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ABSTRACT

Despite approaches in regenerative medicine using stem cells, bio-engineered scaffolds, and

targeted drug delivery to enhance human tissue repair, clinicians remain unable to regenerate

large-scale, multi-tissue defects in situ. The study of regenerative biology using mammalian models

of complex tissue regeneration offers an opportunity to discover key factors that stimulate a

regenerative rather than fibrotic response to injury. For example, although primates and rodents

can regenerate their distal digit tips, they heal more proximal amputations with scar tissue.

Rabbits and African spiny mice re-grow tissue to fill large musculoskeletal defects through their

ear pinna, while other mammals fail to regenerate identical defects and instead heal ear holes

through fibrotic repair. This Review explores the utility of these comparative healing models using

the spiny mouse ear pinna and the mouse digit tip to consider how mechanistic insight into repara-

tive regeneration might serve to advance regenerative medicine. Specifically, we consider how

inflammation and immunity, extracellular matrix composition, and controlled cell proliferation

intersect to establish a pro-regenerative microenvironment in response to injuries. Understanding

how some mammals naturally regenerate complex tissue can provide a blueprint for how we

might manipulate the injury microenvironment to enhance regenerative abilities in humans. STEM
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SIGNIFICANCE STATEMENT

Continued study using mammalian models of regeneration will undoubtedly deepen our under-
standing of how the injury microenvironment stimulates blastema formation in lieu of fibrotic
repair. The challenge ahead is how to translate basic biological understanding into meaningful
clinical advances that manifest into tractable regenerative therapies. A key problem to solve is
the extent to which the local injury microenvironment can be manipulated to induce blastema
formation and subsequent regeneration.

INTRODUCTION

For most of us, the sight of an amputated digit is
a reminder that humans cannot regenerate
organs in response to severe trauma and prompts
the question, why not us? Throughout the animal
kingdom, we observe a panoply of animals that
can regenerate limbs, spinal cords, hearts and
even entire bodies from a small fragment, which
begets the question, how do they do it? Histori-
cally, scientists have approached the how through
careful description of regenerative phenomena in
animals at the genomic, molecular, cellular, and
tissue level of organization, and by inhibiting the
regenerative process at various stages. Many such
studies promoted the idea that understanding the
various mechanisms regulating regeneration in
animals could provide a pathway toward stimulat-
ing regeneration in humans [1].

In an unlucky twist of fate, the ability to
genetically and transgenically modify certain
organisms to study embryonic development left
classic animal models of regeneration on the side-
lines. Focus shifted toward stem cell biology and
tissue engineering, which ultimately produced the
modern field of regenerative medicine. The pro-
gression of regenerative medicine coincided with
rapid technological advances in genomic sequenc-
ing, computational genomics, gene manipulation,
cellular re-programming, and the production of
tissue scaffolds and bioreactors. The result is that
scientists are now able to reprogram adult
somatic cells into multipotent and totipotent
stem cells [2] and subsequently differentiate these
cells into defined cell types [3], build complex tis-
sue scaffolds with three-dimensional printing
technology to incorporate stem cells (reviewed in
[4]), and construct simplistic organs ex vivo for
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transplantation [5]. And yet, despite conceptual and technological
advances, we still cannot faithfully induce a digit or other complex
organs to naturally regenerate in humans. A reckoning suggests
that a path forward for regenerative medicine is to directly re-
engage with regenerative biologists to understand how animals
regulate the injury environment to create local bioreactors in situ
that can organize cells to faithfully replace damaged tissue.

Being mindful of a species sampling bias and confounding
traits such as age, size, and life-stage [6], regenerative ability
appears to be unevenly distributed among adult vertebrates
(reviewed in [7]). Generally speaking, fishes exhibit extensive
regenerative ability [8, 9] and among tetrapods, Urodele amphib-
ians stand as outliers given the extent of their regenerative abil-
ities [10]. Beyond these species, some frogs, lizards, and mammals
show enhanced regenerative capacity of complex tissues as adults
suggesting either, regenerative ability is broadly suppressed in ver-
tebrates and has re-emerged in some species, or regenerative
ability has been broadly lost and subsequently re-evolved in some
instances. In spite of the interesting evolutionary questions these
comparisons raise, scientists have tended to focus on those verte-
brates with the most extensive powers of regeneration. Using a
few key species, the hope was that discovering the underlying
mechanisms in these models might stimulate new approaches or
insight into developing regenerative therapies for humans [1, 11].

In particular vertebrates, appendage amputation triggers cel-
lular reactions—activated cell-cycling, developmental signaling,
morphogenesis, and differentiation—and studies in these animal
models provide a basic blueprint for how tissues can naturally
regenerate (Fig. 1).While studies in fish and salamanders continue
to provide resolution at the molecular level for how vertebrate
regeneration occurs, lack of closely related nonregenerating spe-
cies makes it difficult to disentangle the mechanisms differentially
driving a regenerative or fibrotic response to injury [12]. Impor-
tant genomic, cellular, and physiological differences exist between
vertebrates necessitating a broader expansion of regenerative ani-
mal models. In this light, adult mammalian models of regenera-
tion are poised to make a unique contribution to regenerative
medicine. Adult mammals more closely mimic the human condi-
tion with respect to genomic architecture, metabolic rate, immu-
nity, and homeothermy. Moreover, mammalian models of
regeneration can provide a comparative system to study regener-
ation and scar formation between species (e.g., ear holes, skin,
etc.) or in the same tissue (e.g., distal digit tip vs. middle phalanx),
and thus studies can uncover the switches regulating a fibrotic or
regenerative response to injury. A similar paradigm has been

exploited to compare embryonic scar-free healing to adult fibrotic
repair [13, 14]. While this body of work has contributed much to
our understanding of skin healing and regeneration, the confound-
ing factors of developmental stage (e.g., incomplete state of tissue
development, cellular differentiation, immune system maturation,
etc.) make it difficult to determine the extent to which embryonic
scar-free healing mimics instances of naturally occurring adult
regeneration. Thus, the focus of this review is directed toward
complex tissue regeneration in adult mammals.

EPIMORPHIC REGENERATION AND FIBROTIC HEALING

Definitions of regeneration create an important foundation for
studying regenerative phenomena. One can investigate regenera-
tion in the context of homeostatic regeneration (i.e., regular and
repeated turnover of a single cell type or multiple cell types within
a tissue), or in the context of reparative regeneration (i.e., replace-
ment of complex tissue in response to injury). Although these two
broad classes of regeneration are distinct, in many cases, homeo-
static regeneration and reparative regeneration can occur within
the same tissue. For example, the mammalian epidermis under-
goes continuous replacement during the majority of a normal life-
time (reviewed in [15]). Thus, epidermal cells exhibit homeostatic
regeneration. However, if a large portion of epidermis is lost along
with the underlying dermis, as in full-thickness skin injuries,
although keratinocytes migrate and proliferate to re-epithelialize
the wound and replace the lost section of tissue, the epidermally-
derived hair follicles fail to regenerate. The distinction between
the two types of regeneration is important because it underscores
the idea that regenerating organs require the coordinated activity
of multiple cell types and that regenerative ability at the single
cell level does not necessarily translate into tissue-level regenera-
tion. On the other hand, the fact that all animals exhibit homeo-
static regeneration of some tissues is promising from a clinical
perspective because it suggests there is some regenerative ability
intrinsic to all vertebrates, including humans. In our mind, study-
ing the mechanisms that control reparative regeneration is the
key to understanding how to stimulate regeneration.

When studying tissue regeneration in vertebrates, reparative
regeneration is defined as epimorphic regeneration (i.e., regenera-
tive morphogenesis involving cell proliferation) [11, 16] (Fig. 1).
Epimorphosis is initiated by amputation or direct injury and leads
to a hemostatic response including the recruitment of neutrophils,
macrophages, osteoclasts, lymphocytes, and other hematopoietic
cells [17–22]. Re-epithelialization is initiated in damaged epidermis

Figure 1. An outline of the events during reparative (epimorphic) regeneration in mammals. Injury initiates hemostasis, an immune response
and re-epithelialization. These early events help to establish key signaling centers and a regenerative microenvironment that recruits progeni-
tor cells. Subsequent progenitor cell proliferation forms a blastema, a defining characteristic of epimorphic regeneration. The blastema under-
goes morphogenesis to restore the missing tissue, and subsequent growth will ensure a functional replacement. Vertebrate models have shed
light on specific growth factors, chemokines, and extracellular matrix proteins that control reparative regeneration and include: SDF1, FGFs,
BMPs, Wnt/ß-catenin signaling, RA, and SHH. Abbreviations: BMPs, bone morphogenetic proteins; ECM, extracellular matrix; FGFs, fibroblast
growth factors; RA, retinoic acid signaling; SDF1, stromal derived factor 1; SHH, sonic hedgehog signaling; ROS, reactive oxygen species.
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and occurs when keratinocytes migrate to cover the injured tissue.
Meanwhile, enzymatic activity from resident cells contributes to
tissue histolysis in the damaged area [23–28]. During these initial
events, inflammatory cells set the stage for local cell proliferation
[18, 20, 21, 29] and in cases of appendage regeneration, resident
cells transition to form a blastema, a recruited heterogeneous
mass of cells that undergo morphogenesis to replace the missing
tissue. Blastemal cells respond to signals from regenerating axons,
Schwann cells, and the wound epidermis to remain in a prolifera-
tive state (reviewed in [30]). Ultimately, blastema cells will differen-
tiate into a functional replacement of the lost organ, and
regeneration of many vertebrate tissues (i.e., fin, limb, digit, ear
pinna, etc.) occurs through a blastema intermediate. Some com-
plex tissues can regenerate without the formation of a blastema
(e.g., heart, skin, bone fracture, etc.) [19, 31, 32] and in these cases
resident cells that accumulated in response to injury differentiate
directly into the replacement tissue.

Notably, epimorphic regeneration involves several processes
that also occur during scar formation [19]. Specifically, both epi-
morphic regeneration and fibrotic repair are necessarily triggered
by injury and a hemostatic event [10, 33]. Leukocytes infiltrate the
damaged tissue and produce chemotactic signals for fibroblasts,
endothelial cells, and axons, while also releasing proliferative sig-
nals for local fibroblasts (reviewed in [34]). Re-epithelialization
seals the wounded area from the environment and new matrix is
laid down to support cell infiltration in both injury responses [19,
35–37]. Beyond similarities, important differences exist in the
response to injury between fibrotic healing and tissue regeneration
[38–41] and ultimately, a regenerative microenvironment gives rise
to a regeneration blastema, which can self-regulate in size, pattern,
and tissue complexity [42]. With this in mind, a major goal of
regenerative medicine should be to stimulate formation of a
regeneration blastema [12]. If the local microenvironment can be
manipulated to shift the injury response, the self-sustaining nature
of a blastema should be capable of morphogenesis (Fig. 2A).

ADULT MAMMALIAN MODELS OF EPIMORPHIC REGENERATION

Bonafide examples of epimorphic regeneration in adult mammals
do exist, and these can occur with or without formation of a blas-
tema. Regeneration of the costal cartilage in mice and humans
[44] and the annual replacement of deer antlers occur without a
blastema intermediate, relying instead on dedicated stem cells
from the perichondrium and periosteum respectively [45, 46].
Likewise, full-thickness skin regeneration occurs through direct dif-
ferentiation and remodeling of granulation tissue similar to heart
regeneration in zebrafish [9, 47, 48]. In contrast, regeneration of
ear pinna holes and distal digit tips proceed through a blastema
before replacing the missing tissue [37, 39, 47, 49–53]. An addi-
tional strength of mammalian regeneration models lies in the abil-
ity to directly compare the differential response to injury that
leads to fibrotic repair or regeneration (Fig. 2A).

A biopsy punch through the external ear pinnae removes car-
tilage, connective tissue dermis, muscle, adipose tissue, epider-
mis, and hair follicles with associated sebaceous glands. Using this
ear punch assay, researchers have determined that rabbits [50,
52, 54] and African spiny mice [39, 47, 53] are capable of epimor-
phic regeneration. In contrast, an identical injury undergoes
fibrotic repair and scar formation, remaining as an open hole in
other rodent species including Rattus norvegicus, Myomyscus

brockmani, outbred Mus musculus, and inbred Mus such as the
MRL/MpJ strain [1, 39, 47, 53, 55] (Figure 2B). Interestingly, anec-
dotal reports of ear pinna regeneration in cats, pikas, and hares
suggest that additional mammalian species may exhibit enhanced
regenerative ability including others to be discovered [1]. It should
be noted that the size of the hole in the ear punch assay matters
in so far as holes 2mm or smaller can be closed with scar tissue.
Thus, a�4-mm ear punch assay provides a model to compare epi-
morphic regeneration and fibrotic repair in the same tissue across
closely related species.

Amputation through the distal digit tip (third phalanx—P3)
removes bone, bone marrow, connective tissue, dermis, epider-
mis, and nail (Fig. 2C). Regeneration of the distal digit tip has been
documented in young humans [56–58], primates [59], neonatal
mice [51] and adult mice [38, 49]. Digit tip regeneration, however,
is amputation level dependent. A distal amputation through the
P3 element results in complete structural and functional replace-
ment, whereas an amputation through the second phalangeal ele-
ment (P2) results in scar formation and loss of original structure
[37, 38, 49] (Fig. 2C). Comparing regeneration competent (P3) and
incompetent (P2) amputations provides a model for studying
fibrotic repair and regeneration within the same tissue, and thus
the same individual.

HOW DO MAMMALS ESTABLISH A REGENERATIVE

MICROENVIRONMENT?

Comparative models of epimorphic regeneration and fibrotic repair
highlight a major question for regenerative medicine: is a regenera-
tive response to injury driven by intrinsic cellular differences (i.e.,
response competency) or variation in extrinsic signals (i.e., signal
variability)? While not new, this question has been addressed
almost exclusively during cellular regeneration using skeletal muscle
in the context of aging. Transplantation experiments with rodent
skeletal muscle have addressed potential differences in intrinsic and
extrinsic controls of regeneration [60, 61]. For instance, muscle sat-
ellite cells in older rodents show a reduced ability to self-renew
when compared with those in young animals, and thus older ani-
mals lose muscle mass over time [62]. This impaired self-renewal in
aged cells has been linked to over-activation of the p38a/b MAPK
pathway and this defect is sustained in older cells when they are
transplanted into young muscle fibers [60]. These and other studies
suggest that a progressive decline in the capacity for satellite cell
self-renewal has an intrinsic component. However, when older sat-
ellite cells are cultured in vitro with serum from young mice, self-
renewal capacity seen in younger muscle is restored [63] suggesting
that extrinsic inputs are capable of inducing cellular regeneration.
Furthermore, transplantation of whole muscle fibers, which nor-
mally lose muscle mass, from old animals into young animals
restores the ability of the older transplanted muscles to gain mass
over time [61] supporting extrinsic regulation of the stem cell niche.
Together, these studies suggest that intrinsic and extrinsic factors
are required to regulate progenitor contribution to tissue regenera-
tion. Do intrinsic or extrinsic differences in cellular phenotype
equally contribute to the differential response to injury when com-
paring epimorphic regeneration and fibrotic repair?

Resident Cells: Strict Maintenance of Cell Proliferation

Evidence from newts and salamanders suggests that blastema
cells are derived from within 500 lm of the initial wound site [64,
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65] supporting local cells as essential building blocks to re-create
lost tissue. In mammalian digits, lineage tracing studies have
shown that blastema cells are derived from lineage-restricted cells
insofar as lineages can be accurately labeled [66]. What is less
clear is the extent to which blastema cells represent a population
of quiescent tissue-specific progenitor cells or local cells that have
de-differentiated from mature tissue. Tissue-specific progenitor
cells have been discovered throughout many mammalian tissues
[67], and these cells are essential for repairing damaged muscle
[68–70], cartilage [44], and bone [71, 72]. On the other hand,
stem cells with varying plasticity have been isolated from a wide
array of adult tissues [73, 74] suggesting that inherently plastic
cells like connective tissue fibroblasts may contribute a majority of
the starting material for tissue regeneration [75]. The tricky prob-
lem is identifying stable markers for inherently plastic cells [66, 76,
77]. Nonetheless, the available evidence supports the idea that
multiple lineage-restricted cell types contribute to the blastema
during complex tissue regeneration rather than formation of a

pluripotent cell mass [75, 78–82]. Coupled with existing abilities
to reprogram cells, perhaps the more pertinent question is not
one of origin, but figuring out how resident cells are activated to
proliferate and how proliferation is controlled.

The ability for cells to re-enter the cell cycle and commit to
cell proliferation is paramount for blastema formation. Early thy-
midine tracing experiments in newt limbs showed that the only
actively dividing cells prior to amputation were found in the epi-
dermis and blood, and neither population contributed to the
actively dividing cells of the blastema [64]. Surveying adult tissues
from mammalian regeneration models demonstrates that the
number of actively dividing cells is negligible prior to injury, specif-
ically when compared with tissues with high rates of cell turnover
(e.g., small intestine) in the same animal (Fig. 3). Interestingly,
actively dividing cells are found throughout uninjured adult tissues
in the highly regenerative axolotl (Fig. 3). These data suggest
quiescent cell populations in adult mammalian tissues are re-
activated to undergo cell division after injury and make up the

Figure 2. The injury microenvironment differentially regulates healing outcomes in mammalian models of regeneration and fibrotic repair.
(A): The composition of the local microenvironment is determined by crosstalk among the ECM, cells of the immune system, and resident tis-
sue progenitor cells. Comparative studies suggest a pro-regenerative microenvironment stimulates blastema formation in lieu of fibrosis.
Combinatorial therapies that target these three facets could dictate the future of regenerative medicine. Comparative models of natural
regeneration and fibrotic repair include a 4-mm ear punch assay (B) and digit tip amputations (C). These models inform how the local tissue
environment functions during both tissue repair processes. (B) A 4-mm biopsy punch through the external ear pinna of the African spiny
mouse (Acomys) results in epimorphic regeneration, whereas the same injury through the ear pinna of outbred lab mice (Mus) results in a
scar. (C) Amputation of the third phalangeal element (P3) results in epimorphic regeneration, whereas amputation through the second pha-
langeal element (P2) results in scar formation. Image in (C) adapted with permission from [43]. Abbreviation: ECM, extracellular matrix.
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bulk of the blastema rather than existing as a permanent slow-
cycling population.

An outstanding hypothesis concerns the degree to which resi-
dent cells from regenerating species may be primed and possess a
lower barrier to cell-cycle re-entry or whether differential regula-
tion of tumor suppressor proteins regulates activation of progeni-
tor cells [83]. Experiments with newt and mammalian myotubes in
culture showed that newt, but not mammalian myotubes, could
re-enter the cell cycle in response to serum [84]. Compared to the
newt muscle cells in culture, mammalian primary and established
myoblast cultures displayed a differential regulation of several
tumor suppressor genes and differential control of certain tumor
suppressor proteins, including retinoblastoma protein (pRb) and
p53, to initiate cell cycle arrest [84–87]. Inactivating pRb alone in
mammalian C2C12 myotubes failed to initiate cell cycle re-entry

[84]. However, combined inactivation of both pRb and the Ink4a
isoform Arf was able to drive C2C12 de-differentiation, and
inactivation of p53 was able to induce cell-cycle re-entry in primary
myotubes [86, 88]. Additionally, tumor suppressors such as Arf

are specific to mammalian cells [89] and expression of human Arf

in regenerating axolotl or zebrafish tissues inhibits regeneration
[84, 90, 91].

Mammalian models of epimorphic regeneration shed further
light on cell cycle control in vivo, and suggest differential regula-
tion of tumor suppressor pathways during regenerative or fibrotic
healing [39]. In ear punches from regenerating and nonregenerat-
ing mammals, injury appears to similarly activate resident cells to
re-enter the cell cycle [39]. In the early stages of regeneration and
fibrotic repair, perichondrial cells and dermal fibroblasts are posi-
tive for cell cycle proteins Ki67, pRb, pHH3, and they incorporate

Figure 3. Tissue analysis of the S-phase marker EdU in uninjured mouse digit tip, spiny mouse ear pinna and salamander limb. (A): Proximal
to distal (longitudinal) section of the third phalangeal element (P3) from an adult Mus shows very few EdU1 (red) cells which are restricted
to the bone marrow (inset, white arrows). EdU staining of adult Mus small intestine is displayed for comparison. (B): Proximal to distal (longi-
tudinal section) section through an adult spiny mouse ear pinna shows very few EdU1 (red) cells. EdU staining of adult spiny mouse small
intestine is displayed for comparison. (C): In contrast to mammalian regeneration models, cross-section of an uninjured 1-year old axolotl
limb shows many EdU1 cells (white arrows) in the dermis, periosteum, connective tissue surrounding muscle (inset), epidermis, and blood
vessels. Scale bars5 50 lm. EdU1 cells5 red; DAPI (40,6-diamidino-2-phenylindole) nuclear stain5 blue; autofluorescent RBC5 yellow.
Abbreviation: RBC, red blood cells.
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EdU. However, during fibrotic repair in Mus, resident cells lose
these cell proliferation markers coincident with nuclear localiza-
tion of the tumor suppressors, p21 and p27 [39]. In contrast, dur-
ing regeneration in Acomys, resident cells continue to proliferate
as a blastema forms to produce new tissue to close ear holes.
Importantly, nuclear localization of p21 and p27 did not occur in
blastema cells, although it was observed in cells proximal to the
injury. This local control of cell proliferation appears key to ensur-
ing new tissue is appropriately produced and does not lead to
unregulated growth. In line with observations from the spiny
mouse ear, differential regulation of tumor suppressor pathways
also occurs when comparing digit cells from regenerative and non-
regenerative amputations. When cells were cultured from the
nonregenerative P2 region of the Mus digit they divided more
slowly and upregulated Cdkn2a (p16) and Cdkn2b (p15) when
compared with P3 cells on plastic [92].Together, these studies sup-
port regulation of tumor suppressor pathway activation, whether
extrinsically or intrinsically controlled, as a key feature of cell pro-
liferation during epimorphic regeneration.

Extrinsic Inputs and Developmental Signals

Although injury promotes formation of a new bone callus in non-
regenerative P2 amputations, and new cartilage nodules in the
nonregenerative Mus ear pinna, in both cases these new tissues
are usually disorganized and mispatterned [39, 47, 53, 71]. With
respect to bone and cartilage, these observations support direct
differentiation of periosteal and perichondrial cells into new
tissue, but underscores the failure to organize a multicellular
response typical of epimorphic regeneration. A failure to simulate
epimorphosis in these mammalian tissues may result from differ-
ent signaling cues produced in response to injury. Fibroblasts iso-
lated from the P3 and P2 region of mouse digits display distinct
differences in their ability to signal to the epidermis; P3 fibroblasts
induce formation of a mucosal-type epidermis while P2 cells
induce a stratified epidermis in keratinocyte cocultures [93]. These
findings support fibroblast identity as a key component of regen-
eration, similar to how fibroblasts from different dermal layers
or anatomical regions differentially contribute to wound healing
[66, 76]. Similarly, in most mammals the ability to regenerate hair
follicles in full-thickness skin wounds is lost during ontogeny and
can be traced to changes in fibroblast signaling patterns, specifi-
cally a downregulation of Wnt signals and an upregulation of
inflammatory cytokines in mature fibroblast populations [94].
However, studies using the Mus digit tip model suggest that fibro-
blasts from normally nonregenerative amputation levels maintain
the ability to respond to appropriate patterning signals as both P2
and P3 digit cells show similar expression of BMP receptors and
SMAD activation [95], and addition of exogenous BMP2 and
BMP7 in vivo is able to induce skeletal patterning in nonregenera-
tive amputations of neonatal and adult mice [40, 96–98]. While
these studies suggest patterning can be rescued if the proper sig-
naling environment is restored, there appears to be a temporal
component as well. Treatment with BMP2 induces skeletal pat-
terning of adult P2 only at specific time points after amputation
[98]. BMP2 treatment 9 days after adult P2 injury induces seg-
mental regeneration and patterned bone formation, but BMP2
treatment 24 days after injury fails to induce a cellular response. A
re-injury to the P2 bone 24 days after injury rescues the ability of
cells to respond to BMP2 and create new patterned bone [98].
Together, these examples support specific and appropriately timed

molecular signals within the regenerative microenvironment as
important extrinsic cues regulating the injury response (Fig. 2A).

Inflammation and Immunity

Prior to blastema formation, cellular interactions with the immune
environment partially determine if a blastema will form [18, 20,
21, 29, 99–101]. In adult tissues, the immediate response to injury
includes the infiltration of a diverse subset of leukocytes including
neutrophils, macrophages, and T cells. While intense interest has
focused on macrophages and T-lymphocytes during mammalian
wound healing [102–105], their importance in blastema-based
regeneration is just beginning to be understood [18, 20, 21, 29].
Macrophages are essential to the mammalian regeneration pro-
cess and depletion studies in the spiny mouse ear show that loss
of early macrophage populations delays regeneration until macro-
phages re-populate the tissue to stimulate blastema formation
[18]. Similarly, depletion studies in the mouse digit tip show loss
of early macrophage populations inhibits re-epithelialization, tis-
sue histolysis, blastema formation and differentiation [20]. Rescu-
ing re-epithelialization can promote blastema initiation, but
without macrophages the blastema regresses and fails to differen-
tiate into new tissue [20]. Together with studies in salamanders
[21] and zebrafish [29, 106], these studies show that macrophages
are a key initiator of blastema-based regeneration in adult verte-
brates. Identifying specific macrophage signaling products will be
essential for determining how local immunity regulates the tissue
microenvironment to promote regeneration.

While the critical macrophage signaling pathways are not yet
known, timed depletions studies show that early infiltrating macro-
phage populations are essential for regeneration [20, 21, 29]. The
timing of macrophage infiltration is closely linked to their pheno-
type and activity. Studies during skeletal muscle repair [102], liver
repair [107], spinal cord injury [108], myocardial infarction [109],
and skin healing [110, 111] document changes in macrophage
phenotype with time. In these wound healing models, the initial
macrophage populations are dominated by pro-inflammatory
(classically activated M1) phenotypes while later repair stages are
dominated by anti-inflammatory (alternatively activated M2)
resolving phenotypes [111]. Characteristic differences include cyto-
kine expression and metabolic activity between these macrophage
subtypes [112, 113]. These observations of changing macrophage
phenotypes in wound healing models combined with the timed
depletion studies in regeneration models would lead one to
hypothesize that initial pro-inflammatory signals from macro-
phages are required for mammalian tissue regeneration.

Comparing the early microenvironments of spiny mice and
laboratory mice ear injuries has revealed important similarities
and differences in the initial immune environment. First, the initial
pro-inflammatory responses are distinct: early stages of regenera-
tion are dominated by high NADPH-oxidase derived reactive oxy-
gen species (ROS) production and low myeloperoxidase activity,
whereas early stages proceeding fibrotic repair exhibit low
NADPH-oxidase derived ROS production and high myeloperoxi-
dase activity [18]. Second, compared with fibrotic repair in lab
mice, the local inflammatory cytokine milieu is unique during
regeneration in the spiny mouse (unpublished data) and digit tip
studies provide evidence that specific cytokines, for example,
oncostatin M, tumor necrosis factor alpha (TNFa), and stimulation
of lymphotoxin beta receptor, support blastema formation in vivo
and in vitro [114, 115]. These cytokines are produced by macro-
phages, Schwann cells [114], the epidermis [116], and potentially
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T cells (unpublished data). Last, macrophages exhibit a distinct
spatial distribution in vivo. CD2061 cells (M2) infiltrate scar-
forming and regenerating wounds early after injury whereas
CD861 cells (M1) appeared to primarily infiltrate the injury micro-
environment in scar-forming wounds [18]. Together, these obser-
vations demonstrate distinct inflammatory environments are
present prior to a regenerative or fibrotic healing outcome and
point toward the need for a more detailed phenotyping to deter-
mine the functional requirement for specific macrophages and
cytokine pathways during regeneration.

Extracellular Matrix Composition

In addition to developmental signaling pathways and the immune
environment, blastema organization, maintenance and morpho-
genesis is governed by the extracellular matrix (ECM). Far from a
passive support structure, the ECM is capable of providing cues
for cell migration, proliferation and differentiation (reviewed in
[117, 118]). A surge in bioengineered scaffolds has capitalized on
the instructive abilities of the ECM and de-cellularized scaffolds
derived from natural tissues can promote tissue regeneration in
bone, cartilage, muscle, and skin (reviewed in [119]). Synthetic
and natural scaffolds have been modified to mimic conditions
observed during embryonic development using developmental
matrix molecules to guide cell differentiation. For instance, scaf-
folds rich in the ECM fiber tenascin-C have been shown to pro-
mote chondrocyte differentiation in vitro [120, 121]. While this
can be beneficial in certain contexts, other studies have shown
that treating cartilage explants with tenascin-C can increase the
loss of proteoglycans and exacerbate tissue histolysis [122], sug-
gesting that trying to direct cellular activity by enriching for single
matrix components can have antagonistic outcomes as well. These
studies underscore the need for understanding the composition
and dynamic nature of naturally occurring regenerative matrices.

The mammalian regenerative matrix environment appears to
superficially resemble the ECM present during embryonic devel-
opment which is composed of matrix proteins that stimulate pro-
liferation (tenascin-C), cell migration (fibronectin) and are more
easily remodeled (collagen type 3) [28, 39, 47, 115, 123–126]. Low
resolution comparison of the regenerative ECM suggests this
matrix environment may be conserved across regenerative spe-
cies [39, 47, 123, 124, 127, 128]. In adult tissues, tenascin-C and
fibronectin contribute to the periosteum, perichondrium, tendon,
and muscle where they surround progenitor cells [39, 124, 127],
and perhaps play a role in supporting the progenitor cell niche
[129, 130]. In vitro studies have demonstrated a direct positive
effect of tenascin-C and fibronectin on salamander and mouse
myotube proliferation [124]. Despite parity across regeneration
models, comparative studies in mammalian models of regenera-
tion and scarring redirect our understanding of regenerative mat-
rices. Healing Ear punches in Acomys and Mus revealed similar
levels of tenascin-C during the first fifteen days post amputation
suggesting that traditional components of a regenerative ECM are
deposited during fibrotic repair as well [39]. Despite early expres-
sion and deposition of tenascin-C during fibrotic healing in Mus,

proportionally higher expression of Col1a1, Col3a1 and chondroi-
tin sulfate proteoglycans occurred prior to, and during scar forma-
tion. In contrast, persistently high levels of tenascin-C were
maintained throughout the regeneration process in Acomys, and
proportionately higher levels of matrix fibers involved in nerve
guidance proceeded blastema formation [39]. These comparisons

indicate that relative composition and timing of ECM deposition is
critical toward healing outcomes.

Far from a static structure, the ECM is dynamic, undergoing
active remodeling as some components are digested and others
deposited. Functional studies in newts have shown that active
remodeling of the ECM by matrix remodeling enzymes is required
for blastema formation [27]. Although remodeling enzymes such as
matrix metalloproteinases 9 and 13 (MMP9 and MMP13) are
upregulated in response to injury regardless of the outcome, timing
of expression is, again, a prominent difference between regenera-
tion and scarring. In regenerating systems, these enzymes remain
significantly upregulated during blastema formation and morpho-
genesis when compared with fibrotic repair [25, 27, 39, 124, 131].
While the exact role of remodeling enzymes during regeneration
remains obscure, a few studies suggest that degraded ECM compo-
nents, as well as growth factors and chemokines released by histol-
ysis, are able to promote cell migration [132, 133]. As we continue
to discover the extent to which the ECM facilitates regeneration, a
more comprehensive understanding of its temporal composition
will guide attempts to design next-generation bio-reactive scaffolds
for clinical applications in vivo and ex vivo.

CURRENT REGENERATIVE APPROACHES TO COMPLEX

TISSUE INJURY

The clinical challenge of regenerating organs and complex, multi-
tissue injuries is immense. In cases of severe organ damage or
dysfunction, the gold standard remains whole organ transplanta-
tion from a matched donor [134, 135] and in cases of severe tis-
sue damage, autologous tissue transplant. While the long-term
prognosis for transplant patients can be quite good, especially for
certain procedures, the availability of suitable organs for trans-
plant is relatively low and even when a match is made, there is
still a need for lifetime immunosuppressive therapy [135]. It is no
surprise then that there is a ravenous appetite from the patient
and clinical communities to see basic scientific advances trans-
formed into useful regenerative therapies. Unfortunately,
although advances in regenerative biology continue to be made,
very few regenerative technologies have either proved their effi-
cacy in humans or significantly outperformed surgical alternatives
[134, 136]. The failure to create new, useful, and tractable regen-
erative therapies for complex tissue trauma or loss can be traced
to inherent design problems with ex vivo constructs (i.e., vascular
integration, innervation, mechanical properties, etc.), an incom-
plete understanding of how tissues naturally develop and regen-
erate, and a poor understanding of how the immune system
positively/negatively interacts with local cells to regulate tissue
morphogenesis during natural instances of tissue regeneration.

Current approaches in regenerative medicine attempt to
leverage cell-based therapies, scaffolds (natural or synthetic) or a
combination of cells and scaffolds to stimulate tissue repair in vivo
or build tissues ex vivo for implantation. Targeted drug delivery is
a third approach, typified by the application of demineralized
bone matrix (DBM) or isolated bioactive molecules to regenerate
skeletal injuries [137]. Where damage or dysfunction can be
traced to a single cell type or simple tissue (e.g., epidermis, cor-
neal epithelium) available stem-cell therapies have shown encour-
aging success in humans. For instance, hematopoietic stem cell
transplants (HSCT) have been used to successfully treat a range of
leukemias and lymphoproliferative disorders by regenerating a
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patient’s blood system following chemotherapy [138], although
like whole organ transplantation, HSCT does carry long-term com-
plications [139]. Limbal stem cell transplants have proven success-
ful in regenerating the corneal epithelium in humans [140] and a
recent report has demonstrated proof-of-principle success using
transgenically altered autologous keratinocytes to treat junctional
epidermolysis bullosa through re-population of a significant por-
tion of the patient’s epidermis [141, 142]. In the case of critical
size defects in the skeleton (craniofacial, axial or appendicular),
autogenous bone grafts are the gold standard and most widely
used clinical treatment [137]. However, the osteoinductive proper-
ties of demineralized bone matrix (DBM) [143, 144] which have
been used clinically for over thirty years, have made DBM prod-
ucts, alone or in combination with autogenous grafts, a viable
option to stimulate the intrinsic regenerative properties of bone
[137]. Importantly, attempts to bridge a critically-sized fibular
defect in humans using the osteoinductive molecule BMP7 (OP1)
were not as effective as DBM after one year [145]. This and other
attempts to stimulate regeneration using single bioactive mole-
cules reinforces the importance of designing therapies with the
complexity of natural tissue development in mind where a multi-
tude of signaling pathways act synergistically and antagonistically
to precisely control tissue morphogenesis.

As injuries increase in complexity involving multiple cell types
and tissue compartments, regenerative therapies have seen far
less clinical success. Replacement of so-called hollow organs (e.g.,
bladder, blood vessels, urethra, etc.) with ex vivo constructs from
scaffolds alone or cell-seeded scaffolds have achieved a measure
of reported success [146, 147], but these approaches are used
infrequently and present short and long-term complications [134,
148]. Among complex tissues, the skin is injured more frequently
than any other organ. The primary approach to treating acute
wounds (small or large) and burns remains the split-thickness auto-
graft [149]. In an attempt to create an artificial skin substitute that
could stimulate natural tissue regeneration, Integra was developed
as a composite of naturally derived collagen, chondroitin 6-
sulphate and Silastic [150]. Integra is used in two stages. First,
when placed in a wound or burn, the collagen compartment
encourages cell infiltration and neo-dermis production as it is
slowly degraded during healing. Subsequently, the Silastic is
removed and replaced by a meshed epidermal autograft which
restores the epidermal skin compartment [150]. Integra represents
one of the true successes for regenerative engineering and has
inspired many competing products to facilitate skin regeneration
and repair, including de-cellularized extracellular matrices from
human and animal dermis [119, 149, 151]. Despite the success of
artificial skin and natural scaffolds in treating burns and full-
thickness skin wounds, comparative human studies show a long-
term clinical outcome no different from split-thickness skin grafts
[152, 153]. As outlined above, the available human data supports
the need to refine (or reconstruct) current regenerative therapies
in light of our expanding knowledge of natural regeneration in ani-
mal models. Appreciating the dynamic interaction of cells, the ECM
and immune system in the context of adult tissue should provide
guidance on optimizing new approaches to regenerative medicine.

FUTURE CLINICAL PRACTICES: BALANCING IMMUNITY,

CELL PROLIFERATION, AND FIBROSIS

Continued study using comparative mammalian models of regen-
eration will undoubtedly deepen our understanding of how the

injury microenvironment stimulates blastema formation in lieu of
fibrotic repair. The challenge is how to translate basic biological
understanding into meaningful clinical advances that manifest
into tractable regenerative therapies. In our view, a key problem
to solve in the treatment of complex tissue injuries is the extent
to which the local microenvironment can be altered to induce
blastema formation. If injured tissue can transition to a blastema
then the self-sustaining nature of the blastema will facilitate mor-
phogenesis and regeneration. This same principle can be applied
to tissue injuries where a blastema is not required (e.g., skin,
heart, lung, etc.). In these cases, the local microenvironment still
controls the cellular response to injury and as such, can polarize
the healing response.

Current tissue engineering techniques modulate the tissue
microenvironment and promote endogenous repair through
the creation of scaffolds (reviewed in [119]), and through the
modulation of the immune response (reviewed in [154]). It is
notable that these current therapies are designed to target
individual tissues, that is, collagen-glycosaminoglycan scaffolds
for skin (Integra) [150, 155], silk scaffolds for ligament [156,
157], organic scaffolds for bone [158, 159] or hyaluronic acid
infused scaffolds for cartilage repair [160]. Similarly, immune-
modulatory therapies are designed to target single specific
arms of the immune cell response; that is, targeted dampening
of interleukin 1 beta pro-inflammatory cascades to improve
healing in skin [161–163], calvarial bone defects [164], and
arthritic cartilage [165]. Yet the ultimate goal of regenerative
medicine is to stimulate integrated multi-tissue regeneration,
and the extent to which current scaffold designs and immune
targeting drugs induce complex tissue regeneration is
unknown. Is it possible to create scaffolds that target multiple
tissues with a therapy that stimulates evolution of the immune
cell response across healing phases? What would these thera-
pies look like? We can benefit from comparative analyses of
regeneration and scarring to quickly guide new therapy
designs and help answer these questions. For example, we
have learned from comparative analysis in mammals that
regenerating systems deposit ECM fibers for nerve guidance
[39], that BMP treatment is more successful when combined
with factors that mobilize periosteal cells [98], and that early
inflammatory events promoting high NADPH-oxidase derived
ROS production and lower H2O2 stimulate blastema formation
[39]. As engineering techniques become more sophisticated
enabling duel growth factor delivery [166], guided nerve
growth [167], and cytokine capture [168], it should be possible
to design dynamic scaffolds to simultaneously incorporate
early control of the immune system, guidance of nerve growth,
and timed release of growth factors to promote blastema
formation.

CONCLUSION

Although many yearn for a single factor or scaffold that will magi-
cally jumpstart a regenerative response, it has yet to be discov-
ered, and is more likely not to exist at all. Instead, the complexity
of establishing and maintaining a controlled regenerative response
in adult tissue will require combinatorial therapies delivered in a
progressive timeline to manipulate the local tissue microenviron-
ment. Future goals for designing new approaches in regenerative
medicine should embrace an understanding of how to integrate
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immune modulation, scaffold design, and controlled cell cycle acti-
vation to enhance intrinsic regenerative abilities in humans. In our
view, a productive path to discovering new regenerative therapies
will arise from comparative studies of regeneration and fibrotic
repair, and active engagement between biologists, engineers, and
clinician-scientists.
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