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ABSTRACT Microaerobacter geothermalis Nad S1T is a rare Bacillaceae thermophile that
grows optimally at 55°C and circumneutral pH. Although strain Nad S1T was discovered
.10 years ago, its genome is yet to be described. The release of the Nad S1T genome
sequence serves as reference genetic information for subsequent use.

M icroaerobacter geothermalis Nad S1T (= DSM 22679T = JCM 16213T) is the only
described type strain of the genus Microaerobacter (1). The Hammam Sidi Jdidi

hot spring (Nabeul, Tunisia), from which the bacterium was isolated, is located near the
Mediterranean Sea (1). Strain Nad S1T is an anaerobic and microaerophilic bacterium that
grows optimally in 1.5 to 3.0% (wt/vol) NaCl (1). This sequencing effort aims to address the
gap in type strain genome data.

The genomic DNA of Microaerobacter geothermalis Nad S1T was purchased from the
Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH
(Braunschweig, Germany). A paired-end library was prepared using the NEBNext Ultra II
DNA library preparation kit for Illumina (New England BioLabs, Ipswich, MA, USA), according
to the manufacturer’s instructions. Sequencing was performed using the NovaSeq 6000 sys-
tem (Illumina, San Diego, CA, USA) with 150-bp paired-end reads. Sequence adaptors and
low-quality reads were filtered using Trimmomatic v0.39 (2). De novo assembly was performed
using SOAPdenovo v2.40 (3), SPAdes v3.15.3 (4), and ABySS v2.3.4 (5) before integration with
Contig Integrator for Sequence Assembly (CISA) v1.3 (6), and the assembly result with the
smallest number of scaffolds was selected. Annotation was conducted using the NCBI
Prokaryotic Genome Annotation Pipeline (PGAP) v5.30 (7). The average nucleotide identity
(ANI) values for the genome of strain Nad S1T versus other type species genomes were
analyzed using OrthoANI v0.93.1 (8). The Genome Taxonomy Database Toolkit (GTDB-Tk)
v1.7.0 was used to classify the genome (9). Default parameters were used for all software
tools unless stated otherwise.

The sequencer generated a total of 1.2 Gb in 3.9 million paired-end reads. Upon removal
of the low-quality reads, the assembled genome has a size of 3,132,374 bp, contributed by 85
contigs, with up to 350� coverage, an N50 value of 57,386 bp, and an average G1C content
of 41.35%. A total of 3,159 genes were identified in the genome, including 3,026 protein-
encoding genes, 45 pseudogenes, and 88 genes for RNA (76 tRNA, six 5S RNA, one 16S RNA,
one 23S RNA, and four noncoding RNA genes). Based on the earlier study, strain Nad S1T is
able to use nitrate and nitrite as electron acceptors under anaerobic conditions, and the cells
can reduce nitrate (1). We found multiple gene sequences for nitrite reductase, nitrate reduc-
tase subunit alpha, nitrate reductase subunit beta, nitrate reductase molybdenum cofactor as-
sembly chaperone, and respiratory nitrate reductase subunit gamma. Nad S1T transports nitrate
and nitrite via its NarK family nitrate/nitrite major facilitator superfamily (MFS) transporter.
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The 16S rRNA gene ofMicroaerobacter geothermalis Nad S1T shared 90 to 92% sequence
identity with those of other species affiliated with the family Bacillaceae (1). The genome
comparison analyses indicated that the Nad S1T genome shared 65.4 to 66.8% ANI with
other type species genomes, such as those of Tepidibacillus fermentans, Vulcanibacillus mod-
esticaldus, Melghiribacillus thermohalophilus, and Heyndrickxia oleronia (10–13). In addition,
none of the curated genomes listed in the GTDB (9) was closely related to the Nad S1T

genome. The genome sequence of Microaerobacter geothermalis Nad S1T will serve as refer-
ence genetic information for future research.

Data availability. The whole-genome shotgun sequence ofMicroaerobacter geothermalis
Nad S1T has been deposited in NCBI GenBank under BioProject accession number
PRJNA797672, BioSample accession number SAMN25026507, and GenBank accession number
JAKIHL000000000. The version described in this paper is the first version, JAKIHL010000000.
The raw sequencing reads have been deposited in the NCBI Sequence Read Archive (SRA)
with accession number SRX13800198. The 16S rRNA gene sequence of Microaerobacter geo-
thermalis Nad S1T has been deposited in NCBI GenBank with accession number FN552009.1.
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