
Contextualization Procedure and Modeling of Monocyte
Specific TLR Signaling
Maike K. Aurich1, Ines Thiele1,2*

1 Center for Systems Biology, University of Iceland, Reykjavik, Iceland, 2 Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of

Iceland, Reykjavik, Iceland

Abstract

Innate immunity is the first line of defense against invasion of pathogens. Toll-like receptor (TLR) signaling is involved in a
variety of human diseases extending far beyond immune system–related diseases, affecting a number of different tissues
and cell-types. Computational models often do not account for cell-type specific differences in signaling networks.
Investigation of these differences and its phenotypic implications could increase understanding of cell signaling and
processes such as inflammation. The wealth of knowledge for TLR signaling has been recently summarized in a
stoichiometric signaling network applicable for constraint-based modeling and analysis (COBRA). COBRA methods have
been applied to investigate tissue-specific metabolism using omics data integration. Comparable approaches have not been
conducted using signaling networks. In this study, we present ihsTLRv2, an updated TLR signaling network accounting for
the association of 314 genes with 558 network reactions. We present a mapping procedure for transcriptomic data onto
signaling networks and demonstrate the generation of a monocyte-specific TLR network. The generated monocyte network
is characterized through expression of a specific set of isozymes rather than reduction of pathway contents. While further
tailoring the network to a specific stimulation condition, we observed that the quantitative changes in gene expression due
to LPS stimulation affected the tightly connected set of genes. Differential expression influenced about one third of the
entire TLR signaling network, in particular, NF-kB activation. Thus, a cell-type and condition-specific signaling network can
provide functional insight into signaling cascades. Furthermore, we demonstrate the energy dependence of TLR signaling
pathways in monocytes.
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Introduction

Toll-like receptors (TLRs) play a major role in innate immunity

for sensing pathogens and inducing innate immune response [1].

Each TLR specifically recognizes one or more exogenous and

endogenous ligands. Exogenous ligands are highly conserved

microbial associated molecular pattern, e.g., CpG sequences

within DNA or lipopolysaccharide (LPS), a cell wall component

of gram-negative bacteria. Upon stimulation downstream path-

ways and transcription factors (TF) are activated which modify

gene expression and protein levels and induce production of pro-

inflammatory cytokines and chemokines, amongst others. Human

cells express up to ten TLRs [1]. LPS induces specifically TLR4

signaling pathways [1].

Disturbance of TLR signaling is thought to play a role in

chronic inflammatory diseases affecting cells of the gastrointestinal

tract, the central nervous system, kidneys, skin, lungs, and joints

[2]. TLRs also seem to be involved in both inhibiting and

promoting cancer [3]. TLRs expression has been confirmed for a

large number of human tissues, yet sets of expressed TLRs vary

[4–6]. Activation of differing downstream pathways has been

suggested as response to viruses, TLR7, and TLR8 agonists in

distinct monocytes subsets [7]. Differences and similarities in the

expression of isoforms, TLRs and downstream pathways of the

TLR network of different cells can have important implications for

the design of therapeutical approaches. Drugs targeting TLR

signaling pathways have considerable therapeutic potential in

inflammatory diseases and cancer [8].

Monocytes are essential for the inflammatory response to

microbial pathogens [9]. Blood circulating monocytes migrate into

tissues and differentiate into a range of tissue macrophages and

dendritic cells. However, monocytes themselves are involved in the

defense against pathogens as they possess an extensive set of

pathogen receptors and produce large quantities of effector

molecules [9,10]. Aberrant TLR signaling in the monocyte/

macrophage cell lineage has been implicated in chronic inflam-

matory and auto-inflammatory diseases [11]. However, the reason

for this increase in IL-1b secretion for some of these diseases

remains unknown [11]. Taken together, understanding TLR

signaling at cell-type and tissue specific resolution seems to be of

major importance for unraveling mechanisms underlying disease

development and progression.

Signaling networks comprise a complex meshwork of multiple

pathways, feedback loops, and cross-talk. Such complex networks

may be best investigated using computational approaches.

Constraint-based modeling and analysis (COBRA) techniques
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facilitate investigation of large-scale biological networks without

depending on detailed kinetic and concentration information [12].

Instead, COBRA relies on physical-chemical constraints. A

requirement for constraint-based modeling is a genome-scale

reconstruction, which is subsequently converted into mathematical

format. The protocols for biochemical network generation are well

established [13] and tools to interrogate the model are freely

available [14]. These networks are applied to study metabolism

under various conditions, yet in multi-cellular organisms, chal-

lenged by the fact that individual cell-types are capable of only a

limited range of metabolic functions. Hence, automated proce-

dures have been developed that aim to tailor global genome-scale

reconstructions tissue- and cell-type specific, based on ‘omics’ data

sets [15–17]. COBRA procedures have also been applied to study

successfully other cellular processes, including transcription and

translation [18,19], transcriptional regulation [20,21], and signal-

ing networks [22–25].

The published generic TLR signaling network, ihsTLRv1 [24],

represents a stoichiometric, predictive model comprising of 963

reactions and 781 proteins. It includes the input receptors TLR1-

11, NOD1, NOD2, and Interleukin-1 receptor 1 (IL1R1). These

receptors are connected to up to six outputs, ROS, CREB, AP-1,

IRF-7, IRF-3, and NF-kB (Table 1) through an extensive set of

kinases and phosphatases. Due to its coverage, it is ideal to

investigate TLR signaling pathways on a broader scale and to use

it as context template for gene expression data sets. However, no

gene identifiers and no gene-reaction associations were included,

such that mapping of gene expression data and analysis of TLR

signaling in cell-type or disease specific context, in analogy to

applications of metabolic networks, was not possible so far. Tissue

specific differences in the cell response to environmental stimuli

have been recognized as major challenge in cell signaling, yet

many models of signaling pathways neglect these cell-type specific

differences [26].

The aim of the study was to explore the possibility of using

COBRA methods and the human TLR signaling network to

investigate tissue and disease specific differences in TLR signaling.

Therefore, we first identified the set of genes associated with the

reactions in ihsTLRv1, and we then generated an updated version

of the TLR signaling network (ihsTLRv2). We used expression

pattern of the identified TLR genes in human blood derived

monocytes to reduce ihsTLRv2 to only contain the cell-type

specific set of expressed isoforms, proteins, and reactions (Figure 1,

see File S1 for details on the procedure). We then investigate the

extent and propagation of the changes induced through LPS

stimulation onto pathway utilization.

Results

Extensions of gene results in ihsTLRv2
Gene-reaction associations (GRAs), connecting each network

reaction with genes encoding participating proteins form the basis

for cell-type or condition specific tailoring based on gene

expression data. This contextualization was not possible with

ihsTLRv1 due to missing GRAs. We employed the NCBI Entrez

gene database [27], UniProtKB/Swiss-Prot [28], and primary

literature to identify Homo sapiens specific genes and established

GRAs using AND and OR Boolean logic. IhsTLRv1 represented

mammalian TLR signaling and included TLR1 through TLR11.

However, the human open reading frame for TLR11 contains

multiple stop codons indicating that this receptor may not be

expressed [29]. Therefore, we removed TLR11, ten associated

reactions (File S2, Table S1), and eight chemical compounds from

the network (File S2, Table S2). We added exchange reactions to

resolve dead-ends, i.e., reactants that were only produced or

consumed, in the network (File S2, Table S3). Gene extension and

tailoring of receptor content led to the human gene extended TLR

signaling network, deemed ihsTLRv2. In total, we included 314

genes into ihsTLRv2, of which 312 genes were identified for 178

unique chemical compounds (File S2, Table S4) and two genes

associated with a choline uniport reaction were taken from human

metabolic reconstruction [30]. The choline uniport transporter

encoded by the genes was not a chemical compound in ihsTLRv2.

The 178 unique chemical compounds can be divided into

receptors (14), kinases (64), phosphatases (7), and the remaining

chemical compounds (93), also referred to as other proteins.

Receptors were only encoded by single genes, while isoforms were

much more common among the kinases (58%), the phosphatases

(96%), and the other proteins (63%) (Table 2). Overall, redundant

genes comprised 55% of the ihsTLRv2 gene content. We

established GRAs for 558 of the 980 ihsTLRv2 reactions. A total

of 291 modeling related reactions (i.e., sink, demand, and

exchange reactions) were not assigned with GRAs. The remaining

reactions without GRAs split into transport reactions of metab-

olites (37), TLR ligand expression, transport and binding reactions

(87), reactions involving generic chemical compounds (3), and

orphan chemical compounds (4). Ras family small GTP-binding

protein generic (Ras) genes were not included in the current

version of ihsTLRv2 due to functional ambiguity. The current

version of ihsTLRv2 further did not include gene association for

lipopolysaccharide-binding protein (LBP) due to its external origin.

The chemical compounds SRC (c-Src), SRCK (Src family kinase

(generic)), and SRTK (Src-related tyrosine kinase) were not

unambiguously defined in ihsTLRv1. After thorough literature

review, we assigned one gene to SRC (c-Src), while we treated

SRCK and SRTK as the same chemical compound (File S2,

Table S4).

Generation of a draft monocyte specific TLR model based
on gene expression data

In order to derive a monocyte specific model of TLR signaling

(ihsMonoTLR), we mapped gene expression data from untreated

monocytes [31] onto the network. To find a suitable cutoff,

distinguishing between presence and absence of expressed genes,

we generated draft-reconstructions based on two different cutoffs

pƒ0:01 and pƒ0:05. A set of 37 genes solely received absent calls

for the more stringent cutoff. The cutoff had a major impact on

the number of dead-end metabolites and blocked reactions, i.e.,

reactions that cannot carry any flux in the network due to dead-

end metabolites (Figure 2). The decision for a particular cutoff has

therefore a major impact on the network capabilities as well as on

the time required for manual curation of the model to ensure

similar functionality as in the cell. Protein expression data were

obtained for 23 genes in two monocytic leukemia cell lines (THP-1

and U-937) [32]. Most of the genes (17) were moderately

expressed, which was mostly the case for both cell lines. The

remaining six gene products had not been detected using

immunohistochemistry, four of which were absent in both cell

lines, while two gene products were only expressed in one of the

cell lines. There was no correspondence between statistical

detection probability and negative detection that would make us

favor the more stringent, pƒ0:01, cutoff (Figure 2). Literature

search yielded experimental evidence for the presence for four

genes (File S2, Table S5). Since the majority of genes rejected by

the stringent cutoff was found to be present in monocytes based on

immunohistochemistry and literature evidence, we proceeded our

network tailoring by using the pƒ0:05 cutoff, as it seemed more

suitable for monocytes and the given data set.

A Monocyte Specific TLR Signaling Network
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Table 1. Inputs and outputs covered by generic (ihsTLRv2) and monocyte specific (hMonoTLR & hMonoTLR_LPS) TLR signaling
models.

Outputs

Ligand
Abbrev. Ligand name

Receptor type
activated NF-kB CREB AP-1 ROS IRF-7* IRF-3

First model
absent

26dap-LL diaminopimelic acid NOD1 .

ALPS atypical lipopolysaccharide TLR2 . . . .

BDFN2 beta defensin 2 TLR4 . . . . . .

BPM bropirimine TLR7 . . . . .

CPGCIGC CpG chromatic IgG2a
complexs

TLR9 . . . . .

CSGA CsgA TLR2 . . . .

DCLDLPP diacetylated lipopeptides TLR2/6 . . . . hMonoTLR_LPS

DCLLPP diacyl lipopeptides TLR2/6 . . . . hMonoTLR_LPS

DSRNA double stranded RNA TLR3 . . . . hMonoTLR

ENVP envelope protein TLR4 . . . . . .

FBNG fibrinogen TLR4 . . . . . .

FLGN flagellin TLR5 . . . . .

FUSP fusion protein TLR4 . . . . . .

GCSPL glycoinositol phospholipids TLR2 . . . .

GLC glycolipids TLR2 . . . .

HSP60 heat shock protein (60 kDa) TLR4 . . . . . .

HSP70 heat shock protein (70 kDa) TLR2, TLR4 . . . .

IMQ imidazoquinoline TLR7, TLR8 . . . . .

LAM lipoarabinomannan TLR2 . . . .

LP lipoprotein TLR2 . . . .

LPPS lipopeptides TLR2 . . . .

LPS_HS lipopolysaccharide
(Homo sapiens)

TLR2, TLR4 . . . .

LTA lipoteichoic acid TLR2/6, TLR2 . . . . hMonoTLR_LPS

LXR loxoribine TLR7 . . . . .

MRAP mannuronic acid polymer TLR2, TLR4 . . . .

MRDP muramyl dipeptide NOD2 .

MRNA mRNA TLR3 . . . .

OLSCHYA oligosaccharides of
hyaluronic acid

TLR4 . . . . . .

OMPA outer membrane protein A TLR2 . . . .

OSPALP outer surface protein A TLR2/6 . . . . hMonoTLR_LPS

IL1A IL-1A IL1R1 . . . .

IL1B IL-1B IL1R1 . . . .

PRNS porins TLR2 . . . .

PSCHPS polysaccharide fragment of
heparan sulphate

TLR4 . . . . . .

PSM phenol-soluble modulin TLR2/6, TLR2 . . . . hMonoTLR_LPS

PTG_HS peptidoglycan
(Homo sapiens)

TLR2 . . . .

SF soluble factors TLR1/2 . . . .

SSRNA single stranded RNA TLR7, TLR8 . . . . .

STF soluble tuberculosis factor TLR2/6 . . . . hMonoTLR_LPS

T3RFBN type III repeat extra domain
A of fibronectin

TLR4 . . . . . .

TCLDLPP triacetylated lipoproteins TLR1/2 . . . .

TLRL1/10 TLR1/10 ligand TLR1/10 . . . . hMonoTLR

TLRL10 TLR10 ligand TLR10 . . . . hMonoTLR

A Monocyte Specific TLR Signaling Network
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Literature based curation of the draft monocyte specific
TLR model

Literature provided evidence for the production of all six

outputs in human monocytes [7,33–35]. Using flux variability

analysis (FVA) [36,37] on the draft monocyte TLR model, we

found that ROS production was only partly possible through one

of two defined output reactions, and that NF-kB production was

completely impaired (Table 3). We completed the corresponding

output pathways by adding the protein kinase C, zeta (EntrezGene

ID: 5590), which recovered both outputs (File S2, Table S6) see

also Methods section). This gene product is known to be important

in NF-kB activation, and its presence in U-937 cells has been

demonstrated [38]. Three genes (Entrez Gene ID: 815–818),

encoding for isoforms of CaMKII, had direct impact on the

models output capabilities. Reincorporation the genes encoding

CaMKII resulted in a major increase in CREB output production

(File S2, Table S6). We further curated ihsMonoTLR based on

known monocyte function, instead of relying solely on a pathway

driven approach. Only genes were considered, which were absent

in ihsMonoTLR, while isoforms of already captured genes were

ignored. Subsequently, 14 genes were reintroduced to the

ihsMonoTLR network based on literature support (File S2, Table

S7). The final monocyte specific TLR signaling network,

ihsMonoTLR, contained 62 genes less than the generic TLR

signaling network, ihsTLRv2 (Figure 1). The gene reduction

mainly affected the presence and absence of redundant genes,

while the signaling pathways mostly remained complete. The

genes absent in the final hMonoTLR model encode proteins of 22

chemical compounds in the network (Table 4). We found large

decrease in the number of expressed isozymes, e.g., for calpain,

which are calcium-dependent cysteine proteases and ubiquitously

expressed. Its functions include, among others, pro-IL-1 process-

ing [39]. In total, nine out of the 16 calpain genes were found to

not be expressed in the monocytes. Despite the reduced number of

Figure 1. Workflow leading from ihsTLRv1 to a data driven monocyte and LPS stimulated monocyte model. The workflow describes
the process of generating cell-type specific, and subsequently cell and condition specific models of TLR signaling in four steps. (1) In the first step,
Homo sapiens genes and gene-reaction associations were added to the model. Further, reactions and chemical compounds connected to the
signaling of TLR11 were deleted and exchange reactions added. (2) Transcriptomic data was mapped to the model leading to preliminary monocyte
specific models of TLR signaling using different cutoffs during the mapping process. (3) The most suitable preliminary model was chosen based on
comparison with cell-type specific proteomic data (HPA) and literature evidence. Manual curation was essential to ensure monocyte specific input-
output capabilities of the final monocyte model ihsMonoTLR. (4) Transcriptomic data derived from LPS stimulated monocytes was mapped to the
ihsMonoTLR to tailor the model condition specific. Statistics on the network sizes at each stage reveal how network size remains comparable while
gene contents reduced with increasing modeling resolution.
doi:10.1371/journal.pone.0049978.g001

Table 1. Cont.

Outputs

Ligand
Abbrev. Ligand name

Receptor type
activated NF-kB CREB AP-1 ROS IRF-7* IRF-3

First model
absent

TLRL2/10 TLR2/10 ligand TLR2/10 . . . . hMonoTLR

TXL taxol TLR4 . . . . . .

UMLCPGD unmethylated CpG DNA TLR9 . . . . .

ZMS zymosan TLR2/6, TLR2 . . . . hMonoTLR_LPS

*IRF7 can only be produced after stimulation of combinations of TLR receptors, TLR3 or TLR4 combined with either TLR7, TLR8 or TLR9.
doi:10.1371/journal.pone.0049978.t001

A Monocyte Specific TLR Signaling Network
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genes, functional calpain complexes could still be assembled and

the model could produce IL-1.

During the curation step, the number of dead-end metabolites

and blocked reactions was reduced (Figure 2B). The output

capabilities of ihsMonoTLR remained equal to ihsTLRv2 (Table 3).

TLR3 and TLR10 were absent in the monocyte specific model,

while all other TLRs and NODs were present (Table 1), in

agreement with literature [5,7,40–42].

The wealth of supporting literature evidence for TLR signaling

specific components in monocytes underlines that we defined

biologically conclusive cutoff for generating a monocyte model of

TLR signaling network. We also demonstrated that the monocyte

Figure 2. Definition of cutoff for initial monocyte draft-model. A. The procedure for the generation of the monocyte specific model was
divided into two parts. First, a suitable cutoff was defined for mapping the gene expression data. Therefore, preliminary monocyte models were
generated for two cutoffs (pƒ0:01 and pƒ0:05). Both cutoffs led to high numbers of blocked reactions and dead-end nodes in the networks. We
identified the set of genes only absent in the more stringent cutoff and validated expression of the gene products using the Human Protein Atlas
immunohistochemical data of two monocytic leukemia cell lines (THP-1 and U-937) and chose the cutoff, which represented monocyte protein
expression the best. The second part of the procedure concerned the assurance of monocyte specific network functionality. Input and output
capabilities of the monocyte model were curated according to cell-type specific literature evidence. B. Statistic of the number of deleted genes,
reactions constrained during the data mapping, blocked reactions, and dead-end nodes in the preliminary monocyte models, the curated monocyte
model (ihsMonoTLR), and the LPS stimulation specific monocyte model (ihsMonoTLR_LPS). C. Graph illustrating the detection probability of the
genes absent in the stringent and present in the moderate cutoff. Genes are colored according to whether they were expressed (red), they were not
expressed (blue), no data was available (pale), or data among cell lines was discriminating (purple). In many cases, no data was available, or the
proteins were expressed in the cell lines. Only in few cases, the genes were not expressed in any of the cell lines. Also, absent gene expression was
distributes across the entire range of the thresholds, such that no intermediate cutoff could be established. As a result, the monocyte model was
based on the more moderate cutoff.
doi:10.1371/journal.pone.0049978.g002

Table 2. Statistics of the gene extension of the generic human TLR model.

Groups of Chemical compounds Chemical compounds (n) Genes assigned (n) Unique genes (n) Redundant genes (n)

Receptors 14 14 14 0

Kinases 64 100 42 58

Phosphatases 7 54 2 52

Proteins 93 144 83 61

Total 178 312 141 171

Redundant genes comprise of all genes, which are associated with chemical compounds having isoforms.
doi:10.1371/journal.pone.0049978.t002

A Monocyte Specific TLR Signaling Network
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specific model generation required substantial manual curation

upon gene expression data mapping to reflect well the known cell-

type specific receptor content.

Tailoring the monocyte TLR model to a LPS stimulation
specific model

In monocytes, TLR4 stimulation activates several signaling

pathways and transcription factors (TFs) as well as induces

inflammatory gene expression programs [33]. In order to

Table 4. Distribution of absent genes.

Chemical compound Genes absent in hMonoTLR
Genes encoding chemical
compound

Group of
chemical
compound

Ajuba 1 1 Protein

Kinase suppressor of RAS 2 1 1 Kinase

Toll-like receptor 10 1 1 Receptor

Toll-like receptor 3 1 1 Receptor

beta-transducin repeat containing protein 2 1 2 Protein

A20-binding inhibitor of NF-kB activation 1 3 Protein

Sarco/endoplasmic reticulum Ca(2+)-ATPase 1 3 Kinase

Serum/glucocorticoid regulated kinase 1 3 Kinase

Thioredoxin reductase 1 3 Protein

Ubiquitin-conjugating enzyme E2D 1 3 Protein

cAMP responsive element binding protein 1 4 Protein

Ubiquitin 1 4 Protein

Protein phosphatase 2B 1 5 Phosphatase

Protein kinase A 1 7 Kinase

Cholin uniport 2 2 Metabolite
transporter*

Phosphoinositide 3-kinase 2 6 Kinase

MAP kinase phosphatase 3 16 Phosphatase

Protein Phosphatase 2A 3 17 Phosphatase

Src family kinase/Src-related tyrosine kinase 5 10 Kinase

Ddiacylglycerol kinase (generic) 6 10 Kinase

Histone H3 9 12 Protein

Phosphatidic acid phosphatase (generic) 9 14 Phosphatase

Calpain 9 16 Protein

*Metabolite transporter did not have a chemical compound as the genes were only added to the transport reaction.
doi:10.1371/journal.pone.0049978.t004

Table 3. Maximum possible flux values for output reactions in the different TLR signaling models.

Output ihsTLRv2
ihsMonoTLR draft
pƒ0:05

ihsMonoTLR draft
pƒ0:01 final ihsMonoTLR ihsMonoTLR_LPS

IRF3 25.00 0.00 0.00 25.00 25.00

IRF7 11.11 11.11 11.11 11.11 11.11

ROS 25.00 25.00 0.00 25.00 25.00

ROS 50.00 50.00 27.00 50.00 50.00

AP-1 25.00 1.00 1.00 25.00 25.00

CRE 12.50 12.50 0.00 12.50 12.50

AP-1 25.00 25.00 0.00 25.00 25.00

NF-kB 14.29 0.00 0.00 14.29 14.29

NF-kB 14.29 0.00 0.00 14.29 14.29

Fluxes are given in (
mmol

gprotein
:min

).

doi:10.1371/journal.pone.0049978.t003

A Monocyte Specific TLR Signaling Network
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investigate this distinct network state, we used gene expression

data of the aforementioned experiment [31] to tailor ihsMo-

noTLR condition specific. Two ihsMonoTLR genes, pellino

homolog 3 (PELI3) and TLR6, were no longer expressed upon

LPS stimulation. It has been experimentally shown that LPS

stimulation led to degradation of the PELI3 gene product in

human peripheral blood mononuclear cells and that the protein

levels only recovered after several hours [43]. Absence of the

PELI3 gene was therefore unlikely to be an artifact. The resulting

ihsMonoTLR_LPS model contained 960 reactions and 763

chemical compounds (Figure 1). The number of reactions reduced

by three, which were associated with the two absent genes, and

two chemical compounds were absent compared to the monocyte

model. The number of dead-ends and blocked reactions increased,

while functionality with respect to the outputs remained the same

(Table 3). Two genes, which were absent in unstimulated

monocytes, appeared to be expressed after LPS stimulation. A

Src family kinase (Entrez Gene ID: 7525) and TNFAIP3

interacting protein 3 (Entrez Gene ID: 79931). Hence, these

genes were not expressed in unstimulated monocytes, they were no

longer part of ihsMonoTLR and were not further considered in

ihsMonoTLR_LPS. Both of the genes encode isoforms and in

both cases at least one other isoform was present in unstimulated

and stimulated monocytes. Addition of the genes would therefore

not have altered the number of active reactions. This observation

highlights that the generation of a truly generic, condition

unspecific monocyte model requires a compilation of multiple

data sets and that curation of redundant genes would be needed.

Condition specific network states of monocyte TLR
signaling

The monocyte models reconstructed herein allow for simulation

and analysis of changes in energy levels and altered gene

expression that occur in case of innate immune response. Both

cases will be investigated in the following sections.

Sensitivity analysis
Signaling and innate immune response are energy dependent

cellular processes. During antibacterial innate immune response,

intracellular ATP levels might rapidly deplete [44]. In order to

evaluate the energy dependency of the TLR signaling network, we

performed a sensitivity analysis testing ATP and guanosinetripho-

sphate (GTP) requirements of the distinct outputs produced after

stimulation through one of 13 input receptors in hMonoTLR_LPS

(File S2, Table S8, see also Methods section). We found the same

qualitative dependencies on energy species for 12 input receptors

and production of ROS, CREB, AP-1 and NF-kB (File S3). As

depicted for TLR4 stimulation (Figure 3), all output production

was dependent on ATP, and ROS production further dependent

on GTP. TLR4 is the only input receptor in the monocyte model

to produce both Interferon regulatory factor 3 (IRF3) and IRF7,

which was dependent on ATP but not GTP. NOD receptors

produced other outputs beside NF-kB due to thermodynamically

infeasible loops in the network (discussed in [24]) which are

necessary for network function (File S3, Figures S2, S3).

Production of NF-kB from NOD receptor (NOD1 and NOD2)

stimulation was ATP- but not GTP-dependent. This sensitivity

analysis demonstrates the requirement of the TLR model for ATP

and GTP and that the availability of energy could indeed

modulate the signaling outputs.

Setting quantitative gene expression changes into
context

Quantitative changes in gene expression could possibly alter flux

distributions and produced outputs within the network. Compared

to the relatively small differences in qualitative gene expression,

Figure 3. Sensitivity analysis. hMonoTLR_LPS was used for the sensitivity analysis. The network contains nine output reactions for six distinct
outputs ROS, IRF3, IRF7, CRE, AP-1, and NF-kB. ROS,CRE, AP-1, and NF-kB could be produced by all receptor inputs. Energy dependencies of output
production did not differ among input receptors. IRF3 was only produced after stimulation of TLR4. IRF7 was only produced when TLR4 and either
TLR7, TLR8 or TLR9 were stimulated together. In case of IRF7, we stimulated the network via TLR4 and TLR8.
doi:10.1371/journal.pone.0049978.g003

A Monocyte Specific TLR Signaling Network
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LPS stimulation induced up-regulation of 28 ihsMonoTLR_LPS

genes (File S2, Table S9) and down-regulation of three genes (File

S2, Table S10). Together, they represented 12% of the genes. Of

the 28 up-regulated genes, ten encoded isoforms. None of the

down-regulated genes were isoforms. We called a gene differen-

tially expressed when at least 50% of the probe sets of the gene

were differentially expressed. Eight genes, three up- and five

down-regulated with regulated probe sets, were rejected due to this

threshold and will be referred to as subthreshold genes in the

following sections. Subthreshold genes represented further 3% of

the ihsMonoTLR_LPS genes. Taken together, only a small

number of the ihsMonoTLR_LPS genes showed altered gene

expression level two hours post-stimulation with LPS.

Estimation of the impact of the up-regulated genes on

network topology. We were interested in the impact of the

regulated genes on the TLR signaling network functionality. Since

ihsMonoTLR_LPS represents accurately the functions of each

gene product, we extracted a sub-network consisting of all

reactions associated with the 28 up-regulated genes (ihsMo-

noTLR_LPS_upreg), which included 185 reactions (19% of

ihsMonoTLR_LPS) and 296 chemical compounds (39% of

ihsMonoTLR_LPS) (Figure 4). The sub-network also included

output reactions for NF-kB and AP-1 implying an influence of the

up-regulated gene set, in particular, upon these two different

model outputs, which is in agreement with experimental data

[33,45]. We compared the connectivity of the chemical com-

pounds within the sub-network with ihsMonoTLR_LPS. The high

metabolite connectivity of protons, ATP, and ADP was conserved

in the sub-network, even though the relative connectivity was

smaller in the sub-network than in ihsMonoTLR_LPS (Figure 5).

Chemical compounds, such as ubiquitin and the inhibitor of the

kappa light polypeptide gene enhancer in B-cells kinase (IKK), had

lower numbers of connections compared to ihsMonoTLR_LPS,

but in relation to the number of chemical compounds in

ihsMonoTLR_LPS (n = 763) and the sub-network (n = 296)

relative connectivity was higher in the sub-network. In contrast,

we found chemical compounds, such as TRAF-6 and MyD88, to

be higher connected in ihsMonoTLR_LPS. These differences in

the connectivity arose since the set of up-regulated genes centered

on NF-kB activation, while the chemical compounds with higher

relative connectivity in the ihsMonoTLR_LPS appear more up-

stream in the signaling cascades of the network. Since the

ihsMonoTLR_LPS_upreg comprises of all reactions and functions

that are higher used upon LPS stimulation, they can be interpreted

as the active sub-network used by the monocytes to process the

information and initiate the corresponding program. The high

connectivity in ihsMonoTLR_LPS_upreg indicates that the

retrieved sub-network mediates NF-kB activation subsequent to

LPS stimulation.

Analysis of the down-regulated sub-network

module. Sub-network extraction was also performed based on

the three down-regulated genes. The resulting sub-network

comprised eleven reactions and 26 chemical compounds

(Figure 6). It did not include any output reaction. The impact of

down-regulation, based on involvement, as we assessed in the

previous section, was rather small. The sub-network consisted of

three separated modules centering either mitogen-activated

protein kinase kinase kinase 14 (MAP3K14), TLR1, or Fas

Figure 4. Network resulting from mapping of the up-regulated genes onto the LPS stimulation specific monocyte model. We
extracted a sub-network from LPS stimulation specific monocyte model (ihsMonoTLR_LPS) consisting of all reactions associated with the 28 up-
regulated genes, which included 19% of the reactions and 39% of the chemical compounds of ihsMonoTLR_LPS. The visualization revealed a
comprehensively connected network. Details can be viewed using the file provided in the supporting information (File S4). Network illustration was
generated using software Paint4Net [65].
doi:10.1371/journal.pone.0049978.g004
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(TNFRSF6)-associated via death domain (FADD). In case of

FADD, another gene product of a minority gene and not used for

sub-network extraction, appeared in this context as a direct

interaction partner, i.e., caspase-8 (CASP8). CASP8 is known to

interact with FADD in monocytes, as part of the differentiation

pathway, and to prevent sustained NF-kB activation along the

macrophage differentiation [46]. This example shows how

ihsMonoTLR can serve as a resource for context-specific analysis

by providing functional relationships.

Functional representation of quantitative changes
induced through LPS stimulation

We used the computed fold changes (FCs) to represent the LPS

activated state of ihsMonoTLR_LPS. Up- and down-regulation

was mimicked by either enforcing the minimal reaction flux or

reducing the possible maximum flux through reactions associated

with regulated genes. Mapping was performed separately for each

of 117 I/O relationships covering 13 input reactions and 9 output

reactions in hMonoTLR_LPS (File S2, Table S8, see also

Methods section). Subsequently we assessed the consequences of

gene regulation based on the altered flux ranges of the 9 output

reactions, obtained through FVA. The TLR model contains

thermodynamically infeasible loops [24], which cause baseline flux

through output reactions in the model. First, we investigated the

effect of stimulation beyond baseline flux values for each I/O

relationship. Therefore, we subtracted fluxes derived after

stimulation from the baseline fluxes (File S2, Table S11). The

pattern of outputs produced by stimulation of an input was, as

expected, in the majority of cases. Stimulation caused flux through

ROS, CREB, AP-1, and NF-kB for all TLRs and for IL1R1.

Stimulation of TLR4 additionally induced IRF3. Combined

stimulation of TLR4 and TLR8 led to IRF7. Stimulation of

NOD receptors produced NF-kB and AP-1 could be produced

(through ‘AP1_FOS_JUN_BIND’) after stimulation of NOD

receptors. After we confirmed the I/O relationships, we went on

to investigate the effect of quantitative gene expression changes onto

output production. In total, 183 reactions were associated with

regulated genes, whereof only a subset was active in a particular I/O

relationship. As expected, mapping of differential expression onto

the network enforced AP-1 and NF-kB production across all

ihsMonoTLR_LPS inputs, as genes directly associated with the

output reactions of AP-1 and NF-kB were up-regulated (File S2,

Table S12). Flux was further enforced through AP-1 output

reactions (‘AP1_FOS_JUN_BIND’, and ‘AP1_JUN_BIND’) equal-

ly for all 13 inputs, except for NOD receptors. We predicted a lower

flux through ‘AP1_FOS_JUN_BIND’ when the NOD receptors

were stimulated than for the other receptors. Data mapping

enforced the production of IRF3 output in the model after TLR4

stimulation, and IRF7 after stimulation through TLR4 and TLR8.

ROS and CREB output production was not affected by the

mapping of differentially expressed genes. Among the output

reactions, no effects of the mapping of down-regulation were

observed. This analysis demonstrated how the model can be used to

predict differences in cellular phenotypes due to quantitative gene

expression differences.

Figure 5. Comparison of (chemical compound) connectivity in the LPS stimulation specific versus the up-regulated sub-network.
We report the connectivity as a ratio of compound i and

P
(chemical compounds) in the respective model (ihsMonoTLR_LPS subnetwork and

ihsMonoTLR_LPS).
doi:10.1371/journal.pone.0049978.g005
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Discussion

The aim of this study was to establish a method for omics data

driven contextualization of signaling networks after gene-extension

of the human TLR signaling network (Figure 1, see File S1 for

details on the procedure). Our key results demonstrate that i)

substantial manual curation is required after specializing the

generic TLR signaling network to a cell-type and condition

specific sub-network; ii) the monocyte TLR signaling network

captured most of the functionality of the generic network but gene

redundancy was removed, indicating cell-type specific use of

isoforms; and iii) TLR signaling is highly energy dependent as all

TLR signaling pathways required ATP availability and ROS

production was additionally dependent on GTP availability.

Taken together, we demonstrated that the contextualization of

the TLR network enables the functional analysis of TLR signaling

in health and disease.

We employed the gene-extended TLR signaling network

together with gene expression data and literature evidence, which

ensured monocyte specific functionality with respect to I/O

pathway content (Table 1). The role of manual curation work has

been emphasized as important step in the generation of a

biological meaningful cell-type or tissue specific models, despite

a growing number of sophisticated algorithms [47]. Curation with

respect to the function was important as the monocyte model was

the template for subsequent, condition specific tailoring and

analysis of the consequences of LPS stimulation for network

structure and function. The TLR expression in monocytes at the

chosen cutoff and cell-type specific literature were found to be in

good agreement with some but not all experimental studies [5,7]

indicating the importance of reproducible, consistent experimental

conditions and of using identical monocyte subsets. For instance,

infection states or stimulation can drastically alter cellular

processes and induce the production of effector molecules, such

as cytokines [9], for which the cell has to provide energy for the

transcriptional and translational machinery. Such cellular changes

can even involve usage of central metabolism pathways, including

the switch to glycolysis for faster energy allocation [48,49].

IhsTLRv2 was redundant in its pathways connecting inputs with

specific sets of outputs and with respect to genes encoding

isoforms. Transition from ihsTLRv2 to cell-type specific ihsMo-

noTLR was characterized by isoform reduction, while network

size remained comparable. This may be partly due to not

manually curating the expression state of isoforms. Monocytes

describe cells that are central to the host innate immune defense

and are known to express many TLRs [4,10,50]. Our finding that

the majority of the signaling network is preserved in monocytes is

thus plausible. Transition from unstimulated to the LPS stimulated

model of TLR signaling was characterized by only few qualitative

differences but prevailing differences in quantitative gene expres-

Figure 6. Network modules resulting from mapping of the down-regulated genes onto the LPS stimulation specific monocyte TLR
model. The sub-network that was extracted from ihsMonoTLR_LPS based on the three down-regulated genes comprised of 26 metabolites and
eleven reactions. Illustration of the sub-network revealed three separated modules confirming that the impact of down-regulation, based on
involvement, was rather small. Network illustration was generated using software Paint4Net [65].
doi:10.1371/journal.pone.0049978.g006
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sion was observed. The set of up-regulated genes was found to be

tightly connected (Figure 4). The impact of the up-regulated genes

spread across one third of ihsMonoTLR_LPS depicting the strong

influence that LPS stimulation has upon the monocyte TLR

signaling network. The LPS stimulation specific sub-network of

up-regulated genes correctly contained the transcription factors

NF-kB and AP-1 as their activation is an expected response of a

monocyte to LPS stimulation [33,51].

TLR signaling is highly energy dependent as demonstrated with

the sensitivity analysis (Figure 3). TLR signaling network accounts

for a number of other metabolites that link it to further metabolic

processes. Integrating of models of different cellular processes,

such as metabolism, signaling, and gene regulatory networks [52–

55], will enable important insights into the crosstalk between

signaling and metabolism. Corresponding modeling tools are

currently developed [18,56,57]. In fact, the interaction between

metabolism and innate immunity is of great interest both for

health and disease [49]. For instance, TLR agonists can stimulate

a switch from oxidative phosphorylation to glycolysis in murine

dendritic cells and macrophages [48,49]. This switch lead to faster

yet less effective ATP production, similar to the Warburg effect

observed in cancer cells, and may function as a protective

mechanism to preserve cellular ATP levels and maintain cell

viability and function during an immune response [48,49].

Moreover, it has been suggested that neuronal TLR signaling is

involved in triggering cell death in response to brain injury [6].

Combined signaling and metabolic COBRA modeling could help

consolidating the complexity of the diseases by highlighting cross-

relations.

Taken together, we demonstrated that a stoichiometric model of

the TLR signaling network combined with transcriptomic data

can provide functional insight into its signaling cascades. The

presented gene extension and method to integrate transcriptomic

data opens up an alley for more detailed, disease directed research,

including drug target discovery, and thus rendering signaling

models amenable to similar contextualization as already estab-

lished for metabolic models.

Materials and Methods

Gene extension
Genes for chemical components were identified using NCBI

Entrez gene database [27], UniProtKB/Swiss-Prot [28], and

primary literature. The generation of Gene-Reaction Associations

(GRAs) was subsequently performed using the rBioNet software

[58]. The rBioNet software requires a gene index file. The gene

index file contains Entrez gene ID, gene Symbol, location, gene

type and description of added model genes and of the genes

encoding the members of the Ras family. To generate the gene

index file (File S2, Table S13), Homo sapiens gene information

was downloaded from NCBI (4/13/2011). The software allows

loading model structures and to easily alter the model content,

such as reactions and GRAs. Genes were associated with reactions

using Boolean logic, AND for complexes requiring multiple

subunits and reactions requiring multiple proteins. OR was

assigned for functional isoforms.

Gene association additional information
Ras protein family is encoded by 35 genes [59], but they were

not included in the current version of ihsTLRv2 due to functional

ambiguity. However, the genes were included into the gene index

file (File S2, Table S13), and can easily be added rBioNet [58].

Additionally, no gene associations were added for reactions

involving lipopolysaccharide-binding protein (LBP), which has

been described as protein produced in the liver and transported in

the blood [60,61]. Cytokine production can even be induced in

absence of LBP, as was demonstrated for monocytes stimulated

with LPS in presence of rsCD14 [62]. The primary purpose here

was to enable data mapping, and by not adding the gene we

ensured that absence of the LBP gene in gene expression data

could not interfere with TLR4 signaling. The LBP gene was

included in the gene index file so it could easily be added. Due to

the lack of gene reaction association, reactions connected to these

chemical compounds will be always active when data is mapped

onto the network.

Model tailoring
In addition to the identification and association of model

reactions with human genes, a number of reactions were removed

from the model content using rBioNet software [58] in order to

tailor the model human specific. The removed reactions

concerned the transmission of input signal from TLR11 stimula-

tion. Furthermore, 27 exchange reactions were added for dead-

end chemical compounds such as extracellular invaders, IL1A and

IL1B (File S2, Table S3).

Analysis of gene expression data and mapping
Gene expression data for unstimulated and LPS stimulated

human monocytes were obtained from Gene Expression Omnibus

(http://www.ncbi.nlm.nih.gov/geo/). We employed data from

two experimental groups (vehicle (control), LPS low 2 hrs) [31].

Three chips were excluded from the analysis (GSM252451,

GSM252454, and GSM252479) after visual inspection. Absence

and presence calls, dividing the set of ihsTLRv2 genes into sets of

expressed (present) and unexpressed (absent) genes were generated

using the PANP package [63], R (2.13.0) computational platform

[64], and using Affymetrix annotation files, for the loose cutoff

pƒ0:05 and for the stringent cutoff pƒ0:01. For genes with

multiple identifiers, we only used the identifier showing the highest

mean expression intensity in the control group (File S2, Table

S14). Therefore, it is more likely to assign presence calls to absent

genes than the other way around. Lists of absent genes used for

generation of the preliminary and final monocyte (hMonoTLR)

and LPS_stimulated monocyte model (hMonoTLR_LPS) are

provided in the supplementary information (File S2, Table S15).

For the mapping of the transcriptomic data, we took advantage of

the previously defined GRAs. Reactions were disabled that were

associated with gene products that had an absence call associated.

In case of functional isoforms, reactions were only disabled if all

isoforms were called absent. This way the protein and reaction

content of the TLR network was reduced to form the preliminary

monocyte models of two different cutoffs.

Cutoff-definition. The Human Protein Atlas (http://www.

proteinatlas.org/) was queried using gene symbols of 33 genes with

different P/A calls using two different gene expression cutoffs (File

S2, Table S15), for expression of the encoded proteins in two

monocytic leukemia cell lines, THP-1 and U-937. If the

corresponding antibody yielded at least weakly staining for the

majority of tests in one cell sample, we called the protein present.

I/O pathway curation using illustration tool. In order to

enable all I/O pathways in the monocyte draft-model, network

reactions connecting missing outputs to input were identified,

using software Paint4Net [65]. This tool facilitated curation of

incomplete I/O relationships in ihsMonoTLR. We first derived a

list of reactions involved in the signaling pathway towards NF-kB

using ihsTLRv2, which contained the complete pathways, as

reference. Subsequently, we did the same for the uncurated

ihsMonoTLR and the disconnected output pathways. Comparison

A Monocyte Specific TLR Signaling Network
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of the resulting list of participating reactions revealed the missing

links in ihsMonoTLR. Through the GPAs of missing reactions we

quickly identified six candidate genes with potential impact on

output production. Reincorporation of a single gene at a time

revealed the impact of the absence of the particular gene on the

output capability of the model.
Sensitivity analysis. All exchange reactions of ligands and

Ligand to receptor binding reactions (File S2, Table S8) in

hMonoTLR_LPS were constraint to zero
mmol

gprotein
:min

. To simulate

the distinct I/O relationships, input combinations were as follows,

‘EX_26dap-LL[e] and ‘NOD1P_BIND’, ‘EX_ALPS[e]’ and

‘TLR2/L-D_BIND’, ‘EX_LPS_HS[e]’ and ‘TLR4/

L_MD2_BIND’, ‘EX_FLGN[e]’ and ‘TLR5_BIND’, ‘EX_-

TCLDLPP[e]’ and ‘TLR1/2_BIND’, ‘EX_BPM[e]’ and

‘TLR7_BIND’, ‘EX_SSRNA[e]’ and ‘TLR8_BIND’,

‘EX_UMLCPGD[e]’ and ‘TLR9_BIND’ or ‘TLR9_BINDII’,

‘EX_MRDP[e]’ and ‘NOD2P_BIND’). For interleukin-1, no

exchange existed to specifically drive IL1R1 stimulation. We

therefore added an exchange reaction for IL1R1 (‘EX_IL1R1_-

LIG[e]’). This exchange reaction was enabled in combination with

‘IL1R1_BIND’ in order to simulate single receptor IL1R1

stimulation. The nine output reactions were ‘DM_PHOX_GTP-

3P[v]’, ‘DM_PHOX_GTP-8P[v]’, ‘DM_ISRE_IRF3[n]’,

‘DM_ISRE_IRF7[n]’, ‘CREB_CRE_BIND’, ‘AP1_FOS_JUN_-

BIND’, ‘AP1_JUN_BIND’, ‘NFKB_IKBA_DISS’, and

‘NFKB_IKBB_DISS’. As implemented in the network structure

of the TLR model, IRF7 output could only carry flux if at least

two different inputs were activated ((TLR4) and (TLR7 or TLR8

or TLR9 or TLR9II)). Thus, in case of IRF7, we additionally

enabled flux through ‘TLR8_BIND’ and ‘EX_SSRNA[e]’. Note

that flux through the remaining output reactions remained

possible. To simulate the energy requirements of the I/O

relationships, we enabled one exchange reaction (lb = ub = 21
mmol

gprotein
:min

) and one corresponding binding reaction (lb = ub = 1

mmol

gprotein
:min

) of the specified input combinations and used the

COBRA robustness analysis function. Either atp or gtp exchange

reaction was the reaction of interest, and nPoints = 50. Sensitivity

analysis was performed for each I/O relationship. Prior to analysis

atp and gtp exchange reactions were constraint to lb = 225
mmol

gprotein
:min

and ub = 0
mmol

gprotein
:min

.

Quantitative gene expression analysis. Gene expression

data for unstimulated and LPS stimulated human monocytes were

obtained from Gene Expression Omnibus (http://www.ncbi.nlm.

nih.gov/geo/). We employed data from two experimental groups

(vehicle (control), LPS low 2 hrs) [31]. Three chips were excluded

from the analysis (GSM252451, GSM252454, and GSM252479)

after visual inspection. Lists of up-and down-regulated genes (File

S2, Table S9, S10) were generated using twofold change and

pƒ0.05 FDR for min 50% of the identifiers per gene cutoffs using

AltAnalyze_v2.02beta for processing of the data [66] using default

settings, EnsMart65 database and affymetrix annotation files.
Mapping of quantitative expression changes. For this

analysis, exchanges were closed and the same I/O relationships

used as described for the sensitivity analysis. However, for this

analysis, Energy supply of the model was restricted to exchange of

atp ub = 0
mmol

gprotein
:min

, lb = 2100
mmol

gprotein
:min

) and exchange of

gtp ub = 0
mmol

gprotein
:min

, lb = 250
mmol

gprotein
:min

). For each I/O

relationship, FBA was run using the minNorm option. The sets

of model reactions connected to the up-regulated and down-

regulated genes were identified and assigned with a fold change

(FCrnx). FCrxn was derived from the change in expression of the

regulated gene that was associated with a reaction. If more than

one gene associated with a reaction was significantly regulated, the

mean fold change was calculated. Highest fold change for up-and

down-regulation in the data set served as a reference fold change

(FC-up and FC-down). Reaction bounds were adjusted based on

the following equations (1) model.lb =
FCrnx

FC{up � FBAsol:x
and (2)

model.ub =
FCrnx

FC{down � FBAsol:x
. We compared minimum and

maximum flux values derived through FVA [37] for each of the

nine output reactions in response to stimulation through each of

the input receptor types.

All computations were carried out using Matlab (Mathworks,

Inc), the COBRA toolbox [14], and TomOpt (Tomlab, Inc) as

linear programming solver.
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