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ABSTRACT
Rapamycin inhibits cell proliferation, yet preserves (re)-proliferative potential (RPP). RPP is
a potential of quiescent cells that is lost in senescent cells. mTOR drives conversion from
quiescence to senescence (geroconversion). By suppressing geroconversion, rapamycin preserves
RPP. Geroconversion is characterized by proliferation-like levels of phospho-S6K/S6/4E-BP1 in
nonproliferating cells arrested by p16 and/or p21. mTOR-driven geroconversion is associated
with cellular hyperfunction, which in turn leads to organismal aging manifested by age-related
diseases.

ARTICLE HISTORY
Received 4 November 2018
Revised 27 November 2018
Accepted 27 November
2018

KEYWORDS
Aging; gero-suppressants;
senolytics; rapalogs; cancer;
SASP

Introduction

In brief: proliferative potential is not actual
proliferation

Rapamycin and other inhibitors of mTOR (mamma-
lian Target of Rapamycin) maintain proliferative
potential in non-proliferating cells [1,2]. This should
not be misunderstood to mean stimulation of pro-
liferation. In fact, rapamycin slows proliferation. The
potential to proliferate is not actual proliferation;
rather it is a hidden feature of quiescent cells that
renders quiescence reversible. Rapamycin maintains
the potential to proliferate in non-proliferating cells,
enabling these cells can re-start proliferation when
needed. We can use the term Re-Proliferative
Potential (RPP) instead of proliferative potential to
avoid confusion with actual proliferation.

In brief: is irreversible arrest reversible?

In senescence, cell cycle arrest cannot be reversed
through growth stimulation using methods such as
serum stimulation. However, this seemingly irre-
versible arrest can be reversed by switching off
p16, p53/p21 and Rb [3–9]. Still, in practical
terms, this arrest is irreversible because after re-
entering the cell cycle from senescence, cells can-
not proliferate (lost RPP) and eventually die in the
attempt [9,10]. In Alzheimer’s disease, for

example, senescent neurons die after re-entering
the cell cycle [11–13].

In brief: cell cycle arrest is not growth arrest

Growth of cellular mass and the cell cycle can be
dissociated [14–20]. Normally, when a cell is
arrested, it does not grow; it exists in a state
known as quiescence, or G0 arrest [21–23].
During conversion from quiescence to senescence,
or geroconversion, cellular size continues to
increase exponentially until the cells acquire the
senescent phenotype [17,24]. Geroconversion is
thus a form of growth rather than of growth arrest
[1,25], and it is driven by mTOR [22,23,26].
mTOR stimulates, rather than inhibits, cellular
growth.

In brief: senescence is not just cell cycle arrest,
and cell cycle arrest is not yet senescence

To become senescent, an arrested cell must
undergo geroconversion [22–29]. As we will dis-
cuss, geroconversion is associated not only with
loss of RPP, but also with a cellular hypertrophic
(a large cell morphology), hypersecretory and
hyperinflammatory phenotype (or senescence-
associated secretory phenotype [SASP]) as well as
lysosomal hyperactivation (β-Gal staining) and,
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most importantly, cell type-specific hyperfunction,
which contributes to age-related diseases.

Two-step geroconversion model of cellular
senescence

In vitro, senescence involves two conflicting
events: (i) cell cycle arrest and (ii) growth stimula-
tion [15]. Growth stimulation drives conversion
from arrest to senescence (geroconversion)
[22,30]. Thus, a senescence program consists of
arrest followed by geroconversion (Figure 1),
which is driven in part by the growth-promoting
mTOR pathway [1,22,25,30]. When the cell cycle
is arrested but mTOR is still active, senescence
develops [1].

Senescence cannot be completely understood in
the realm of cell cycle arrest alone; mTOR-driven

geroconversion must also be considered (Figure 2).
In a two-dimensional model, markers of cell cycle
arrest (p16 and p21) are accompanied by growth
markers (phospho-S6 and cyclin D1). This two-
dimensional view of senescence (cell cycle arrest
plus geroconversion, Figure 2) enables us to not
only to reconcile seemingly contradictory pub-
lished findings, but also to manipulate and sup-
press cellular senescence. Rapalogs such as
rapamycin and everolimus, as well as the pan-
mTOR inhibitors, all suppress geroconversion
and maintain quiescence [1,2,31–34].

Geroconversion and markers of senescence

During geroconversion, the mTOR and ERK/
MAPK pathways are active, while cell cycling is
blocked by p16/p21 (Figure 3). In a futile attempt
to overcome the p16/p21-induced block, cyclin D1
is hyper-induced. At such high levels, cyclin D1 is
a marker of senescence rather than of proliferation
[10,35–38]. mTOR-driven geroconversion is asso-
ciated with cellular hypertrophy [17,24,39] and
hyperfunctions such as hypersecretion (or SASP)
[40–44], ROS production [45], and lysosomal acti-
vation (β-Gal staining) [46–50]. These hyperfunc-
tions in turn provoke compensatory reactions such
as growth factor and insulin resistance [51–57],
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Figure 1. mTOR-driven geroconversion from quiescence to
senescence.
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Figure 2. Two dimensional model: arrest vs mTOR activity.
There are two types of cell cycle arrest in vitro. The first type is quiescence (G0 arrest) caused by serum/nutrient starvation or by contact
inhibition. Quiescence is associated with deactivated mTOR and ERK/MAPK pathways and low levels of all cyclins. Cells do not proliferate and
do not grow in size. This type of arrest is easily reversible by re-addition of serum or by re-plating the cells at a low density. The second type is
arrest caused by p21 or p16 in the presence of activated mTOR and ERK/MAPK, which drives geroconversion to senescence.
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further lysosomal hyperactivation [49], and loss of
RPP [10,38].

So-called golden marker of senescence and
mTOR inhibitors

When the conflicting model of cellular senescence
outlined above was published in 2003 [15], the
golden marker of senescence was permanent
arrest. We therefore tested whether rapamycin
could prevent this “golden marker.” Certainly,
rapamycin decreases other markers of cellular
senescence such as cellular hypertrophy
[2,8,17,33,58,59] and the hypersecretory and
hyperinflammatory phenotypes [8,40,60–63]. But
these effects were anticipated, as rapamycin is
a known antihypertrophic [25] and anti-
inflammatory agent [64]. In contrast, the predic-
tion that rapamycin would preserve proliferative
potential (RPP) is counterintuitive. After all, rapa-
mycin inhibits proliferation, which makes it cru-
cial to confirm this prediction.

HT-p21 and HT-p16 cells respectively express
IPTG-inducible p21 and p16 [1,9,65,66]. Cell cycle
arrest can be switched off and on in these cells
through the addition and removal of IPTG. If
arrest was induced for only 1–2 d, proliferation re-
started in most cells after removal of the IPTG.
When arrest lasted longer than 3–4 d, however,

cell proliferation did not re-start after IPTG
removal [9]. When cells were treated with IPTG
in the presence of rapamycin, cell proliferation re-
started after the IPTG and rapamycin were washed
out. Thus, rapamycin preserved RPP in p21/p16-
arrested cells. Rapamycin similarly preserved RPP
during cell cycle arrest caused by pharmacologic
inhibitors of CDK4/6, DNA damaging drugs,
HDACi and phorbol ester [29,58,65–67].
Suppression of senescence by rapamycin was
further confirmed in vitro and in vivo [26,40,62–
81]. In addition to rapamycin, everolimus and
ridaforolimus (two rapalogs), pan-mTOR inhibi-
tors, nutlin-3a (a p53-inducer), hypoxia and con-
tact inhibition all inhibit mTOR and thus maintain
RPP in arrested cells [2,32–34,58,82–86].
Suppression of senescence by pan-mTOR inhibi-
tors is closely associated with dephosphorylation
of 4E-BP1 at both rapamycin-sensitive and -
insensitive sites [2,31–34].

Irreversible proliferative arrest due to loss of
RPP

Although senescent cell cycle arrest is often said to be
irreversible, it is technically reversible, if the correct
method is used. It cannot be reversed using serum,
nutrients, growth factors or other stimuli. Serum
reverses quiescence caused by serum withdrawal,
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Figure 3. Senescent cells.
The conflicting signal model (cell cycle arrest plus mTOR-dependent growth stimulation) predicts the markers of senescence.
Senescent cells are hyperfunctional, exhibiting a hypersecretory phenotype (or SASP), lysosomal hyperactivation (or β-Gal staining),
high levels of cyclin D1, increased ROS production, pseudo-DNA-damage response, lipid accumulation, aerobic glycolysis and cellular
hypertrophy (a large flat morphology). See text.
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but serum stimulation causes senescence when the
cell cycle is blocked by p21 or p16 [1,58]. Similarly,
quiescence caused by contact inhibition can be
reversed by splitting cell cultures, but splitting senes-
cent cultures only deepens senescence because
mTOR is activated in sparse cell cultures [84,87,88].
It has therefore been suggested that the term “irre-
versible” be narrowed to “irreversible by mitogenic
or oncogenic stimuli” [7].

Consider the mTOR-driven model of senescence.
In quiescent cells, mTOR is deactivated (by serum/
nutrient withdrawal, contact inhibition, hypoxia, etc.)
and cyclin D1 is low; cells do not cycle and do not
grow. Growth stimuli activate mTOR and induce
cyclin D1, causing proliferation. However, strong
growth stimuli can cause proliferation that is followed
by arrest and geroconversion. For example, oncogenic
Ras and Akt activate mTOR and induce cyclinD1,
causing proliferation. But they can simultaneously
induce p53, p21 and p16, thereby blocking the cell
cycle [8,34]. This block cannot be reversed by growth
stimulation, which only deepens the block and
enhances mTOR-dependent geroconversion, but it
can be reversed by inactivating p53, p21 and p16, for
instance [3,15,89]. Once the cell cycle is unblocked,
senescent cells re-enter the cell cycle but cannot

undergo mitosis [9,10]). Moreover, these cells are
hypermotile and literally tear themselves apart and
eventually die (see micro-video in ref [10].). Thus,
while cell cycle arrest is formally reversible, the loss
of RPP renders it irreversible in practical terms.
However, because rapamycin maintains RPP, cells in
culture can regenerate once the cell cycle is unblocked.

Molecular definition of senescence

Although senescence can be defined as arrest that is
irreversible by mitogenic or oncogenic (mTOR-
activating) stimuli, this definition cannot be easily
used in practice. Furthermore, RPP is a “potential”
and is therefore difficult to test, especially in vivo.
Defining senescence based on β-Gal staining is also
problematic. β-Gal-staining is a marker of lysosomal
hyperfunction [46–50]. Consequently, serum-starved
and contact-inhibited cells are β-Gal-positive too
[46,84], although these cells are not senescent
(Figure 4). So can we distinguish β-Gal-positive
quiescent and senescent cells? In β-Gal-positive quies-
cent cells, levels of phosphorylated S6, S6K and 4E-BP
1 are low or undetectable (Figure 4). In contrast, these
proteins are highly phosphorylated in senescent cells
(Figure 4). In β-Gal-positive quiescent cells, insulin
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Figure 4. Characteristics of the main nonproliferative conditions.
Proliferation is shown for comparison. Cells are positive for cyclins and activated mTOR (phospho-S6/S6K/4EBP1). Four types of arrest
are characterized by high (+) or moderate (±) β-Gal staining. Excluding senescence, the three other types of arrest are reversible
(RPP+) under the indicated conditions. Contact inhibition (quiescence) is characterized by high p27 levels, small cell size, deactivated
mTOR, and low cyclin levels; arrest is reversible by splitting cell cultures. Serum starvation (quiescence) is characterized by low levels
of all molecular markers and small cell size. Senescence, in contrast, is characterized by super-induction of cyclin D1, high p21 or p16,
activated mTOR pathway, large cells, and irreversibility. Rapamycin deactivates mTOR, decreasing cell size and rendering the
condition reversible.
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and other growth factors induce phospho-S6, whereas
in senescent and proliferating cells, phospho-S6 is not
further induced upon stimulation.

We can define senescence as practically irreversible
arrest, a non-proliferative state, associated with pro-
liferation-like mTOR activity (high levels of phospo-
S6/S6K/4E-BP1). In addition, high levels of phospho-
ERK and cyclin D1 coexist with p21 and/or p16
(Figure 4), and are associated with hypertrophy and
hyperfunctions, including SASP, lysosomal hyper-
function (β-Gal staining), lipid synthesis (oil red
O staining), ROS and lactate production. We suggest
such cells can be identified using double-staining for
phospho-S6 plus p16/p21, phospho-S6 plus β-Gal, or
p16/p21 plus cyclin D1. A combination of all these
markers may be the most valuable (Figure 4).

Cell culture and the organism

Rapamycin inhibits growth and slows geroconver-
sion, which is a continuation of growth. In analogous
fashion, organismal aging is a continuation of devel-
opmental growth [90–98]. Rapamycin (at high
doses) slows cell proliferation within the organism,
causing leucopenia, thrombocytopenia and mucosi-
tis and also decelerates organismal aging and its
manifestations: age-related diseases [92].

In cultured cells, the senescence program consists
of two steps: arrest plus geroconversion. Becausemost
cells within organisms are quiescent, senescence con-
sists of slow geroconversion. Why is it so slow?
Contact inhibition and high cell density [84], hypoxia
[83,99], and serum/nutrient starvation each deacti-
vate mTOR. Within the organism, most cells are
confluent or contact inhibited, and oxygen tension
(1–3%O2) as well as levels of nutrients/growth factors
are low. These growth-limiting conditions maymain-
tain quiescence for decades during a human lifespan.

In vitro, senescence is induced in sparse cell
cultures in the presence of 21% oxygen and high
levels of growth factors and nutrients. For exam-
ple, glucose levels in DMEM are 5-fold higher than
in normal blood, corresponding to levels asso-
ciated with diabetic coma and causing complete
insulin-resistance [55]. As a result, geroconversion
is a fast event in vitro, especially in cancer cells. In
fact, mTOR activity is much higher in cultured
cells than in the organism and is inversely related
to Akt activity [87].

Geroconversion and disease

mTOR-driven geroconversion is associated with
enhanced tissue-specific functions (hyperfunctions),
which drive age-related diseases. For example, vas-
cular smooth muscle cell contraction, hypertrophy
and hyperplasia all contribute to hypertension and
atherosclerosis. Hyperfunction of adipocytes and
hepatocytes increase blood cholesterol levels, contri-
buting to atherosclerosis. Atherosclerosis, hyperten-
sion and thrombosis (due to platelet hyperfunction)
can culminate in stroke and infarction and subse-
quent loss of organ function. Therefore, initial hyper-
function eventually leads to dysfunction and
functional decline [90,100].

It was known by 2006 that rapamycin delays most
age-related diseases [90]. As predicted [90], rapamy-
cin prolongs the lifespan of mice [60,75,101–122].
Rapamycin and everolimus have been tested in
healthy volunteers [123,124] and in the elderly
[125–127]. A combination of rapamycin with several
conventional life-extending drugs, known as the
Koschei formula, is already being used for the elderly
in the Alan Green Clinic in Little Neck, New York
(https://rapamycintherapy.com).

“Repetitio est mater studiorum”

Rapamycin and other mTOR inhibitors suppress
geroconversion. In the presence of rapamycin, time
moves slower for cell growth, cycling and gerocon-
version [128]. Rapamycin does not reverse cell cycle
arrest and does not stimulate proliferation. Like all
gerosuppressants, rapamycin slows cell growth and
geroconversion in arrested cells. Rapamycin also
maintains RPP in quiescent/arrested cells. To
observe this effect, the cell cycle block must be
relieved – for example, by decreasing p16 and p21.

Two paradoxical effects of rapamycin

Notably, a two-dimensional model of aging pre-
dicts contradictory events.

1. Paradoxical prevention of cell cycle arrest by
rapamycin

In replicative senescence, geroconversion starts
before cell cycle arrest [30]. Therefore, to prevent
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geroconversion, rapamycin should be added to
proliferating cells. Although rapamycin may itself
cause cell cycle arrest, transient treatment or low
doses of rapamycin can trick cells, thereby pre-
venting replicative senescence [34,59,129].
However, this phenomenon is not as it seems.
Cells exhibit clonal proliferation after rapamycin
as well as a change in the karyotype of chromo-
some 3 in the region containing the nucleolar
organizer [129]. This proliferation is thus linked
to chromosomal rearrangement, but a selective
advantage is detected only in cells in which
mTOR activity was inhibited. Similarly, rapamycin
increases the efficiency of the cellular reprogram-
ming of induced pluripotent stem cells (iPSCs)
[130–132]. For example, brief treatment with
nanomolar concentrations of rapamycin enhances
cellular reprogramming, though more sustained
treatment decreases reprogramming [132].

2. Paradoxical senescence-like state

In cell culture, high concentrations of rapamycin
cause arrest in some cell types [133–136]. In the
arrested cells, rapamycin slows geroconversion but

does not block it completely [2,65]. This initially-
reversible arrest may, in theory, slowly lead to ger-
oconversion in the cultured cells. Thus, rapamycin
does not cause senescence per se: it merely cannot
suppress geroconversion completely. Rapamycin-
induced senescence has been observed in vitro
[135]. As an illuminating example, consider p53.
Nutlin-3a, a p53-inducing drug, causes senescence
in some cell types [137,138]. More precisely, nutlin-
3a-induced p53 arrests the cell cycle, after which
mTOR drives geroconversion in the arrested cells
[82,138]. On the other hand, p53 (depending on its
level and cell type) may slow geroconversion by
inhibiting mTOR [42,138–140]. For example,
a 3-day exposure to nutlin-3a causes reversible
quiescence [141,142], whereas p21 and p16 induce
senescence in the same cells [82]. By inhibiting
geroconversion, nutlin-3a slows p21- and p16-
induced senescence [82]. Suppression of senescence
by p53 was observed in several models [60,143–145].

What is the difference between rapamycin, p53,
and p21/p16? As illustrated in Figure 5, Rapamycin
causes cell type-specific arrest but slows gerocon-
version universally. P53 readily and universally
causes arrest but inhibits geroconversion under
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Figure 5. Paradoxical effects of p53 and rapamycin.
Senescence is cell cycle arrest plus mTOR-driven geroconversion. p21 and p16 cause cell cycle arrest without affecting mTOR, which then
drives accelerated senescence. p53 causes cell cycle arrest and can moderately inhibit mTOR in a cell type-specific matter. By inhibiting
mTOR, p53 suppresses geroconversion and maintains quiescence. When p53 does not inhibit mTOR, it causes senescence. mTOR inhibitors
like rapamycin strongly inhibit mTOR and maintain quiescence in cells arrested by p21 or p16. However, rapamycin inhibits cell cycling in
some cell types. If rapamycin-induced cell cycle arrest occurs, geroconversion to senescence may also occur (see text).
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certain conditions [139]. P21 and p16 firmly and
universally block the cell cycle without affecting
geroconversion.
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