statistics derived from the top E-value

contig hits as follows: E-value = 3e-112, percent identity = 74%,

and alignment length = 759 bp (See Table S4). Across all aligned

scarlet macaw contigs, 38.6% produced a unique alignment to a

single chicken chromosome (see Methods). Examination of the

SMACv1.0 blastn alignments (E-value top hits) across all chicken

chromosomes revealed relatively stable levels of nucleotide-based

divergence, with alignments to GGA16 and GGAZ demonstrating

the highest (Median = 80.13%; Mean = 79.45%) and lowest

(Median = 73.21%; Mean = 74.77%) percent identities, respective-

ly (Table S4). Similarly, 99.98% of the scarlet macaw simple de novo

contigs (SMACv1.0; n = 282,915/282,983 contigs) were also

aligned to the available zebra finch reference genome (T. guttata

1.1, 3.2.4 assembly), with median genome-wide summary statistics

derived from the top E-value hits as follows: E-value = 2e-177,

percent identity = 75%, and alignment length = 1030 bp. Alto-

gether, 116,234 simple de novo contigs (41%) produced a unique

alignment to a single zebra finch chromosome (see Methods).

Investigation of all SMACv1.0 contig alignments across each zebra

finch chromosome also revealed relatively uniform levels of

Table 1. Summary of Roche 454 Titanium and Illumina sequence data used for de novo assembly of the scarlet macaw genome.

Data Source Total Reads1 Library Type Insert Size2 Paired Dist. (bp)3 Average Read Length (bp)4

Roche 454 4,489,636 Random Shotgun 500–6002 301

Illumina GA IIx 59,090,507 Small Insert Paired End 250–4503 116

Illumina HiSeq 132,052,204 Small Insert Paired End 250–4503 93

Illumina HiSeq 116,445,199 Mate Pair (Small) 1100–27003 48

Illumina HiSeq 114,034,657 Mate Pair (Medium) 4000–57003 47

1Total usable reads after quality and adapter trimming (n = 426,112,203).
2Targeted fragment population after nebulization of high molecular weight genomic DNA.
3Range of observed paired distances for each Illumina sequencing library.
4Reflects the averages for quality and adapter trimmed reads.
doi:10.1371/journal.pone.0062415.t001

Table 2. Summary data for the scarlet macaw first-generation draft de novo genome assembly with comparison to the initial
turkey and chicken genome assemblies.

Genome Characteristics Scarlet Macaw 1.01 Scarlet Macaw 1.12 Turkey 2.01 Chicken 2.1

Total Contig Length (without gaps) 1.035 Gbp 0.997 Gbp 0.931 Gbp 1.047 Gbp

Total Contigs .1 Kb3 214,7543 140,4533 128,271 98,612

N50 Contig Size 6,366 bp 15,968 bp 12,594 bp 36,000 bp

Largest Contig 87,225 bp 177,843 bp 90,000 bp 442,000 bp

Contig Coverage4 16x4 13x4 17x 7x

Cost of Sequencing (M = million) , $0.034M , $0.034M , $0.250M . $10M

1SMACv1.0 is unscaffolded. The cost of sequencing also reflects all library costs.
2SMACv1.1 is scaffolded based on paired-reads and is 1.205 Gbp including gaps.
3SMACv1.0 = 282,983 total contigs; SMACv1.1 = 192,790 total scaffolded contigs.
4Median value of average coverage across all genomic contigs.
doi:10.1371/journal.pone.0062415.t002
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nucleotide-based divergence (i.e., median blastn percent identities),

with the exception of alignments to LG5 and TGU16, which

demonstrated the highest (Median = 83.87%; Mean = 81.72%)

and lowest (Median = 71.21%; Mean = 73.04%) percent identities,

respectively (Table S4).

In general, similar results were also observed for comparative

alignments involving the scaffolded scarlet macaw genome

assembly (SMACv1.1), with median genome-wide summary

statistics derived from the top E-value blastn hits against the

chicken (newest release, G. gallus 4.0) and zebra finch genomes (T.

guttata 1.1, 3.2.4) as follows: G. gallus E-value = 2e-110, percent

identity = 74%, and alignment length = 707 bp; T. guttata E-

value = 1e-163, percent identity = 75%, and alignment

length = 759 bp. For both comparative alignments .99.94% of

the total scaffolded contigs (n = 192,790) were aligned to the

chicken and zebra finch reference genomes, with the majority of

all SMACv1.1 contigs producing 5 total hits or less in both

analyses (Table S5). For comparative alignments between

SMACv1.1 and the chicken reference genome, the lowest percent

identities were observed for GGA1 (Median = 73.63%;

Mean = 74.84%) and GGAZ (Median = 73.72%;

Mean = 75.44%), whereas the highest were observed for GGA16

(Median = 80.46%; Mean = 81.00%). A similar trend was also

observed for alignments between SMACv1.1 and the zebra finch

reference genome, with the lowest percent identities corresponding

to TGUZ (Median = 73.85%; Mean = 75.04%), and the highest

observed for TGU16 (Median = 80.60%; Mean = 80.39%). De-

tailed comparative alignment data between SMACv1.1 and the

well-established genomes of the chicken and the zebra finch are

provided in Table S5.

The minimum estimated repetitive DNA content for the scarlet

macaw genome was approximately 5.2%, as predicted by

RepeatMasker, but differed substantially between the two

assemblies (Table 3). Specifically, the addition of ‘‘N’s’’ spanning

gaps within the scaffolded genome essentially precluded the

detection of many repetitive sequences (Table 3), with the

implication being that the scaffolded assembly underestimates

the true (i.e. minimum) genome-wide repetitive content. Estimates

for the minimum genome-wide repetitive content were derived

from a two-stage composite analysis employing both the chicken

and zebra finch repeat libraries, with results obtained for the

simple de novo assembly (SMACv1.0) being similar to that reported

for the turkey genome (6.94%) [16], but lower than corresponding

estimates for both the zebra finch and chicken [15,17]. The vast

majority of the predicted repeat content for the scarlet macaw

consists of interspersed repeats, of which most belong to four

groups of transposable elements including SINEs, L2/CR1/Rex

non-LTR retrotransposons, retroviral LTR retrotransposons, and

at least three DNA transposons (hobo Activator, Tc1-IS630-Pogo,

PiggyBac). A summary of the major repetitive content predicted

throughout the scarlet macaw genome is presented in Table 3. It

should also be noted that after first masking the scarlet macaw

genome (SMACv1.0, SMACv1.1) using only the chicken repeat

library, very few additional repeats were subsequently identified

(#0.19%) during stage two of our analysis when the zebra finch

repeat library was used to scan the masked scarlet macaw genome.

The underlying reason for this was that utilization of either the

chicken or zebra finch repeat libraries during the first stage of a

composite analysis largely results in the discovery of the same

scarlet macaw repetitive sequences. While repeat sequences are

generally considered to be some of the most rapidly evolving

sequences within the genome, it is clear from our results that many

repeat elements and their respective sequences are conserved

between the two highly divergent reference genomes (i.e., chicken,

zebra finch) [15,17] and the scarlet macaw, which suggests a

tangible level of genome stability despite $78 MY since

divergence (see http://www.timetree.org/) [19–20]. Notably, a

similar level of stability was previously suggested between the

Figure 3. Relationship Between Total Contig Length (Kbp) and Total Contig Number for the Scaffolded Scarlet Macaw (Ara macao)
Genome (SMACv1.1). The y-axis represents total contig length, expressed in kilobase pairs (Kbp), whereas the x-axis represents the total number of
scaffolded contigs. Based on the estimated size of the scarlet macaw genome (1.11–1.16 Gbp), $90% of the assembled genome was captured within
approximately 95,000 contigs.
doi:10.1371/journal.pone.0062415.g003
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turkey and chicken genomes following analyses of repetitive

content [16]. Interestingly, one common feature of the scarlet

macaw, chicken, turkey, and zebra finch genomes is the high

proportion of LINE-CR1 interspersed repeats with respect to the

total estimated repetitive content [15–17]. Additionally, a

comparative analysis of known repetitive elements and their

predicted genome-wide copy numbers revealed that the scarlet

macaw possesses more SINE elements than the chicken or zebra

finch [15,17]. Detailed descriptions of all repeats predicted using

RepeatMasker are available in Table S6 (SMACv1.0) and Table

S7 (SMACv1.1).

To further investigate the repetitive content of the scarlet

macaw genome, we utilized the program PHOBOS (v3.3.12) [40]

to detect and characterize genome-wide tandem repeats (micro-

satellite loci) within the simple de novo assembly (SMACv1.0) for the

purpose of identifying loci that could potentially be translated into

useful molecular markers for scarlet macaw population studies.

Altogether, we identified 2,485,786 tandem repeats consisting of 2

to 10 bp sequence motifs which were repeated at least twice,

with the full distribution characterized as follows: 350,157 di-,

468,875 tri-, 461,998 tetra-, 485,422 penta-, 466,685 hexa-,

129,706 hepta-, 87,295 octa-, 23,095 nona-, and 12,553

decanucleotide microsatellites (Table S8). The same analysis

conducted on the scaffolded scarlet macaw assembly (SMACv1.1)

produced evidence for 2,346,573 tandem repeats as follows:

333,739 di-, 445,677 tri-, 435,955 tetra-, 457,988 penta-, 440,902

hexa-, 122,575 hepta-, 75,793 octa-, 21,830 nona-, and 12,114

decanucleotide microsatellites (Table S9). Similar to the results of

our RepeatMasker analyses (Table3), the scaffolding procedure

(N’s spanning gaps) results in an underestimate of total genome-

wide tandem repeats. Studies are currently underway to evaluate a

subset of these markers for applications in molecular ecology and

population genetics.

To provide the first description of genome-wide variation for an

individual wild-caught scarlet macaw, we investigated the

frequency and distribution of putative single nucleotide polymor-

phisms (SNPs) resulting from biparental inheritance of alternative

alleles (heterozygosity) within the repeat-masked simple de novo

assembly (SMACv1.0; chicken and zebra finch repeat libraries)

[1]. Collectively, 951,507 biallelic SNPs (Coverage $10X and

#60X) were predicted, with an estimated average genome-wide

density of approximately 1.0 SNP/1.00 Kbp for the autosomes

(i.e., Z and W excluded by blastn; Table S10). This estimate is

higher than for the domestic turkey [16] and lower than for the

zebra finch [17], with our estimate reflecting an overall average

genome-wide autosomal distribution [41–42] as predicted by

blastn. As expected, application of the same SNP detection

methods [1] to the repeat-masked scaffolded de novo assembly

(SMACv1.1, chicken and zebra finch repeat libraries), which

contains N’s representing gaps, provided evidence for fewer

biallelic SNPs (n = 890,527; Coverage $10X and #60X; Table

S11), and a somewhat lower overall average SNP density.

Importantly, similar genome-wide estimates of SNP density have

not yet been reported for any other species of Pscittacidae

[2] (http://aviangenomes.org/budgerigar-raw-reads/). Likewise,

genome-wide SNP variation in flycatchers and chickens has been

summarized in terms of pairwise comparisons of genome

sequences derived from different individuals, species, or domestic

lines [21,43].

‘‘In silico’’ Annotation of the Scarlet Macaw Genome
In the absence of cDNA sequences generated from multiple

scarlet macaw tissues, we performed an in silico annotation of the

scarlet macaw nuclear genome as a first step toward enabling

genomics research in this species. Specifically, we used Glim-

merHMM [44–45] to predict exons within the scarlet macaw

scaffolded de novo assembly (SMACv1.1), with algorithm training

conducted using all annotated chicken genes (G. gallus assembly

4.0). The chicken was chosen for training GlimmerHMM because

of the superior level of annotation available, as compared with the

zebra finch, which is at least partially annotated based on chicken

sequences. Thereafter, the resulting exon predictions were filtered

using a high-throughput distributed BLAST engine implementing

the blastx algorithm [1,46] in conjunction with a custom database

containing all available bird proteins (NCBI non-redundant avian

protein sequences), with retention of the E-value top hits to avian

proteins. Collectively, this total in silico approach produced robust

statistical support for 14,405 unique annotation models (see

Methods; Table S12). However, the number of unique annotation

models that are reported here were based on blastx assignments to

unique protein hit definitions (i.e., blastx hits with unique

accessions), which is actually a vast underestimate of the total

unique models predicted for SMACv1.1 (See Table S12). For

example, 2,318 annotation models were predicted for seven

specific protein accessions representing non-LTR retrovirus

reverse transcriptases and/or reverse transcriptase-like genes (pol-

like ORFs) that were also predicted in large copy numbers

throughout the chicken nuclear genome (Table S12, Genbank

Table 3. Major repetitive content predicted by RepeatMasker within the scarlet macaw first generation de novo genome assembly
(SMACv1.0, SMACv1.1).

Repeat Type Predicted Total Elements1 Total bp (% of Genome)1 Total Elements2 Total bp (% of Genome)2

SINEs 6,741 834,386 (0.08%) 6,612 816,297 (0.07%)

LINEs (L2/CR1/Rex) 189,424 35,772,793 (3.46%) 156,131 32,227,015 (2.67%)

LTR Retroviral 41,307 9,866,884 (0.95%) 34,526 8,474,428 (0.70%)

DNA Transposons 3,697 536,502 (0.05%) 3,561 511,534 (0.04%)

Unclassified Interspersed Repeats 2,561 421,784 (0.04%) 2,482 406,059 (0.03%)

Satellites 2,033 235,306 (0.02%) 1,584 187,049 (0.02%)

Low Complexity & Simple Repeats 142,486 6,275,857 (0.61%) 114,664 5,076,913 (0.42%)

Totals 386,216 53,708,206 (5.2%) 319,560 47,699,295 (4.0%)

1Simple, unscaffolded (SMACv1.0) de novo assembly (1.035 Gb).
2Scaffolded (SMACv1.1) de novo assembly (1.205 Gb including gaps with N’s).
doi:10.1371/journal.pone.0062415.t003
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Accessions AAA49022.1, AAA49023.1, AAA49024.1,

AAA49025.1, AAA49026.1, AAA49027.1 AAA49028.1). Like-

wise, annotation of multi-copy genes within the established

chicken and zebra finch genomes often makes use of naming

schemes that include ‘‘like’’ or ‘‘similar to’’ a specific Genbank

accession for the purpose of distinguishing one loci or model from

another. For our first-generation scarlet macaw in silico annotation,

the prediction culminates with a blastx hit definition (i.e. Genbank

protein accession) representing the highest scoring avian protein

curated by NCBI. Therefore, multi-copy loci predicted to encode

very similar putative proteins may be assigned to the same specific

protein accessions by the blastx procedure. It should also be noted

that the absence of genome maps and cDNA sequences to further

scaffold and annotate the scarlet macaw genome actually

precludes complete in silico models for most nuclear genes,

especially complex genes encoding many exons that are distributed

across large physical distances, and/or genes encoding moderate

to large proteins. Nevertheless, our in silico approach was successful

at identifying scarlet macaw scaffolded contigs that were predicted

to possess genes encoding some moderate to large proteins. One

such example is the predicted scarlet macaw orthologous sequence

for chicken and zebra finch cHz-cadherin (Table S12; Genbank

Accessions AAQ82055.1, XP_002196034.1), which was indepen-

dently predicted in four discrete scaffolded contigs (Table S12) that

all comparatively align (blastn) to the expected regions of GGA2

and TGU2 (Table S5).

Comparative investigation of all scarlet macaw contig sequences

produced by the de novo assembly of multi-platform next generation

sequence reads revealed a complete scarlet macaw mitochondrial

genome (SMACv1.0 Contig70881 Genbank Accession

AMXX00000000; SMACv1.1 Contig20041 Genbank Accession

AOUJ00000000). Both assemblies were successful at reconstruct-

ing the mitochondrial genome at an average coverage of 113X

from .24,000 reads (SMACv1.0 and SMACv1.1). Using the

Aratinga pertinax chrysogenys mitochondrial genome refseq (GenBank

Accession HM640208.1) in conjunction with BLAST (blastn,

bl2seq, blastp; http://blast.ncbi.nlm.nih.gov/), we annotated 13

scarlet macaw mitochondrial protein coding genes (ND1, ND2,

COX1, COX2, ATP8, ATP6, COX3, ND3, ND4L, ND4, ND5, ND6,

CYTB) and two ribosomal RNA genes (12S, 16S; SMACv1.1

Contig20041). Analyses using tRNAscan-SE (http://lowelab.ucsc.

edu/tRNAscan-SE/) [47] revealed evidence for 20 standard

mitochondrial tRNA genes (see Table S12). One tRNA-Phe gene

was also manually predicted and annotated. The consensus

mitochondrial genome spanned 16,993 contiguous bp and

possessed an average GC content of 46.89%.

Despite the apparent utility of our ab initio nuclear gene

predictions, it should also be noted that our in silico approach

involving one highly diverged but well-annotated reference species

for training GlimmerHMM [44–45] was not sufficient to predict

either partial or complete gene models for all of the expected genes

within the scarlet macaw nuclear genome. For example, previous

comparative studies of the avian major histocompatibility complex

(MHC) have established expectations for gene content among

several bird species [15–17,48–51], with our in silico approach

providing evidence for many (i.e., CD1, TAP2, MHC class I, MHC

class IIA, MHC class IIB, TRIM27, TRIM27.1, TRIM7.1, TRIM7.2,

TRIM41), but not all avian MHC genes previously described and

annotated (Table S12). While the limitations of our approach were

not surprising, the overall performance was sufficient to facilitate

the initiation of a formal genomics research program in the scarlet

macaw. Future studies consisting of exhaustive, iterative compar-

ative annotation using the full suite of BLAST tools in conjunction

with all available sequence repositories (i.e., Genbank, Ensembl,

EMBL, DDBJ, Swiss-Prot) are likely to provide additional

comparative evidence for the majority of the expected scarlet

macaw gene content, with cDNA sequencing from multiple tissues

leading to precise refinement of the in silico predictions.

To classify the GlimmerHMM-predicted genomic information

content within the scaffolded de novo scarlet macaw assembly

(SMACv1.1), we performed a functional annotation analysis by

mapping the sequences onto relevant classification schemes such

as Gene Ontology (GO) terms [52] and Swiss-Prot keywords [53]

using the Database for Annotation, Visualization, and Integrated

Discovery (DAVID) [54]. Collectively, we identified 194 unique

GO terms for biological process, 120 unique terms for molecular

function, 75 unique terms for cellular component, and 39 unique

Swiss-Prot Protein keywords (Table S13). This analysis provides a

detailed ontological classification of the predicted genes and

proteins, and may be used for comparative genomic approaches

that require identification of scarlet macaw loci and associated

pathways that may influence parrot traits of interest. For example,

multiple GO terms for biological processes, cellular components,

and/or molecular functions include representation from human

genes reported to modulate differences in cognitive abilities (i.e.,

RORB, C1QL3, ODZ3, RELN, FMR1, FXR1, NF1, etc) [55–56] as

well as longevity (i.e., POT1, AKT1, AKT3, SIRT1/SIRT2/SIRT6,

etc) [57–59] (Table S13). Annotation models for all of these loci

except FXR1, AKT1, SIRT2 and SIRT6 were predicted (Table

S12), thus providing an opportunity for macaw studies focusing on

prioritized candidate genes for longevity and intelligence. Relevant

to the observed frequencies of specific GO terms (Table S13), it

should be noted that the functional analyses described here are

biased towards the annotation of genes that are conserved between

the chicken and scarlet macaw, because GlimmerHMM was

trained using G. gallus, and therefore, caution is necessary when

interpreting the frequency distributions of GO Terms and Swiss-

Prot Protein Keywords, as well as the fold enrichment scores.

Caution regarding this limitation is not specific to SMACv1.1,

because in the absence of an exhaustive annotation of all putative

genes, some of the frequency and fold change estimates are likely

to be wrong. Nevertheless, this limitation does not devalue the

ontological classifications, which are useful for enabling compar-

ative genomics.

Whole-genome Analysis of Divergence
With the advent of high-throughput next generation sequencing

technologies and new bioinformatic tools, one of the most

intriguing scientific questions to be directed towards the interpre-

tation of new genome sequences is ‘‘What makes each species

unique?’’ Several previous avian genome studies have focused on

enumerating differences in gene copy number, and the presence or

absence of genes or gene families, as prioritized by the underlying

biology of the organism under investigation (i.e., no chicken or

zebra finch genes encode casein milk proteins, salivary-associated

proteins, or tooth enamel proteins as compared to mammals) [15–

17]. Additionally, these studies have also focused on classical tests

of selection, such as KA/KS or dN/dS applied to predicted gene

sequences [15–17], with one caveat being that not all gene

sequences are included in these analyses. While important and

informative, these analyses do not jointly consider the noncoding

portions of the genome (i.e., proximal gene promoters, noncoding

DNA possessing functional regulatory elements including repeats),

which have been hypothesized to underlie differences in species-

specific genome regulation and traits [60–63]. Therefore, we took

an alternative approach which utilized all of the produced scarlet

macaw contig sequences and the full distribution(s) of blastn data

(E-value top hits) generated from the two comparative genome
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alignments performed (SMACv1.0 versus chicken, G. gallus 2.1,

with subsequent confirmation using G. gallus 3.1; SMACv1.0

versus zebra finch, T. guttata 1.1, 3.2.4 assembly). Utilization of the

simple de novo assembly (SMACv1.0) was desirable because it

resulted in a shotgun-like fragmentation of the scarlet macaw

genome that is essentially devoid of N’s (i.e. gaps), which in

relation to the blastn evalue top hits, provides for fine-scale

comparative nucleotide alignments often spanning large portions,

the majority, or even the entire length of the contig sequences

produced.

Briefly, for all scarlet macaw contigs that produced blastn hits to

the chicken (n = 282,904) or zebra finch (n = 282,915) genomes

(Table S4), we normalized the observed percent identity for

differences in alignment length across both comparative genome

alignments (see Methods). Evaluation of the corrected percent

identity variable (CorrectedForAL; Figure 4) for both genome

alignments revealed evidence for non-normal (right skewed)

distributions (P,0.001 for both alignments, Kolmogorov-Smirnov

Test with Lilliefors Correction; Figure 4). Consequently, we took a

percentile approach (Percentiles = 99.98% and 0.02%) to establish

interval bounds delineating the tails of the ordered distributions,

and used this information to identify scarlet macaw contig outliers

for extreme nucleotide-based conservation and divergence with

respect to the chicken and zebra finch genomes (Figure 4).

Validation of macaw contig outlier status was confirmed using the

newest chicken genome build (G. gallus 3.1) available at the time of

analysis. Thereafter, we used the suite of BLAST tools in

conjunction with three databases (refseq_genomic; reseq_rna;

nr/nt) to characterize the nucleotide sequences of the outlier

contigs (see Table S14). Comparison of the scarlet macaw and

chicken genomes revealed outlier macaw contigs (Figure 4, Table

S14) possessing coding and noncoding loci which were subse-

quently characterized based on either known function and/or the

results of independent human genome wide association studies

(GWAS; Table 4) [57,64–110]. Notably, many genic outliers for

conservation detected in our analysis (i.e., TTN, Mitochondrial

genome, EYA1) are known to be conserved across a variety of

divergent taxa, most likely due to strong purifying selection [111–

114], with rare deleterious mutations causing disorders, diseases,

or molecular dysfunction [109,113–114]. Within the contigs

classified as outliers for extreme conservation or divergence, we

also observed many noncoding sequences as well (Table S14), as

predicted by blastn, thereby supporting the supposition that

noncoding genomic regions may underlie differences in species-

specific genome regulation and traits [60–63]. Interestingly, the

sequenced breed of chicken (Red Junglefowl) and the scarlet

macaw are very similar in overall body length (excluding tails;

similar ‘height’ and head to rump body length) [8,115–116], which

is consistent with the observation that macaw contigs containing

nucleotide sequences for orthologous human height genes (or their

proximal noncoding flanking regions) are among the most highly

conserved between the two avian species in our analysis (Table

S14). However, even more intriguing was the observation that

macaw contigs containing predicted gene sequences (or their

proximal noncoding flanking regions) previously associated with

human traits such as the acquisition and utilization of speech

(FOXP1/FOXP2-CNTNAP2) [74,80], exceptional longevity (POT1)

[57], and intelligence (TRMT1, LHFP) [84,87–88] were among the

most diverged as compared to the chicken genome (Table S14),

which is fully concordant with known parrot traits of interest [5–

7,18]. We also observed a macaw outlier contig that was predicted

to contain a CDK5RAP2 intron, which is a gene implicated in the

developmental manifestation of microcephaly, and in the evolu-

tion of brain size among vertebrate species [85–86]. This

observation is compatible with the fact that macaws possess the

largest brain volume (telencephalic) among 154 divergent avian

species sampled from 13 families, with estimates of brain volume

that are .52% larger than G. gallus (Red Junglefowl). Moreover,

telencephalic volume in birds has been strongly correlated with

measures of social complexity [117].

Application of the same analysis of divergence to a comparison

of the scarlet macaw and zebra finch genomes revealed outlier

macaw contigs (Figure 4, Table S14) which were predicted to

possess coding and noncoding loci that were also characterized

according to known function and/or independent human GWAS

results (Table 5) [65,96–97,118–159]. Interestingly, some of the

same macaw contigs and corresponding gene sequences classified

as outliers for conservation in a comparison of macaw to chicken

also were detected in the comparison to zebra finch (i.e., TTN,

VTI1A; see Table S14), thereby underscoring the potential

biological and developmental importance of these loci across

divergent avian lineages. Moreover, both analyses of divergence

(Figure 4, Table S14) revealed evidence for extreme nucleotide-

based conservation across genes (and/or their proximal intergenic

noncoding regions) that have previously been associated with

specific developmental processes and trait classes including

neuronal development, risk for developing neurological disorders

(i.e., autism), cognition, aspects of osteogenesis, brain-specific traits

including neuroanatomic features, ocular and cardiovascular

traits, and risk factors for diabetes. Perhaps the most interesting

result derived from our analysis of divergence between the macaw

and the zebra finch genomes was the identification of scarlet

macaw outlier contigs (diverged) that aligned to genes, or their

proximal noncoding sequences, which have been implicated in

oral feeding success in human neonates (NPY2R) [155], cerebro-

vascular developmental disorders such as cavernous malformations

(ZPLD1) [145], and brain striatal volume (VPS52) [137] (Table

S14). Importantly, the size of the neostriatum-hyperstriatum

ventral complex in birds is known to be a good predictor of

feeding innovation, which is considered a measure of cognitive

complexity [160]. Additionally, brain striatal volume is predictive

of other neuroanatomical measures in mice (i.e., hippocampus)

[137] as well as telencephalic brain volume in birds [117].

Therefore, the results of our analyses of divergence (i.e., VPS52-

divergence; Table S14) are concordant with the observation that

macaws possess telencephalic brain volumes that are .21% larger

than the songbird T. guttata (zebra finch) [117], thereby indicating

that VPS52 should be considered a candidate gene for future

studies seeking to elucidate loci involved in the evolution of avian

telencephalic brain volume.

Additional investigations of the concordance between

SMACv1.0 and SMACv1.1 revealed several interesting features

relative to our whole genome analyses of divergence. Specifically,

scarlet macaw simple de novo contigs (see Table S14) possessing

some of the most interesting coding and noncoding loci previously

associated with traits of interest such as intelligence (177250-

TRMT1; 256909-LHFP), the acquisition and utilization of speech

(256158-CNTNAP2), longevity (42281-POT1), height (69396-

EXT1), hippocampal and cognitive aging (ALDH6A1), and

telencephalic brain volume (189862-VPS52) were all successfully

mapped onto the scaffolded assembly, with evidence for very few

or zero alignment gaps (Table S3).

In a final analysis of the SMACv1.0 contig sequences which

were classified as putative outliers for conservation and divergence

(Table S14), we tested for significant differences in the occurrence

of putative SNPs (i.e., enrichment) among the two disparate outlier

classes (total putative SNPs, total contig bp) for each comparative

whole genome analysis of divergence. Only the comparison with
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the chicken genome produced evidence for a significant difference

(conserved vs diverged, P,0.000194; chi-square test, 1 df), with

the diverged outlier contigs predicted to possess a higher overall

density of putative SNP. This result is relatively unsurprising given

the larger estimated time since divergence (122–125 MYA; http://

www.timetree.org/) [19–20] between the scarlet macaw and the

chicken, but is also potentially misleading. For example, all

putative outlier contigs for divergence produced a 19–22 bp blastn

alignment with 100% identity to the chicken or zebra finch

genome regardless of contig size, which is actually highly

compatible with the supposition that species-specific insertion

deletion mutations may be a plausible driving force for achieving

outlier status in both analyses (Table S14, Figure 4).

Quality Control Investigation for Analyses of Divergence
Relevant to our nucleotide-based analyses of divergence (Table

S14), it should be noted that all scarlet macaw contigs classified as

putative outliers for divergence (Figure 4, right tail) shared one

unifying feature: A 19–22 bp alignment with 100% identity to a

reference genome (i.e., chicken or zebra finch) regardless of contig

size (Range = 208 bp to 1,782 bp; Median = 584 bp; Mean = 651 bp).

At least three plausible explanations for this include: 1) The

orthologous sequences are simply missing from the chicken and/

or zebra finch genome assemblies; 2) The contigs are misassembled;

or 3) The contigs represent true outliers for nucleotide-based

divergence, including species-specific insertion-deletion mutations.

Importantly, we recognize that some sequences are in fact

missing from every draft genome assembly. Therefore, we

searched three NCBI databases (i.e., refseq_genomic, refseq_rna,

nr/nt) for nucleotide alignments that would facilitate contig

Figure 4. Whole Genome Analysis of Divergence. (A) Genome-wide nucleotide-based divergence (CorrectedForAL) between the scarlet macaw
(Ara macao; simple de novo assembly) and chicken genomes (Gallus gallus 2.1). (B) Genome-wide nucleotide-based divergence (CorrectedForAL)
between the scarlet macaw (Ara macao; simple de novo assembly) and zebra finch genomes (Taeniopygia guttata 1.1, 3.2.4). Each histogram

represents the full, ordered distribution of the composite variable defined as: CorrectedForAL~
PercentID

100ð Þ
Alignment Length

. The observed ranges of the composite

variable for pane (A) and pane (B) were 3.89591E-05–0.052631579, and 3.33792E-05–0.052631579, respectively. The left edges of the distributions
represent extreme conservation, whereas the right edges indicate extreme putative divergence. Distributional outliers were predicted using a
percentile-based approach (99.98th and 0.02th) to construct interval bounds capturing .99.9% of the total data points in each ordered distribution.
doi:10.1371/journal.pone.0062415.g004

Table 4. SMACv1.0 simple de novo outlier contigs from a genome-wide analysis of divergence with the chicken.

Predicted Outlier Contig Genes and Pathways1 Known Function or GWAS Trait Classification References

Mitochondrial Genome Energy Production [64]

SEMA3A, RARB, PRICKLE1, SNW1 Neuronal Development [65–69]

SEMA3A, ATXN1, CNTNAP2, INPP5E, Neurological Disorders [70–80]

Intergenic TTLL7 and LPHN2, GPR37,

FOXP1/FOXP2-CNTNAP2 Pathway

ATXN1 Motor Coordination [71]

GPR37, ATXN1, NRCAM Cognition, Learning [81–83]

ATXN1, INPP5E, TRMT1, ADK Intelligence [72,77,84]

FOXP1/FOXP2-CNTNAP2 Pathway Speech [74,80]

CDK5RAP2 Brain Size [85–86]

LHFP Hippocampal Volume and Intelligence [87–88]

ADAMTSL3, TEAD1, EXT1 Height [89–93]

Intergenic BTG1, Intergenic PRICKLE1, Heart Failure [94–95]

PARVA

VTI1A, NFIA Heart Ventricular Conduction [96]

PTPRG, TTN Heart Q-wave T-wave Interval Length [97]

CAMK4 Blood Pressure [98]

Intergenic WNK1 and NINJ2 Stroke [99]

CNTNAP2, COLEC10 Bone Mass [100–101]

UBE2L3, THRB Blood Traits [102]

LIMK2, ST6Gal1 Diabetes [103–104]

PARD3B, CHSY3 Response or Susceptibility to Viruses [105–106]

WDR36, Intergenic CHD7 and CLVS1, Asthma, Lung Function, Respiratory [107–109]

TTN

VEGFA, COL8A1 Age-Related Macular Degeneration [110]

POT1 Longevity [57]

1For outlier direction, see Table S14.
doi:10.1371/journal.pone.0062415.t004
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characterization and/or help refute the diverged outlier status of

these contigs, with at least one database that contains

unassembled chicken and zebra finch nucleotide sequences,

and in all cases found little or no evidence for a better blastn

alignment to the chicken or zebra finch genomes. However,

some of these contigs actually provide longer, more significant

blastn alignments to other vertebrate species, including other

avian species, which is not concordant with outlier status

(diverged) resulting solely from contig misassembly (See Table

S14).

In relation to our nucleotide-based analyses of divergence, we

also observed a trend whereby contigs classified as outliers for

conservation (Figure 4; extreme left edge) were moderately large in

comparison to those classified as outliers for divergence. There-

fore, we conducted several quality control analyses that were

designed to help determine whether factors other than nucleotide

sequence divergence were responsible for our results (Table S14).

First, we used summary data from the two comparative genome

alignments performed via blastn to estimate pairwise correlations

among the following: scarlet macaw contig size (bp), contig percent

GC, contig percent identity, and contig alignment length (bp).

Moderate correlations between scarlet macaw contig alignment

length and contig size were observed with respect to the chicken

(r = 0.614, Nonparametric r= 0.689) and zebra finch genome

alignments (r = 0.680, Nonparametric r= 0.740), whereas weak

correlations were observed between percent identity and align-

ment length (r = 20.294, Nonparametric r= 20.426; r = 20.159,

Nonparametric r= 20.234), respectively. All other investigated

parameters possessed weaker correlations. This result is important

because the two parameters driving our analysis of divergence are

the percent identity and alignment length, which together were

used to construct a composite variable (CorrectedForAL) that

represents percent identity normalized for alignment length across

all individual scarlet macaw contigs which produced blastn

alignments to the chicken and zebra finch genomes. Next, we

applied the same percentile based approach (Percentiles = 99.98%

and 0.02%) used in our analyses of nucleotide sequence divergence

to examine the full, ordered distribution of scarlet macaw contig

sizes, and determined that only 3 contigs (Table S14, zebra finch

analysis; contigs 63925, 63319, 55788) were in common with the

162 implicated as outliers for nucleotide-based conservation or

divergence (Table S14). This result argues against the proposition

of contig size being deterministic for our results (Figure 4, Table

S14).

For larger contigs, such as those classified as outliers for

conservation, the blastn procedure may produce multiple mean-

ingful alignments, which are appended below the E-value top hit.

These appended results include both noncontiguous (i.e., gaps due

Table 5. SMACv1.0 simple de novo outlier contigs from a genome-wide analysis of divergence with the zebra finch.

Predicted Outlier Contig Genes and Proteins1 Known Function or GWAS Trait Classification References

EYA2, EPHB3, BCL6, NRP2, ALCAM Neuronal Development [118–120]

SATB2 Neuron Specification [121]

ALCAM, BCL6, NRP2, ALDH6A1, TP63, CUX1, ATXN1, Neurological Disorders [120,122–132]

VIPR2, WHSC1, BRSK2, CLINT1, DUSP8, ANKFN1, PI4KA

ANKFN1, LPP, BOC Human Developmental Anomalies [133–135]

ALDH6A1 Hippocampal and Cognitive Aging [122]

UPF0632 Protein A White Matter Integrity in Old Age [136]

VPS52 Brian Striatal Volume, Cognition [136–138]

LDB2, DMXL2 Susceptibility to Coronary Artery Disease [139–140]

SLC38A1 Cardiovascular-Left Ventricular Mass [141]

ABCB8, RBM20, Cardiomyopathy [142–143]

FOXC1 Embryonic Cardiovascular Development [144]

VTI1A Heart Ventricular Conduction [96]

TTN Heart Q-wave T-wave Interval Length [97]

ZPLD1 Cerebrovascular Developmental Disorders [145]

FOXF2 Developmental Disorders of the Genitalia [146]

SATB2 Osteogenic Differentiation, Regeneration [147]

MAP3K4 Myogenesis [148]

DCT Pigment Biosynthesis [149]

VSX2 Eye Development-Microphthalmia [150]

EYA2 Ocular Neural Pattern Development [65]

SCFD2 Optic Disc Size-Cup Area [151]

SDF2L1 Innate Immunity [152]

MKX Tendon Differentiation and Development [153]

NGEF Adiposity [154]

NPY2R Feeding Behavior, Oral Feeding Success [155]

TCF7L2, Intergenic GPATCH2 and ESRRG, FOSL2, PPP1CB Diabetes [156–159]

1For outlier direction, see Table S14.
doi:10.1371/journal.pone.0062415.t005
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to insertion-deletion mutations) and less significant comparative

alignments. To assess the reliability of utilizing only the top E-

value hit as a proxy for larger contigs which may produce multiple,

syntenic, noncontiguous hits spanning the overwhelming majority

of the contig length (i.e., .85%), we used the additional non-

overlapping alignment data (percent identity, alignment length) for

these conserved outlier contigs to recalculate our composite

variable via summation (Table S15). For all 112 contigs

categorized as conserved outliers, the new composite variable

only exacerbated the original outlier status (i.e., extreme conser-

vation; see Table S15). Among all scarlet macaw contigs, those

classified as outliers for extreme conservation in our comparative

analyses actually represent genomic tracks (Table S14) in which

extended nucleotide-based conservation persists for the compared

species, which cannot occur in the presence of species-specific

genomic rearrangements, copy number variants whereby one or

more boundaries are traversed, or frequent and complex repetitive

elements. Finally, it should also be noted that only contigs which

produced blastn results (.99.97%) could be included in our

analyses of divergence and quality control investigation, as they

provided the data necessary to construct the composite variable. A

table of contigs for which no significant alignments were achieved

with respect to the chicken or zebra finch genomes is provided in

Table S4.

Conclusions and Future Studies
Similar to the recently published Puerto Rican parrot genome

[2], we demonstrate that low-cost (Table 1), high quality (Table 2)

draft de novo genome assemblies can be generated for avian species

that are currently without sophisticated genome maps. Interest-

ingly, our whole-genome analysis of divergence may also be used

to comparatively assess genome quality, with the overwhelming

majority of the scarlet macaw draft genome assembly exhibiting

moderate to high levels of conservation with both the chicken and

zebra finch genomes (Table S4, Table S5, Figure 4). Likewise, we

also identify regions of the avian genome which are highly

conserved across multiple divergent lineages (i.e. predicted genes

and noncoding loci), thereby reflecting their likely biological and

developmental importance among birds; and simultaneously

provide evidence for lineage-specific divergence, with some macaw

genes and noncoding regions that coincide with loci implicated by

independent human GWAS studies focusing on intelligence and

longevity (Table 4, Table 5, Table S14; Figure 4). Therefore, the

results of our nucleotide-based analyses of divergence provide

prioritized candidate genes and noncoding regions for testing

hypotheses related to the evolution of some parrot traits of interest,

which are most likely to be modulated by qualitative changes in

the products of protein coding genes as well as differences in how

avian genomes are regulated within and between lineages.

Methods

Source of Scarlet Macaw Genomic DNA
Unlike food animals that are intentionally propagated for

slaughter, or model organisms which may be sacrificed within

some research settings, the scarlet macaw is a wildlife species for

which international conservation and management efforts are

currently underway [8–14]. Therefore, we utilized whole blood

acquired during the routine veterinary medical care provided for a

female, wild-caught scarlet macaw (‘‘Neblina’’, Blank Park Zoo,

Des Moines, IA) to isolate high molecular weight genomic DNA

using the UltraCleanTM DNA Blood Isolation Kit (MO BIO

Laboratories, Inc., Carlsbad, CA). The blood was used with the

permission of Blank Park Zoo. The protocol for isolating genomic

DNA followed the manufacturer’s recommendations, with the

following exception: Because avian red blood cells are nucleated, a

total of 25 ml of whole blood was used for each extraction. For

each individual extraction we confirmed the presence of high

molecular weight genomic DNA by agarose gel electrophoresis,

with subsequent quantification of individual isolates performed

using a Nano Drop 1000 (Thermo Fisher Scientific, Wilmington,

DE).

Multi-platform Sequencing Strategy
Roche 454 titanium sequencing. A whole-genome random

shotgun DNA library for sequencing on the Roche 454 GS-FLX

instrument was prepared using standard protocols provided by the

manufacturer (http://454.com/applications/whole-genome-

sequencing). This included nebulization of 5 mg of high molecular

weight genomic DNA followed by isolation of fragments between

500–600 bp. This fraction was then subjected to end polishing and

repair, random ligation of sequencing adaptors (forward and

reverse = Linkers A and B), emulsion PCR, and sequencing on the

GS-FLX instrument using titanium reagents as directed by the

manufacturer (Roche Applied Science, Indianapolis, IN).

Illumina genome analyzer IIx and HiSeq 2000

sequencing. For Illumina mate pair (MP) library preparation,

scarlet macaw genomic DNA was first visualized by agarose gel

electrophoresis to confirm that high molecular weight fragments

were intact and abundant, which is a requirement for optimal MP

library construction. Sequencing libraries were created by

following the Illumina Mate Pair v2 Library Preparation

procedure for 2–5 Kbp fragments (Part #15008135 Rev A;

Illumina Inc., San Diego, CA). Briefly, genomic DNA was

quantified with the Qubit fluorometer (Life Technologies, Grand

Island, NY) and 10 mg was sheared to an average size of either

2.5 Kbp or 5.0 Kbp using the Hydroshear system (Digilab Inc.,

Holliston, MA). Fragmented DNA was end-repaired using a mix

of natural and biotinylated dDNTP’s in the presence of T4 DNA

polymerase, T4 polynucleotide kinase, and Klenow DNA poly-

merase (100 ml volume). The sample was purified using the

QIAEX II protocol as described for desalting and concentrating

DNA solutions (Qiagen Inc., Valencia, CA), and loaded onto a

0.6% agarose gel (15 hrs at 20 V) for fragment size selection. Gel

fragments were excised at average sizes of 2.5 Kbp or 5.0 Kbp

and purified using the QIAEX II kit. DNA was quantified using

the Qubit fluorometer and a total of 300–600 ng of size-selected

DNA was used as input for an intramolecular circularization

reaction (30uC, 16 hrs). Circularized DNA was exposed to DNA

exonuclease to digest linear fragments, and the enzyme was

inactivated prior to sonication (QSonica Inc., Newtown, CT), with

an average final size of < 200–500 bp. Following purification

using the QIAquick PCR purification kit (Qiagen), the biotinylated

DNA was bound to M-280 Streptavidin magnetic beads (Life

Technologies) and washed several times. Bead- bound DNA was

adapted for Illumina sequencing using standard end repair, A-

tailing and ligation steps which join Illumina paired end (PE) oligo

adapters to all DNA fragments. Ligated DNA molecules were

selectively amplified with 10 cycles of PCR using PE PCR primer

1.0 and 2.0 (Illumina Inc.). The amplified (i.e. no longer bead

bound DNA) was size selected on a 2% agarose gel (100 V,

45 min), and final sequencing fragments were excised by selection

of 350–650 bp fragments. Following gel purification using the

QIAquick gel extraction kit (Qiagen Inc), MP libraries were

assessed using the High Sensitivity DNA Bioanalyzer 2100 assay

(Agilent technologies), and quantified using the Qubit fluorometer.

The final MP libraries were then diluted to 10 nM. Similar

procedures were also used for Illumina paired-end (PE) library
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preparation. Briefly, 5 mg of scarlet macaw genomic DNA was

sheared to approximately 300 bp (average size) via sonication, end

polished, A-tailed, ligated with standard Illumina PE adapters, size

selected to < 350 bp on a 2% agarose gel (120 v 90 min), stained

with ethidium bromide for visualization, and PCR amplified for 10

cycles using Illumina PE primers 1.0 and 2.0.

At the onset of this project, the Illumina HiSeq 2000 was not yet

available. Therefore, we initially conducted 26120 small insert PE

sequencing on the Illumina GAIIx with standard Illumina Cycle

Sequencing kits (v5; Illumina Inc., San Diego, CA) and a final

loading concentration of 7.5 pM. Thereafter, we performed

26100 small insert PE and 2650 MP sequencing on the Illumina

HiSeq 2000 using v2 Illumina Cycle Sequencing kits (Illumina

Inc.), and final loading concentrations of 4.1 pM and 6 pM,

respectively. All clustering and base-calling (CASAVA-1.7.0;

Illumina Inc.) was performed as recommended by the manufac-

turer.

A summary of trimmed Illumina reads for all libraries is

depicted in Table 1.

Genome Assembly
All sequence reads (Roche 454, Illumina GAIIx, Illumina HiSeq

2000) were first trimmed for quality and adapter sequences within

the CLC Genomics Workbench (v4.8). Briefly, the trimming

algorithm converts Phred scale quality scores (Q) for each base in

all reads to an error probability defined as: Perror~10
Q

{10
.

Therefore, low Perror values indicate high quality bases. Thereafter,

for every base a new variable was calculated as: Limit - Perror, with

the Limit value set as 0.05. Notably, this variable will be negative

for low quality bases, thereby indicating that the error probability

is high. For every base in a given read, and across all imported

reads, the Workbench calculates the running sum for this variable.

If the sum drops below zero, it is set to zero. The portion of the

sequence retained after trimming is the region between the first

positive value of the running sum, and the highest value, with

everything occurring before and after this region trimmed from

every read. A sequence read will be completely discarded if the

running sum is never greater than zero. Example calculations

using Microsoft Excel are provided in Table S16. At the

conclusion of quality trimming, a second algorithm trims

ambiguous nucleotides (N) from the ends of every sequence read

by referring to a user-specified maximum number of ambiguous

nucleotides allowed (n = 3) at each end of the sequence, and

subsequently removes all other ambiguous bases. Finally, the

Workbench contains an editable library of the most common next-

generation sequencing adapters (i.e., Illumina; Roche 454). We

used this editable library to identify and select all sequencing

adapters that could potentially be present in our multiplatform

sequencing reads, and then used the Smith-Waterman alignment

algorithm to search every read for user-specified adapters. For

every match found, we directed the Workbench to remove the

adapter sequence.

For the simple de novo assembly, the CLC assembler implements

the following general procedures: 1) Creation of a table of ‘‘words’’

observed in the sequence data, with retention and utilization of

‘‘word’’ frequency data; 2) Creation of a de Bruijn graph from the

‘‘word’’ table; 3) Utilization of the sequence reads to resolve paths

through bubbles caused by SNPs, read errors, and small repeats; 4)

Utilization of paired read information (i.e., paired distances and

orientation of reads) to resolve more complex bubbles (i.e., larger

repeats and/or structural variation); 5) Output of final de novo

contigs derived from a preponderance of evidence supporting

discrete ‘‘word’’ paths. For the scaffolded de novo assembly, the

CLC algorithm (v4.9) implemented one additional step in which

paired reads spanning two contigs were used to estimate the

distance between the contigs, determine their relative orientation,

and join them where appropriate using ‘‘N’s’’; the number of

which reflect the estimated intercontig distance. For both

assemblies we utilized the same strict, user-specified assembly

parameters in conjunction with all trimmed, unmasked sequence

reads (Table 1) as follows: add conflict annotations = yes; conflict

resolution = vote (A,T,C,G); non-specific matches = ignore; mini-

mum contig length = 500 bp; update contigs based on the

mapping back procedure = yes; override specified paired distan-

ces = no; mismatch cost = 2; insertion cost = 3; deletion cost = 3;

minimum read length fraction = 0.95; minimum fraction of

nucleotide identity (similarity) = 0.90. The mapping back process,

which also enforces the paired distance and read orientation

settings, served two important functions: 1) The potential for fine-

scale adjustment of the final (consensus) de novo contig sequences;

and 2) The removal of contigs and/or structurally suspicious

regions that were not well-supported by reference mapping.

Relevant to both assemblies, it should be noted that because

paired distances within the Workbench are user-specified,

incorrect specification of the true paired distances (i.e., too narrow

or too wide) negatively impacts de novo genome assembly.

Therefore, using a priori knowledge regarding how each library

was constructed and characterized (i.e., agarose gel electrophore-

sis; Agilent Bioanalyzer) as a guide, we initially assembled the

sequence reads multiple times, each with incremental increases in

the specified paired distances, until the observed paired distances

for each library most closely resembled a bell shaped curve

centered about a mean that was compatible with data derived

from library construction and assessment. Importantly, all

fragment populations used for the construction of sequencing

libraries actually represent a range of fragment sizes, and thus

paired distances were also expected to vary in this same way.

Histograms to assess the observed distribution of paired distances

for each library were created and visualized within the CLC

Genomics Workbench (v4.8, 4.9). Evidence for user-specified

paired distances being too narrow manifested as a partial or

severely truncated curve, or a sharp spike without tails within a

histogram, whereas those that exhibited extended tails comprised

of very low frequency observations were deemed likely to be too

wide, thus promoting misassembly. For both scarlet macaw

genome assemblies, the user-specified paired distances for all

libraries are described in Table 1. Finally, to suppress genome-

wide misassembly, the CLC assembler (i.e., simple de novo,

scaffolded) was instructed to break paired reads exhibiting the

wrong distance or orientation(s), and only utilize those reads as

single reads within the assembly process. This approach is

conservative and favors the creation of more contigs with smaller

N50 over the creation of larger and fewer contigs that are likely to

contain more assembly errors.

Estimating Concordance between Assemblies
Treating all scarlet macaw simple de novo contig sequences

,8,000 bp as individual sequence reads (SMACv1.0), we used the

CLC Large Gap Read Mapper algorithm to iteratively search the

scaffolded genome assembly (SMACv1.1) for the best matches,

with the contig size restriction being a limitation of the mapping

algorithm itself (v4.9). Briefly, the mapping workflow for contigs

,8,000 bp consisted of a two stage process. In the first iterative

mapping analysis, we used the following settings: create report = yes;

max hits per segment = 10; minimum read length frac-

tion = 0.50; minimum fraction of identity (similarity) = 0.90;

mismatch cost = 2; insertion cost = 3; deletion cost = 3; multi-
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match mode = ignore; max distance from initial alignment (i.e.

seed) = 250 bp. These settings require $50% of every simple de

novo contig ,8,000 bp to map with high similarity. Unambig-

uous mapping data was produced for 207,998 contigs (73.5%).

For the second round of mapping, we parsed out the simple de

novo contig sequences which initially produced no mapping

results to create a new input file, reduced the minimum read

length fraction to 0.20, but retained all other original settings,

and produced unambiguous mapping data for 24,400 contigs

(8.6%). For each round of CLC Large Gap Read Mapping, we

created a SAM output file, which was used to parse out the

coordinates of all mapped simple de novo contigs, for the purpose

of creating a reference table summarizing the concordance

between the two assemblies (Table S3). Thereafter, 31,379

simple de novo contigs $8,000 bp were successfully mapped onto

the scaffolded genome assembly using blastn (version 2.2.24+).

Informatic examination of the blastn alignment data provided

evidence that the top three hits (E-value) for many contigs were

sufficient to cover the majority of the sequence, with some

contigs that produced one alignment spanning most of the

query sequence. Therefore, we parsed out the top three hits (E-

value) for each large contig and joined the results to the

reference table (Table S3). All parsing and joining was

performed using either Microsoft SQL Server 2008 R2 or

custom engineered software.

Comparative Genome Alignment, Characterization of
Repeat Content, and SNP Prediction

The simple de novo scarlet macaw genome (SMACv1.0) was

aligned to the chicken (G. gallus 2.1) and zebra finch (T. guttata 1.1,

3.2.4) reference genome assemblies using the blastn algorithm

(version 2.2.24+). Scarlet macaw contigs containing interesting

features (i.e., outliers from the analysis of divergence) were also

assessed using the recently released chicken (G. gallus 3.1) and

zebra finch genome resources (Updated ChrUn and unplaced),

with these updates occurring at the conclusion of this study. To

minimize disk space associated with output files while simulta-

neously enabling continuous data processing beyond blastn

searches on a local workstation, we used an E-value step-down

procedure as follows: 1) Initial cutoff = 1E-50; 2) Second stage

cutoff = 1E-25; 3) Final stage cutoff = None specified, blastn

default E-value. After each step, we exported the results and

parsed out the top E-value hit for each scarlet macaw contig, and

subsequently created a new input file that only contained contigs

which produced no blastn results. All parsing, editing, and joining

was performed using either Microsoft SQL Server 2008 R2 or

custom engineered software. The same workflow was used to align

the scaffolded scarlet macaw genome (SMACv1.1) to the chicken

(G. gallus 4.0) and zebra finch (T. guttata 1.1, 3.2.4) reference

genomes using the blastn algorithm (version 2.2.26+) with the

following exception: 1) Initial cutoff = 1E-20; 2) Second stage

cutoff = None specified, blastn default E-value. Blastn results

consisting of E-value ties for individual contigs (i.e. identical E-

values for the top two or more hits) were almost exclusively limited

to E-values of zero, and were broken by bitscore and alignment

length.

To estimate the minimum repetitive content within the scarlet

macaw genome, all de novo contigs (SMACv1.0, SMACv1.1) were

processed with RepeatMasker (http://www.repeatmasker.org/;

RepBase16.0.1). Briefly, we conducted a two-stage, composite

analysis which consisted of masking the scarlet macaw contigs with

both the chicken and zebra finch repeat libraries to produce a

cumulative estimate of detectable repetitive content. Specifically,

we first masked the contigs using the chicken repeat library, and

subsequently used the masked contigs as the input file for a second

analysis employing the zebra finch repeat library. PHOBOS

(v3.3.12) [40] was also used to detect and characterize genome-

wide microsatellite loci with the following settings: Extend exact

search; Repeat unit size range from 2 to 10; Maximum successive

N’s allowed in a repeat = 2; Typical default options for imperfect

search; Minimum and maximum percent perfection = 80% and

100%, respectively. Moreover, the average coverage and total

number of comparative blastn hits for each de novo scarlet macaw

contig was also used to provide insight regarding unmasked

repeats when cross referenced with the results of RepeatMasker

(Tables S4, S5, S6, and S7). However, it should be noted that the

overwhelming majority of all scarlet macaw contigs produced #5

hits when aligned to the chicken and zebra finch genomes via

blastn (Table S4, S5).

Following the two-stage RepeatMasker analysis, the masked

(chicken+zebra finch libraries) de novo scarlet macaw contigs

(SMACv1.0, SMACv1.1) became the reference sequences used

for SNP prediction; an approach similar to that used for the

rainbow trout [161] and white-tailed deer [1]. After reference

mapping all sequence reads to the double-masked assemblies using

the same strict assembly parameters described above, a SNP

detection analysis employing the Neighborhood Quality Standard

algorithm [1,162–163] within the CLC Genomics Workbench

(v4.8,4.9) was invoked using the following parameters: annotate

consensus = yes, create table = yes, maximum gap and mismatch

count = 2, minimum average quality = 20, minimum central

quality = 20, minimum coverage = 10X, minimum variant fre-

quency = 35%, SNP analysis window = 11 bp. Custom scripts

were developed to parse putative SNP locations from contigs that

were aligned to the chicken and zebra finch genomes, and their

genomic distribution was subsequently assessed against each avian

reference genome.

Scarlet Macaw Cytogenetics and Zoo-FISH
Detailed protocols for avian metaphase chromosome prepara-

tions enabling the reconstruction of karyotypes, including a feather

pulp cell culture technique, Giemsa staining, fluorescent in situ

hybridization (i.e., probes, labeling, hybridization conditions), and

microscopy followed those previously described for the California

Condor [34]. Moreover, we used the same Zoo-FISH quality

control analysis previously reported [34], which involved the

application of all chicken chromosome paints to chicken meta-

phase spreads in order to verify their GGA chromosome of origin

(Figure S1). In addition to the sequenced female scarlet macaw, we

also acquired metaphase spreads and chromosome counts from

feather pulp cell cultures for two additional male scarlet macaws

within a local aviary, as previously described [34].

‘‘In silico’’ Annotation of the Scarlet Macaw Genome
In the absence of any cDNA sequences for mRNA isolates

derived from scarlet macaw tissues, we used GlimmerHMM

[16,44–45] to predict putative gene models within the scaffolded de

novo genome assembly (SMACv1.1; see Dataset S1, Link S1).

GlimmerHMM was trained using G. gallus 4.0 genes, which is

similar to one approach used for annotation of the turkey genome

[16]. Thereafter, we used the following approach to predictively

define, characterize, and assess support for all annotation models:

1) A custom blast database containing all annotated bird proteins

(NCBI refseq; ftp://ftp.ncbi.nlm.nih.gov/refseq/release/

vertebrate_other/) was constructed; 2) Using all GlimmerHMM

predicted exon sequences in conjunction with a high-throughput

distributed blast engine implementing the blastx algorithm [1,46],

we searched the custom protein database for high-quality matches;
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3) All top blastx hits with E-values ,1E-04 were retained and

comprehensively summarized, including the predicted protein

sequences, detailed hit definitions, and accession IDs for each hit

(Table S12). For the scarlet macaw contig containing the

mitochondrion, a blastn search of the NCBI nr/nt database

revealed that the Aratinga pertinax chrysogenys (Brown-throated

Conure) complete mitochondrion had the highest overall identity

among all curated sequences. Therefore, using the annotated

Conure mitochondrion as a guide (Genbank Accession

HM640208), we manually annotated the scarlet macaw mito-

chondrion using the full suite of available BLAST tools (blastn,

bl2seq, blastp; http://blast.ncbi.nlm.nih.gov/), which included 13

protein coding genes (ND1, ND2, COX1, COX2, ATP8, ATP6,

COX3, ND3, ND4L, ND4, ND5, ND6, CYTB) and two ribosomal

RNA genes (12S, 16S). Thereafter, we used tRNAscan-SE (http://

lowelab.ucsc.edu/tRNAscan-SE/) to predict tRNA genes. Finally,

to classify and visualize the genomic information content derived

from the GlimmerHMM-Blastx workflow, we utilized the resulting

protein hit definitions and accession numbers (Tables S12) to map

the corresponding sequences onto relevant classification schemes

such as Gene Ontology (GO) Terms, Swiss-Prot (SP_PIR)

keywords, and other available annotation categories using DAVID

[52–54] (Table S13).

Whole-genome Analyses of Divergence
For all simple de novo scarlet macaw contigs (SMACv1.0) that

produced blastn hits to the chicken (n = 282,904) or zebra finch

(n = 282,915) genomes, we normalized the observed percent

identity for differences in alignment length across both compar-

ative genome alignments using the following formula:

CorrectedForAL~
PercentID

100ð Þ
Alignment Length

. Notably, this method is math-

ematically related to the p-distance [164], with a previous

investigation supporting the use of alignment based sequence

comparison and distance estimation for highly conserved genomes

[165] (see Tables S4, S15 for evidence of conservation).

Thereafter, we visualized the full distribution of this composite

variable by producing histograms within the program SPSS

Statistics version 17.0 (IBM Corp., Armonk, NY). Likewise, tests of

normality (Kolmogorov-Smirnov Test with Lilliefors correction)

were also performed in SPSS 17.0, with P#0.01 considered

statistically significant. Parametric and nonparametric pairwise

correlations for scarlet macaw contig size (bp), contig percent GC,

contig percent identity, and contig alignment length (bp) were

performed in JMPH Pro version 10.0.0 (Cary, NC). The full

distribution for the composite variable ‘‘CorrectedForAL’’ derived

from each comparative genome alignment was highly resistant to

several standard methods of transformation (i.e., Log; Exponential;

etc). Therefore, we used a percentile approach to identify contig

outliers based upon establishing interval bounds within the

ordered distributions (99.98th and 0.02th percentiles), which

captured .99.9% of the total data points in each distribution.

Some contigs that displayed evidence of extreme divergence in

relation to the chicken and zebra finch genomes possessed

identical values for ‘‘CorrectedForAL’’. The reason for this was

that multiple scarlet macaw contigs produced a 19–22 bp

alignment with 100% identity to either the chicken or zebra finch

reference genome, regardless of contig size. Therefore, the desired

percentile cutoff location (i.e., the boundary for extreme diver-

gence) within each distribution fell within a short string of contigs

that possessed identical values for ‘‘CorrectedForAL’’ at the edge

of the ordered distribution. For this reason, we defined an outlier

as any contig which produced a value for ‘‘CorrectedForAL’’ that

was either equal to or more extreme than the values corresponding

to the 99.98th and 0.02th percentiles. All contigs implicated as

outliers were scrutinized by searching three databases curated by

NCBI (i.e., refseq_genomic, refseq_rna, nr/nt) for blastn align-

ments that would further confirm or refute outlier status. For the

comparison to chicken, this required searching the newest

assembly (Gallus gallus 3.1), which was not available at the time

of our original analysis; whereas for the comparison with zebra

finch, this meant searching the newest releases for ChrUn as well

as the unplaced accessions. If a contig originally classified as an

outlier for divergence was subsequently observed to produce a

longer and more significant alignment, thus firmly placing it within

the interval bounds for the specified percentiles, we considered this

to be a false positive result and removed it from the list of outliers.
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quences and inverted DAPI-banding, and lastly, the
location of NORs in 3 pairs of microchromosomes
(arrows, left) and inverted DAPI-banding (right).
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ker.
(ZIP)

Table S8 Summary of scarlet macaw predicted micro-
satellites within the simple de novo assembly using
PHOBOS. The table was split into two parts (S8a, S8b) to reduce

file size.

(ZIP)

Table S9 Summary of scarlet macaw predicted micro-
satellites within the scaffolded de novo assembly using
PHOBOS. The table was split into two parts (S9a, S9b) to reduce

file size.

(ZIP)

Table S10 Summary of scarlet macaw putative SNPs
predicted within the simple de novo assembly.
(ZIP)
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Table S11 Summary of scarlet macaw putative SNPs
predicted within the scaffolded de novo assembly.

(ZIP)

Table S12 Summary of scarlet macaw putative annota-
tion models and corresponding proteins.

(XLSX)

Table S13 Summary of scarlet macaw functional anno-
tation analysis using DAVID.

(XLSX)

Table S14 Summary of nucleotide-based analyses of
divergence

(DOC)

Table S15 Summary of conserved outlier quality con-
trol analysis.

(XLSX)

Table S16 Example of running sum method for quality
trimming.

(XLS)

Link S1 Scarlet Macaw Genome Project Website in-
cludes all supplements plus additional data: http://
vetmed.tamu.edu/schubot/research/scarlet-macaw-
genome-project.

(PDF)

Dataset S1 GlimmerHMM predictions (Zipped File Size
287 MB) are available on the genome project website

(http://vetmed.tamu.edu/schubot/research/scarlet-
macaw-genome-project).
( )
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81. Kaminen N, Hannula-Jouppi K, Kestilä M, Lahermo P, Muller K, et al. (2003)

A genome scan for developmental dyslexia confirms linkage to chromosome

2p11 and suggests a new locus on 7q32. J Med Genet 40: 340–345.

82. Matilla A, Roberson ED, Banfi S, Morales J, Armstrong DL (1998) Mice

lacking ataxin-1 display learning deficits and decreased hippocampal paired-

pulse facilitation. J Neurosci 18: 5508–5516.

83. Moy SS, Nonneman RJ, Young NB, Demyanenko CP, Maness PF (2009)

Impaired sociability and cognitive function in NRCAM-null mice. Behav Brain

Res 205: 123–131.

84. Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, et al. (2011) Deep

sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 487:

57–63.

85. Montgomery SH, Capellini I, Venditti C, Barton RA, Mundy NI (2011)

Adaptive evolution of four microcephaly genes and the evolution of brain size

in anthropoid primates. Mol Biol Evol 28: 625–638.

86. Megraw TL, Sharkey JT, Nowakowski RS (2011) CDK5RAP2 exposes the

centrosomal root of microcephaly syndromes. Trends Cell Biol 21: 470–480.

87. Melville SA, Buros J, Parrado AR, Vardarajan B, Logue MW, et al. (2012)

Multiple loci influencing hippocampal degeneration identified by genome scan.

Ann Neurol 72: 65–75.

88. Raz N, Lindenberger U, Ghisletta P, Rodrigue KM, Kennedy KM, et al.

(2008) Neuroanatomical correlates of fluid intelligence in healthy adults and

persons with vascular risk factors. Cerebral Cortex 18: 718–726.

Scarlet Macaw Genome

PLOS ONE | www.plosone.org 18 May 2013 | Volume 8 | Issue 5 | e62415



89. Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM (2008) Genome-
wide association analysis identifies 20 loci that influence adult height. Nat

Genet. 40: 575–583.

90. Liu JZ, Medland SE, Wright MJ, Henders AK, Heath AC, et al. (2010)

Genome-wide association study of height and body mass index in Australian
twin families. Twin Res Hum Genet 13: 179–193.

91. N’Diaye A, Chen GK, Palmer CD, Ge B, Tayo B, et al. (2011) Identification,

replication, and fine-mapping of Loci associated with adult height in individuals
of african ancestry. PLoS Genet 7: e1002298.

92. Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, et al. (2010)

Hundreds of variants clustered in genomic loci and biological pathways affect
human height. Nature 467: 832–838.

93. Kim J-J, Lee H-I, Park T, Kim K, Lee J-E, et al. (2010) Identification of 15 loci

influencing height in a Korean population. J Hum Genet 55: 27–31.

94. Smith NL, Felix JF, Morrison AC, Demissie S, Glazer NL, et al. (2010)
Association of genome-wide variation with the risk of incident heart failure in

adults of European and African ancestry: a prospective meta-analysis from the
cohorts for heart and aging research in genomic epidemiology (CHARGE)

consortium. Circ Cardiovasc Genet 3: 256–266.

95. Morrison AC, Felix JF, Cupples LA, Glazer NL, Loehr LR, et al. (2010)
Genomic variation associated with mortality among adults of European and

African ancestry with heart failure: the cohorts for heart and aging research in

genomic epidemiology consortium. Circ Cardiovasc Genet 3: 248–255.

96. Sotoodehnia N, Isaacs A, de Bakker PI, Dörr M, Newton-Cheh C, et al. (2010)
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