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Abstract: West Java Health Laboratory (WJHL) is one of the many institutions in Indonesia that
have sequenced SARS-CoV-2 genome. Although having submitted a large number of sequences
since September 2020, however, these submitted data lack advanced analyses. Therefore, in this
study, we analyze the variant distribution, hotspot mutation, and its impact on protein structure
and function of SARS-CoV-2 from the collected samples from WJHL. As many as one hundred
sixty-three SARS-CoV-2 genome sequences submitted by West Java Health Laboratory (WJHL), with
collection dates between September 2020 and June 2021, were retrieved from GISAID. Subsequently,
the frequency and distribution of non-synonymous mutations across different cities and regencies
from these samples were analyzed. The effect of the most prevalent mutations from dominant
variants on the stability of their corresponding proteins was examined. The samples mostly consisted
of people of working-age, and were distributed between female and male equally. All of the sample
sequences showed varying levels of diversity, especially samples from West Bandung which carried
the highest diversity. Dominant variants are the VOC B.1.617.2 (Delta) variant, B.1.466.2 variant, and
B.1.470 variant. The genomic regions with the highest number of mutations are the spike, NSP3,
nucleocapsid, NSP12, and ORF3a protein. Mutation analysis showed that mutations in structural
protein might increase the stability of the protein. Oppositely, mutations in non-structural protein
might lead to a decrease in protein stability. However, further research to study the impact of
mutations on the function of SARS-CoV-2 proteins are required.

Keywords: Indonesia; mutation; protein stability; SARS-CoV-2; variant; West Java

1. Introduction

Since its first appearance in Wuhan, China, at the end of 2019, the coronavirus disease
(COVID-19), caused by SARS-CoV-2, is rapidly spreading globally. In Indonesia, the first
identified case of COVID-19 was reported in early March 2020; and by March 2021 COVID-
19 has amounted to 1.3 million cases, and was responsible for 36,000 deaths [1]. With
these numbers, Indonesia was considered as the top 20 countries with the most COVID-19
cases in the world, and was the first in Southeast Asia. Among Indonesian government
efforts to handle these problems were massive surveillance for new COVID-19 cases and
implementation of COVID-19 vaccination programs across the country [1].

As Indonesia continued to battle this issue, SARS-CoV-2 also found its way to sustain
through constant mutations that eventually lead to the formation of multiple new variants.
Mutation or a change of nucleotide in genes could cause a change in protein structure and
function. Moreover, mutations could also cause a change in viral characteristics, potentially
leading to an outbreak, reduce vaccine effectiveness, and set back the development of
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antiviral and diagnostic kits [2]. Mutations in SARS-CoV-2 that had been reported to
reduce antibody neutralization were found in variant B.1.1.7 and B.1.35; this finding could
entail the futility of the vaccination program that was done in the hope of acquiring herd
immunity [3,4].

The viral genome provides various information ranging from viral characteristics,
pathogenesis, origin, transmission, mutation profile, and diversity of viral variant. A muta-
tion followed by high prevalence describes the diversity of variants in a given population
within a time. Increasing the frequency of any mutation can indicate the emergence of a
new variant with different characteristics, thus changing the pattern of the diversity variant
in that area [5].

Since 2020 many institutions in Indonesia have sequenced SARS-CoV-2 viruses using
the whole-genome sequencing (WGS) method, one of them being West Java Health Labora-
tory (WJHL). WJHL first submitted their SARS-CoV-2 sequence in September 2020, and has
continued to do so to this day. This can serve to support SARS-CoV-2 treatment guidelines
in Indonesia or prepare for new variants in the future by giving a scientific perspective,
but comprehensive analyses on these sequences are still scarce. We analyzed SARS-CoV-2
sequenced by WJHL between September 2020 and June 2021, including variant distribution,
hotspot mutation, and its impact on protein structure and function of SARS-CoV-2.

2. Materials and Methods
2.1. Data Collection

One hundred sixty-three SARS-CoV-2 genome sequences submitted by West Java
Health Laboratory (WJHL), collected between September 2020 and June 2021, were down-
loaded from the GISAID database [6]. Genome sequences with a size of more than 29 kb
(complete genome), high coverage (with <1% Ns), and collection date information are
included in the analysis. Metadata of the sequences includes information of sequence
origin, collection date, sampling strategy, specimen type, patient gender, age, and status.
Sequence accession IDs, sequencing technology, and assembly methods are available in
Supplementary Table S1.

2.2. Analysis of Distribution of Variants and Mutations

SARS-CoV-2 genome sequences from different cities and regencies were grouped by
their variants. Mutations were analyzed using tools available on CoV-GLUE mutation
database [7], with severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1
(NC_045512.2) as a reference. The analysis focused on non-synonymous mutations, includ-
ing substitutions, deletions, and insertions. The occurrence frequency of each mutation is
calculated by dividing the number of sequence samples carrying the mutation by the total
number of samples analyzed. Mutations with a frequency of more than 10% are considered
hotspot mutations [5]. Statistical analysis was performed using Microsoft Excel version
2013 and IBM SPSS Statistics for Windows version 24.0. Classification of SARS-CoV-2
follows the PANGO lineages.

2.3. Analysis of Protein Stabilization

Three-dimensional structure of the spike, NSP12, NSP13, and ORF7a protein was
obtained from online protein databank (www.rcsb.org/, accessed on: 1 July 2021), with
PDB ID 7A29, 6NUR, 6ZSL, and 7CI3, respectively. Meanwhile, the 3D structure of the
nucleocapsid, membrane, NSP3, and ORF3a protein was modeled using i-TASSER online
web-server (https://zhanggroup.org/COVID-19/, accessed on: 20 June 2021) [8]. The ∆∆G
value (kcal/mol) (∆∆G = ∆Gmutant − ∆Gwildtype) of each protein due to mutation was
calculated using FoldX version 5.0 plugin in YASARA, with one time run at temperature
310 K. A value of ∆∆G < −0.5 shows a stabilizing effect on the protein, destabilizing for
a value of ∆∆G > 0.5, and neutral for −0.5 < ∆∆G < 0.5 (no significant change in protein
stability) [9,10]. Analysis was performed for mutations appearing in all sequences for each
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variant, and appearing in genomic regions constituting a large proportion of mutations
across all variants, unless indicated otherwise.

2.4. Molecular Docking

Protein docking analysis between the protein of genomic region with the highest
number of mutations across dominant SARS-CoV-2 variants and its substrate, which
had previously been prepared, was performed using HADDOCK version 2.4 online web-
server (https://wenmr.science.uu.nl/haddock2.4/, accessed on 27 July 2021) with default
parameters [11]. The binding affinity (kcal/mol) of the protein was calculated by PRODIGY
web-server (https://wenmr.science.uu.nl/prodigy/, accessed on 29 July 2021) [12]. PyMol
software was used to visualize the 3D structure of the protein complex [13].

3. Results and Discussions

The number of SARS-CoV-2 samples from September 2020 to June 2021 showed a
significant increase, although decreases were documented briefly in November 2020, April
2021, and May 2021, as shown in Figure 1A. Bandung contributed most of the samples
(47%), followed by West Bandung (10%), Subang (10%), Bandung Regency (9%), and
Sumedang (5%), as shown in Figure 1B,C. Most of our samples were female patients
(60.7%) and working-age patients (age 18 through 60, accounting for 65% of the samples),
as shown in Figure 1D. This is consistent with other findings in Southeast Asia and Asia,
where most positive COVID-19 cases are dominated by people of working age with no
distinct segregation between females and males [14,15]. In Indonesia, sequenced samples
were comprised of 50.5% female samples and 48.6% male samples (with 0.9% of the samples
having no information). In Southeast Asia and Asia, a significantly large proportion of
the samples with no information on sex hindered the female-to-male proportion from
appearing as 50-50, but still showed a ratio close to 1-1 [16].
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Shown in Figure 2A, samples from September 2020 to June 2021 belonged to the
B PANGO variant, furthermore dominated by the VOC B.1.617.2 (Delta) variant (42%),
B.1.466.2 variant (27%), and B.1.470 variant (8%), the last two enlisted as Indonesian lineages
by PANGO although not being a variant of concern at a global level [17]. B.1.466.2 has
also been designated Alerts for Further Monitoring by the World Health Organization [18].
Other Indonesian lineages enlisted by PANGO, the B.1.1.398 and B.1.459 variants [17],
contributed only to a small percentage in the samples, 5% and 2% respectively, while
the B.50 was not found in this study [15,17]. B.1.466.2, B.1.470, B.1.1.398, and B.1.459
were more locally distributed in Indonesia and were found in lower percentages in other
Southeast Asian countries [15]. The two other VOCs that are primarily known to circulate
in Southeast Asia, the Alpha B.1.1.7 and Beta B.1.351 variants [19], were absent in this study,
although making up for 19.2% and 1.6% of the Asian samples respectively, and 43.1% and
1.1% of global samples respectively. Indeed it was found that predominating variants in
Indonesia were B.1.466.2 and B.1.470 as of 1 June 2021, and that the Alpha and Beta variants
were more dominating in other regions of Southeast Asia, such as Thailand, Cambodia,
Philippines, and Vietnam [19], and in Asia as a whole [15].

Viruses 2021, 13, x FOR PEER REVIEW 4 of 11 
 

 

Figure 1. Summary of the epidemiology of SARS-CoV-2 samples sequenced by WJHL, isolated from West Java, Indonesia. 
(A) Time series of SARS-CoV-2 samples collection (n = 163). (B) Proportion of SARS-CoV-2 samples across cities and re-
gencies in West Java, Indonesia. (C) Distribution of SARS-CoV-2 sequenced samples across different cities and regencies 
in West Java, Indonesia. (D) Demography of samples. 

Shown in Figure 2A, samples from September 2020 to June 2021 belonged to the B 
PANGO variant, furthermore dominated by the VOC B.1.617.2 (Delta) variant (42%), 
B.1.466.2 variant (27%), and B.1.470 variant (8%), the last two enlisted as Indonesian line-
ages by PANGO although not being a variant of concern at a global level [17].B.1.466.2 
has also been designated Alerts for Further Monitoring by the World Health Organization 
[18]. Other Indonesian lineages enlisted by PANGO, the B.1.1.398 and B.1.459 variants 
[17], contributed only to a small percentage in the samples, 5% and 2% respectively, while 
the B.50 was not found in this study [15,17]. B.1.466.2, B.1.470, B.1.1.398, and B.1.459 were 
more locally distributed in Indonesia and were found in lower percentages in other South-
east Asian countries [15]. The two other VOCs that are primarily known to circulate in 
Southeast Asia, the Alpha B.1.1.7 and Beta B.1.351 variants  [19], were absent in this 
study, although making up for 19.2% and 1.6% of the Asian samples respectively, and 
43.1% and 1.1% of global samples respectively. Indeed it was found that predominating 
variants in Indonesia were B.1.466.2 and B.1.470 as of 1 June 2021, and that the Alpha and 
Beta variants were more dominating in other regions of Southeast Asia, such as Thailand, 
Cambodia, Philippines, and Vietnam [19], and in Asia as a whole [15]. 

 
Figure 2. Distribution of SARS-CoV-2 variants from September 2020 to June 2021. (A) Proportion of variants. (B) Time 
series of SARS-CoV-2 for each variant. VOC B.1.617.2 (Delta) and two local Indonesian variants (B.1.466.2 and B.1.470) 
dominated West Java. The shifts of different variants were observed over time. 

Plotting the PANGO variants of the samples against time (Figure 2B) showed an ini-
tial dominance of B.1.1.398 in September 2020, followed by the identification of B.1.1, 
B.1.466.2, and B.1.470 in the following month. Variants B.1.1.398 and B.1.470 were ob-
served to dominate samples by December 2020 before the emergence of B.1.466.2, domi-
nating from January through April 2021. The Delta variant first appeared in West Java on 
April 2021 [20] and has since increased before dominating other variants in WJHL sam-
ples. This phenomenon is consistent with the pattern observed in West Java and Indonesia 
[21]. The Delta variant is known to have been first documented considerably early during 
the pandemic, in India on September 2020, before appearing in Indonesia in Jakarta in 
January 2021, but had only been designated Variant of Concern by the World Health Or-
ganization in 11 May 2021 [17,18]. During the third week of August 2021 alone, 47.4% of 
all the new cases nationwide reported by the Indonesian Ministry of Health were of this 
variant, contrasting the Alpha variant that only constituted 0.003% of all the new reported 
cases and the absence of new Beta cases. The other two Indonesian lineages enlisted by 
PANGO, B.1.466.2 and B.1.470, originated from Indonesia and were first documented in 

Figure 2. Distribution of SARS-CoV-2 variants from September 2020 to June 2021. (A) Proportion of variants. (B) Time
series of SARS-CoV-2 for each variant. VOC B.1.617.2 (Delta) and two local Indonesian variants (B.1.466.2 and B.1.470)
dominated West Java. The shifts of different variants were observed over time.

Plotting the PANGO variants of the samples against time (Figure 2B) showed an
initial dominance of B.1.1.398 in September 2020, followed by the identification of B.1.1,
B.1.466.2, and B.1.470 in the following month. Variants B.1.1.398 and B.1.470 were observed
to dominate samples by December 2020 before the emergence of B.1.466.2, dominating
from January through April 2021. The Delta variant first appeared in West Java on April
2021 [20] and has since increased before dominating other variants in WJHL samples.
This phenomenon is consistent with the pattern observed in West Java and Indonesia [21].
The Delta variant is known to have been first documented considerably early during the
pandemic, in India on September 2020, before appearing in Indonesia in Jakarta in January
2021, but had only been designated Variant of Concern by the World Health Organization
in 11 May 2021 [17,18]. During the third week of August 2021 alone, 47.4% of all the
new cases nationwide reported by the Indonesian Ministry of Health were of this variant,
contrasting the Alpha variant that only constituted 0.003% of all the new reported cases
and the absence of new Beta cases. The other two Indonesian lineages enlisted by PANGO,
B.1.466.2 and B.1.470, originated from Indonesia and were first documented in November
2020 and March 2020 respectively [17]. During the third week of August 2021, B.1.466.2 and
B.1.470 were reported to contribute to 31.7% and 0.03% of all the cases in the country [22].

West Java is observed to house a variety of dominating PANGO variants across its cities
and regencies, as shown below in Figure 3. Regions with the highest diversity in variants
are West Bandung Regency (carrying 9 variants, dominated by B.1.466.2 and B.1.470),
Bandung (carrying 8 variants, dominated by the Delta variant, B.1.617.2), and Subang
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Regency (carrying 5 variants, dominated by B.1.466.2). Several variants only appeared in
particular regions, such as the B.1.1.243 (appearing once in Sukabumi Regency), B.1.36.9
and B.1.466 (both only appearing once in West Bandung Regency), and B.1.627 (appearing
once in Bandung).
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The high diversity of SARS-CoV-2 variants in West Bandung Regency might serve as
a point of interest, considering how Bandung showed a lower diversity although being the
capital of West Java. Beside B.1.466.2 and B.1.470 that generally dominated Indonesia at a
national level [22], West Bandung Regency was also found to house the other Indonesian
lineages (B.1.1.398 and B.1.459), and other minor variants such as the B.1, B.1.36.19, B.1.36.9,
B.1.441, and B.1.466 variants. These minor variants in West Bandung Regency were also
found in different parts of the world, with the B.1.441 and B.1.466 variants even enlisted
as global lineages by PANGO [17]. This might be due to West Bandung Regency being
the major homecoming destination for a great number of West Java citizens, where other
variants from other places in the province might be carried by the large wave of people
coming home for the Eid al-Fitr. Indonesia is a Muslim-majority country, and homecoming
has become a tradition for Indonesian Muslims to celebrate, at the end of Eid Al-Fitr.
Moreover, West Bandung Regency is also known for its recreational sites, which, despite
the continuously increasing number of positive cases during the month of June, were
still operating although with health safety measures being enforced [20]. Following the
first community activities restrictions (PPKM) in Indonesia on January 2021 [23], WHO
Indonesia reported that retail and recreational activities as well as transit stations activities
in West Java were maintaining their numbers, if not increasing in trend [24]. This finding
suggests a relatively great number of people circulating in West Bandung Regency right
before the period where positive cases were continuously increasing in this area. It might
propose an appealing point that could be further explored in later studies: the possibility
of within-host co-infection and recombination by multiple SARS-CoV-2 variants that might
contribute to the high diversity of SARS-CoV-2 variant in West Bandung Regency.
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Furthermore, although this increase in citizens mobility can also be observed in
other provinces with major cities in Indonesia (such as Jakarta, Banten, and Central Java),
unfortunately, reports of SARS-CoV-2 diversity in Indonesia only calculate the variants of
concern, thus making it difficult to examine all SARS-CoV-2 variants across provinces in
Indonesia [22,24,25].

It should also be noted that some regions may appear to only house one or several
particular variants not because of the absolute absence of other variants, but rather because
of the small sample size that might not entirely reflect the dynamics of the variants in
these regions.

Number of mutations of SARS-CoV-2 in this study showed a constant rate of increase
from September 2020 to April 2021, followed by a significant escalation from April to June
2021 (Figure 4A). This sudden jump in mutation rate was likely caused by the introduction
of the B.1.617.2 Delta variant in Indonesia. Studies comparing the mutation rate of the
Delta variant to other dominant variants are still unavailable. However, the previous study
showed that the spike gene of the Delta variant has a higher number of mutations compared
to any other variants of concerns (Alpha, Beta, and Gamma), as shown in Figure 4B [26,27].
Over all the variants, mutations were mostly found in the spike gene (29%), NSP3 (15%), N
(12%), NSP12 (8%), and ORF3a (7%). Mutation hotspots for SARS-CoV-2 found in this study
were similar to those circulating globally, where the majority of the mutation found in high
frequency were located in the spike, NSP12, nucleocapsid, and ORF3a, with only NSP3
as an exception as it is not considered as the gene where the majority of high-frequency
mutation was located, but still a site with a high number of mutations nonetheless [28].
The highest frequency of NSP3 mutations among the Delta variant includes T678I, P1469S,
P1228L, A488S. Except for P1228L, all the mutations are identified as the highest frequency
of NSP3 mutations across all the countries with Delta variants [29].
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genomic region is expressed by dividing the number of all mutations found in the region by the total number of mutations
found in all samples. Details on hotspot mutations are available in Supplementary Table S2.
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Plotting the frequency of hotspot mutations occurrence against time showed that
different mutations fluctuated over time. Figure 5 displays some examples of this phe-
nomenon. The D614G mutation in the spike protein and the P323L mutation in the NSP12
are constantly present in all samples from September 2020 to June 2021. Q57H in the ORF3a
was first documented at the end of 2020 and underwent a rise in number until April 2021.
S126L in NSP3 was first documented at the end of 2020, before disappearing, making a
constant rise in number since its reemergence in February 2021, peaking at April 2021,
and decreasing through June 2021. T350I in NSP3 was first documented at the end of
2020, constantly increasing until March 2021 and decreasing until June 2021. G142D in
the spike and T77A in the NSP6 protein were first documented in April 2021 and have
since increased.
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Our study analyzed the effect of the mutation in the three dominating variants on the
structural stability of their corresponding proteins. Mutations in B.1.466.2 and B.1.617.2
(Delta variant) mostly stabilized structural protein (∆∆G ≤ −0.5), while those in B.1.470
mostly have a destabilizing effect on the NSP12 and ORF3a protein (∆∆G ≥ 0.5). Across
the three dominating variants, mutations in the spike usually contribute an advantage to its
structural stability, while mutations in the NSP12 all decreased the stability of this protein.

It has been shown from the analysis that mutations occurring in the structural protein
generally tend to increase the protein structural stability. For instance, D614G in the
spike protein found in the three dominating variants increases protein stability (details
on the protein stability analysis are available in Supplementary Table S3). Spike protein
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is known to interact with the ACE2 receptor in humans for the viral entry process into
the host [30]; thus, simulation of this interaction (spike protein PDB ID: 7A29; ACE2
protein PDB ID: 6CS2) and calculation of the binding affinity (in kcal/mol) using molecular
docking analysis were performed (Supplementary Table S4). All three mutant variants
were found to show stronger binding affinities than the wild-type protein (shown in
Supplementary Figure S2) indicating the interaction can occur more spontaneously. In the
case of variant B.1.617.2, although individual mutation has a destabilizing effect on the
protein, accumulated mutations on different sites of the spike protein cause the binding
affinity of the protein from B.1.617.2 with ACE2 as its receptor to be relatively stronger
than the other two variants.

On the other hand, mutations spotted in non-structural proteins mostly lower the
viral protein stability. NSP3, a multi-domain protein in SARS-CoV-2 including papain-like
protease that assists in viral polyprotein processing or formation of replication-transcription
complexes (RTCs) [31], harbors several mutations with a high prevalence for the Delta
(B.1.617.2) variant. For instance, T678I, P1228L, and P1469S were observed to reduce
protein stability. However, since these mutations are not located in the protease domain
(aa 783–1036), it is still unclear whether these mutations negatively affect the performance
of the protease. On the other hand, P822L, found in the B.1.466.2 variant and located in the
protease domain, as well as A488S from the Delta variant, has insignificant effect on the
protein stability. All mutations in the NSP12 protein consistently show destabilizing effect
in the three dominating variants. NSP12, also known as RNA-dependent RNA polymerase
(RdRp), plays a central role in the replication and transcription process in the SARS-CoV-
2 virus [32]. Mutations in RdRp may influence the viral replication and transcription
processes, and may even lead to the emergence of another mutation due to errors in the
replication and transcription machinery. P77L mutation in the NSP13 protein also shows
destabilizing effect, but this mutation only occurred in the Delta variant. Mutations found
in NSP13 in this experiment show a consistent pattern of lowering the protein stability
and may have detrimental effects on its function. Lastly, T120I can be observed in the
ORF7a protein, but this mutation presumably should not affect the function of this protein
considering the neutral ∆∆G value [33].

4. Conclusions

SARS-CoV-2 samples sequenced by WJHL from West Java, Indonesia, between Septem-
ber 2020 and June 2021 showed that these samples are mostly of the working-age, with no
distinct segregation by sex. These samples originated from different cities and regencies in
West Java, with varying levels of diversity. West Bandung is observed to carry the highest
diversity. Nevertheless, the variants that were observed to be dominating other variants
are the VOC B.1.617.2 (Delta) variant, B.1.466.2 variant, and B.1.470 variant. Across all
these variants, mutations were mostly found in the spike, NSP3, nucleocapsid, NSP12, and
ORF3a protein. Regarding the virus diversity, the possibility of quasispecies in SARS-CoV-2
is also an interesting point that could be further explored in later studies.

Regarding protein stability, mutations occurring in the structural protein tend to
increase the protein structural stability and increase the binding affinity between the viral
spike protein and human ACE2 receptor. Meanwhile, mutations in non-structural proteins
mostly lower the viral protein stability. However, the impact of these mutations on the
function of SARS-CoV-2 proteins is still unknown and may be illuminated in further studies
in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13102097/s1. Table S1: List of SARS-CoV-2 genome sequences from West Java Health
Laboratory (WJHL) analyzed in this study. Sequences retrieved from GISAID (https://www.gisaid.
org/, accessed on: 20 June 2021). Table S2: Hotspot mutations (frequency >10% of samples) found
in SARS-CoV-2 genome sequences circulating in Indonesia. Mutations are sorted in descending
frequency order. Table S3: Analysis of mutations found in dominant variants (B.1.466.2, B.1.470 and
B.1.617.2) on protein stability. Stability change is shown as ∆Gmutant − ∆Gwildtype. (∆∆G > 0.5:

https://www.mdpi.com/article/10.3390/v13102097/s1
https://www.mdpi.com/article/10.3390/v13102097/s1
https://www.gisaid.org/
https://www.gisaid.org/
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destabilize; ∆∆G < −0.5: stabilize; −0.5 < ∆∆G < 0.5: neutral). Mutations in grey are mutations
appearing with a prevalence of higher than 90% in each variant (not appearing in all sequences).
Table S4: Molecular docking analysis of spike protein (wildtype, B.1.466.2, B.1.470 and B.1.617.2
variant) with ACE2 receptor. Figure S1: Kruskal–Wallis test for the significance of mutation rate of
three dominant SARS-CoV-2 variants. Mutation rate of the B.1.617.2 Delta variant is significantly
higher than the other two dominant variants (tested using the Kruskal–Wallis test, with p < 0.05).
Figure S2: Visualization of interaction between spike protein of B.1.466.2, B.1.470, and B.1.617.2
variant with ACE2 receptor along with position of mutated residues show in red circles.
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