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Abstract

One form of liver steatosis, namely Non-Alcoholic Fatty Liver Disease (NAFLD), is a worrisome health problem worldwide
characterized by intrahepatic triacylglycerol (TG) overaccumulation. NAFLD is a common feature of metabolic syndrome
being often associated with obesity, dyslipidemia and diabetes and mostly closely linked to insulin resistance. The
mechanism of NAFLD pathogenesis is object of intense investigation especially regarding complex systems ultimately
resulting in excessive TG deposition in hepatocytes. However, scarce is the attention about the relevance of hepatic import
of glycerol, the other primary source (as glycerol-3-phosphate) of increased TG in hepatocytes. Obese leptin-deficient (ob/
ob) mice, an animal model of NAFLD, were used to evaluate the functional involvement of Aquaporin-9 (AQP9), the major
pathway of liver glycerol entry, in hepatosteatosis. By RT-PCR and qPCR, the level of Aqp9 mRNA in the liver of starved obese
mice was comparable with the corresponding control lean littermates. By immunoblotting, the AQP9 protein at the
hepatocyte sinusoidal plasma membrane of obese mice was markedly lower (33%) than lean mice, a finding fully confirmed
by immunohistochemistry. By stopped-flow light scattering, the liver glycerol permeability of ob/ob mice was significantly
lower (53%) than lean mice, a finding consistent with both the observed down-regulation of AQP9 protein and increased
level of plasma glycerol characterizing obese mice. In summary, our results suggest implication of AQP9 in liver steatosis.
The reduction of hepatocyte AQP9 and, consequently, glycerol permeability might be a defensive mechanism to counteract
further fat infiltration in liver parenchyma.
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Introduction

Liver steatosis is characterized by ectopic accumulation of fat

(primarily triacylglycerols, TG) in hepatocytes in response to

metabolic, toxic and viral insults [1]. The most frequent form,

namely the non-alcoholic fatty liver disease (NAFLD), affects

subjects who do not abuse alcohol and is recognized as the leading

cause of chronic liver disease in adults and children [2], [3], [4].

NAFLD has an estimated prevalence of 20–40% in Western

countries [5] and is emerging as health problem also in family

practice [6]. NAFLD is frequently associated with another harmful

condition, the metabolic syndrome, which encompasses several

abnormalities such as insulin resistance or established type 2

Diabetes, increased visceral adiposity, overweight/obesity, dysli-

pidemia and blood hypertension [7], characteristics commonly

associated with increased cardiovascular risk. The current Western

diet, high in saturated fats and fructose, plays a significant role [8].

The most worrisome form of NAFLD is the inflammatory-

fibrogenic form, namely non-alcoholic steatohepatitis (NASH)

which carries a higher risk of developing liver cirrhosis, and

hepatocellular carcinoma [9].

Several studies have been recently focusing on the pathogenetic

pathways leading to excess of TG in hepatocytes in NAFLD/

NASH. Dysregulated hepatic fatty acid export, oxidation and

desaturation and altered systemic and hepatic insulin sensitivity

(insulin resistance) are among the main pathways in NAFLD

pathogenesis (for a Review see [1]). Altered glycerol uptake by

hepatocytes is also a major intersecting component, however, the

underlying mechanism has begun to be understood only recently.

In this respect, Aquaporin-9 (AQP9), an aquaporin membrane
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channel protein belonging to the subgroup of ‘‘aquaglyceroporins’’

[10], [11], [12], was proven to be the primary route for glycerol

imported by hepatocytes from portal blood [13], [14]. Major

functional significance was found for AQP9 in maximizing liver

glycerol import during states requiring increased glucose produc-

tion [14]. Relevance of AQP9 in facilitating liver uptake of

glycerol for de novo synthesis of glucose during starvation had been

hypothesized since several years [15], [16], [17], [18], [19], [20].

In rodents, AQP9 is mainly expressed in the liver, at the

sinusoidal domain of hepatocyte plasma membrane [21], and, to a

lower extent, in epididymis, vas deferens, epidermis and brain [17],

[22], [23]. In humans, AQP9 has been also reported in omental

and subcutaneous adipocytes [24]. Several lines of evidence

indicate that AQP9 has a pivotal role in glycerol and TG

homeostasis: Aqp9 null mice have increased plasma glycerol and

TG levels [17], a finding reflecting the reduction in liver glycerol

permeability [14]. In rodents, hepatic AQP9 is repressed

transcriptionally by insulin [15] whereas AQP9 increases in states

of insulin resistance [16], [17]. Obese patients with type 2 diabetes

have reduced expression of liver AQP9, an observation that has

been interpreted as a compensatory mechanism aimed at

contrasting further development of hyperglycemia [24], [25], [26].

Little is know, however, about liver AQP9 involvement into the

pathogenesis of NAFLD/NASH [27]. The available information is

limited to the evaluation of transcript and protein levels without

functional data [28]. Hence, the aim of the present study was to

examine the effect of hepatocellular steatosis on the expression,

localization and regulation of hepatocyte AQP9 and glycerol

permeability in obese leptin-deficient mice (This work has been

presented as an abstract in Journal of Diabetes [1(suppl. 1): A147,

2009] at the 3rd International Congress on ‘‘Prediabetes and Metabolic

Syndrome’’ that was held in Nice (France) on April 1–4, 2009.), a

monogenic animal model of NAFLD [29]. Functional involvement

of AQP9 in liver steatosis is shown providing important insights

into the knowledge of NAFLD pathogenesis, with a major

translational value.

Materials and Methods

Animals
Seven week-old male C57BL/6J normal (lean) or C57BL/6J

Lepob/Lepob (obese) mice (Charles River, Calco, Italy) were allowed

free access to a standard laboratory rodent diet (Altromin-Rieper,

Vandoies, Italy) and water ad libitum. After their arrival, animals

were housed for one week in air-conditioned room (22uC) with 12/

12 hours dark-light cycle before being fasted for 18 hours and

sacrificed by cervical dislocation. The protocol was conducted

according to the European Guidelines for the Care and Use of

Laboratory Animals (Directive 86/609) and approved by the local

committee for animal experimentation (Comitato Etico per la

Sperimentazione Animale, Università degli Studi di Bari Aldo

Moro).

Analytical Procedures
Blood glucose levels were measured using an Accu-Check

Sensor (Roche Diagnostics, Mannheim, Germany) and a drop of

tail vein blood. For plasma glycerol analysis, blood samples were

collected from the right cardiac ventricle into heparinized tubes

and centrifuged for 10 min at 4,0006g to remove blood cells.

Plasma glycerol concentrations were determined by using a

colorimetric enzyme method following the manufacturer’s instruc-

tions (EnzyChromTM Glycerol Assay Kit, BioAssay System,

Hayward, CA). The plasma levels of total cholesterol, triacylgly-

cerols, free fatty acids and alanine aminotransferase (ALT) activity

were assessed using specific quantitation kits from Sigma Chemical

Company (St. Louis, MO). Plasma insulin was assayed by an

ELISA kit (Millipore, Billerica, MA) as recommended by the

manufacturer.

Semi-quantitative RT-PCR
Total RNA was extracted from the liver of sacrificed mice using

Tri Reagent Solution (Ambion, Foster City, CA) according to the

manufacturer’s instructions. Two micrograms of total RNA from

each sample were reverse transcribed to cDNA using High-

Capacity cDNA Reverse Transcription Kit (Applied Biosystems,

Foster City, CA). Equal amounts of the resulting cDNA were used

as templates for the subsequent PCR reactions performed to

analyze the transcriptional expression of Aqp9 by using AmpliTaqH
DNA Polymerase (Applied Biosystems) and the primer pairs

mAqp9-1 (59-AGATGCCTTCTGAGAAGGAC-39) and m Aqp9-2

(59-CACTACATGATGACGCTGAG-39) (amplicon size:

893 bp). RT-PCR reactions were performed as previously

reported and normalized against the b-actin expression [30].

Preparation of Hepatocyte Sinusoidal Membrane Vesicles
Vesicles of hepatocyte sinusoidal plasma membrane were

prepared as previously reported [14]. Briefly, mice livers were

quickly removed after the sacrifice and homogenized with a

Potter-Elvehjem homogenizer (15 strokes at 500 rpm) in an ice-

cold isolation medium (220 mM mannitol, 70 mmol/L sucrose,

20 mmol/L Tris-HCl, 1 mmol/L EDTA and 5 mmol/L EGTA;

pH 7.4), added with a cocktail of protease inhibitors (1 mM

PMSF, 1 mmol/L leupeptin, 1 mmol/L pepstatin A). The

homogenate was centrifuged at 5006g for 10 min and the pellet

consisting of nuclei and unbroken cells discarded; the resulting

supernatant was centrifuged at 8,0006g for 20 min. The related

pellet containing mainly mitochondria was discarded whereas the

supernatant was centrifuged at 10,0006g for 15 min. The resulting

pellet enriched in the hepatocyte sinusoidal membrane vesicles was

collected. All centrifugations were carried out at 4uC. All

chemicals were purchased from Sigma Chemical Company.

Immunoblotting Analysis
Hepatocyte sinusoidal membranes (30 mg of proteins) prepared

as above were separated electrophoretically and submitted to

immunoblotting using anti-ratAQP9 antibodies (1 mg/mL; Alpha

Diagnostics International, San Antonio, TX) as previously

reported [14]. The immunoreactive bands were quantified by

densitometry using ImageJ software (NIH, Bethesda, MD). The

density of each band was normalized against that of the

housekeeping protein b-actin.

Histochemistry and Immunohistochemistry
After the sacrifice, mouse livers were quickly removed and

weighted. Samples of each specimen were fixed overnight by

immersion with 4% paraformaldehyde (PFA) before being

included in the appropriate resin. For the histological studies,

liver samples were processed for embedding in Epoxy resin-

Araldite (M) CY212 (TAAB, Aldermaston, England) as previously

reported [31], [32]. Semi-thin sections (2 mm thick), obtained

using an Ultratome III ultramicrotome (LKB, Bromma, Sweden),

were stained with a toluidine blue-periodic acid-Schiff (PAS-TB).

The morphometric and quantitative estimation of fat accumula-

tion was carried out by an automated computerized methodology

using SHAPE (Waveng, Bari, Italy), a software using a morpho-

logical and a chromatic operator to avoid overestimates in

selecting lipid droplets [31]. The analysis was carried out using
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at least six digital micrographs (original magnification, 606) from

each sample specimen stained with toluidine blue-periodic acid-

Schiff staining. The extent of lipid accumulation was calculated as

mean 6 S.E.M. of the percentage of the area occupied by the lipid

droplets versus the total area of the hepatic section. For the

immunoperoxidase light microscopy, PFA-fixed liver specimens

were included in a hydrophilic resin (Technovit 8100, Heraeus-

Kulzer, Wehrheim, Germany) as previously reported [30]. Before

staining, semi-thin sections were incubated for 5 min at 37uC in

0.01% trypsin in 0.1% CaCl2 (pH 7.8). AQP9 was localized by the

peroxidase-antiperoxidase (PAP) method. Endogenous peroxidase

was blocked by 1% H2O2 for 10 min at room temperature.

Sections were then incubated overnight at 4uC with the AQP9

antibody at a final concentration of 3 mg/mL in blocking buffer

(1% normal goat serum in PBS). Successively, sections were

treated for 1 h at room temperature with goat anti-rabbit

immunoglobulin G (Sigma) diluted 1:100 in blocking buffer and

then incubated with peroxidase-antiperoxidase (Sigma) at a

dilution of 1:100 for 1 h at room temperature. Finally, the

immunolabeling was revealed by incubation with 3,3’-diamino-

benzidine/H2O2 medium for 10 min at room temperature.

Negative controls were performed by omitting the primary

antibody. Sections were observed using a Nikon Eclipse 600

photomicroscope equipped with a Nikon DMX 1200 camera

(Nikon Instruments SpA, Calenzano, Italy).

Stopped-flow Light Scattering Measurements of Glycerol
and Water Permeability

The size of the sinusoidal membrane vesicles prepared as above

was determined using a N5 Submicron Particle Size Analyzer

(Beckman Coulter, Palo Alto, CA) and by transmission electron

microscopy. The time course of vesicle volume change was

followed from changes in scattered light intensity at 10uC at the

wavelength of 530 nm by using a BioLogic MPS-200 stopped-flow

reaction analyzer (BioLogic, Claix, France) that has a 1.6 ms dead

time and 99% mixing efficiency in ,1 ms. For the glycerol

permeability measurements, light scattering experiments were

performed as previously described by submitting the vesicles to a

150 mmol/L inwardly directed gradient of glycerol [14], [30].

The glycerol permeability coefficient (Pgly; cm/s) was computed by

using the equation:

Pgly~1= S=Vð Þt½ �

where S/V is surface-to-volume ratio and t is the exponential time

constant fitted to the vesicle swelling phase of light scattering time

course corresponding to glycerol entry. For the water permeability

measurement, aliquots of each membrane vesicle specimen were

submitted to stopped-light scattering to evaluate the coefficient of

osmotic water permeability (Pf; cm/s). As previously described

[30], vesicles were submitted to an inwardly directed hypertonic

osmotic gradient of 140 mosM made by mannitol and the

consequent vesicle shrinkage was followed as increase in scattered

light intensity.

Statistical Analysis
Experiments were performed at least in triplicate. All data

resulted from four to six independent preparations were expressed

as mean 6 SEM. Data were analyzed statistically by the Student’s

t-test. Results were considered statistically significant with a

probability (P) of less than 5%.

Results

Evaluation of Hepatic Lipid Accumulation and Serum
Parameters

Lipid accumulation in hepatocytes of obese and lean mice was

estimated semi-quantitatively by histochemistry employing an

automated computerized methodology previously devised [31].

Measurements are closely correlated with the intrahepatic

accumulation of TGs. As expected, remarkable macrovacuolar

liver steatosis was observed in the liver parenchyma of Lepob/Lepob

mice whereas the surface area occupied by lipids in control lean

mice had a physiological extent (43.365.2% vs. 3.161.6%,

respectively) (Fig. 1A,B). Such histochemical pattern was consistent

with increased body and liver weights and results of plasma gluco-

lipidic parameters and ALT of ob/ob mice (Table 1).

Hepatocyte AQP9 is Reduced in Liver Steatosis
Expression of liver AQP9 in obese and lean mice was analyzed

both at protein and mRNA levels. By RT-PCR, no significant

changes were seen regarding the hepatic levels of Aqp9 transcript

between obese and lean mice (Fig. 2A,B). This result was

confirmed by real time PCR (data not shown). No changes were

also seen between obese mice and control lean littermates

regarding the mRNA levels of Aqp3 and Aqp7, the other known

mouse aquaglyceroporins (AQP10, the fourth mammalian aqua-

glyceroporin, is a pseudogene in mouse). Actually, the hepatic

levels of AQP3 and AQP7 transcripts remained steadily low (data

not shown).

The AQP9 protein was evaluated by semi-quantitative immu-

noblotting using hepatocyte sinusoidal plasma membranes pre-

pared from mice after 18 hours of fasting, a condition maximizing

the expression of AQP9 [14]. Immunoreactive bands of 32 and

37–43 kDa, corresponding to the core and N-glycosylated forms of

the protein, respectively, were observed (Fig. 3A). A marked

reduction (67%) of the whole AQP9 signal was seen in the Lepob/

Lepob obese mice compared with C57BL/6J lean mice (Fig. 3A,B),

a finding suggesting post-translation down-regulation. Notably, the

extent of the decrease was much higher at level of glycosylated

than core form of the protein (83% vs. 51%, respectively; P,0.01)

(Fig. 3B). By immunohistochemistry, AQP9 was also significantly

decreased at the sinusoidal domain of the hepatocyte basolateral

plasma membrane of obese mice compared to lean mice

(Fig. 4A,B). Results were in line with the immunoblotting studies.

Increased AQP9 immunolabeling was observed in the hepatocyte

intracellular compartment of Lepob/Lepob mice (Fig. 4B; double

arrowheads). Immunoreactivity was particularly evident around the

lipid droplets (single arrowheads) where, due to the macrovesicular

steatosis, abundant organelles (e.g., rough and smooth endoplas-

mic reticulum, mitochondria) are usually localized in the

attenuated rim of cytoplasm surrounding the lipid vesicle. No

labeling was observed in negative control sections where the anti-

AQP9 antibody was omitted (not shown).

Steatosis is Associated to a Decrease in Liver Glycerol and
Water Permeability

AQP9 is the primary route whereby glycerol is imported by

mouse hepatocytes. Thus, we checked whether the down-

regulation of AQP9 observed in obese mice was also associated

with a reduction of the hepatocyte membrane glycerol permeabil-

ity. Vesicles of sinusoidal domain of hepatocyte plasma membrane

were prepared and the related coefficient of glycerol permeability

(Pgly; cm/s) measured by stopped-flow light scattering, as

previously reported [14]. Consistent with both the reduction of

sinusoidal AQP9 and increase in plasma glycerol concentration,

Liver AQP9 and Glycerol Uptake in Hepatosteatosis
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the liver Pgly of the Lepob/Lepob mice was significantly lower than

that of C57BL/6J lean mice (5.8660.8 vs. 10.9160.661026 cm/s,

respectively, at 10uC; Fig. 5A,B).

Because AQP9 channel allows also passage of water, we verified

whether the steatosis-associated down-regulation of AQP9 was

also accompanied by a reduction of osmotic water transport in

hepatocyte sinusoidal plasma membrane. Water permeability was

compared in sinusoidal membrane vesicles from livers of obese or

control lean mice. The coefficient of osmotic water permeability

(Pf; cm/s) was measured by stopped-flow light scattering, as

previously described [30]. Experiments were performed at 10uC.

Consistent with the decrease of sinusoidal AQP9 and glycerol

permeability seen above, there was a significant reduction in water

permeability of the sinusoidal membrane vesicles of ob/ob vs. lean

mice (Pf values of 49.9164.9 vs. 72.8364.261024 cm/s, respec-

tively; P,0.01) (Fig. 5C,D).

Discussion

Liver steatosis is a multi-factorial disease where abnormal TG

accumulation in the hepatocytes can result from a number of

distinct alterations. Much attention has been recently given to the

metabolic form of liver steatosis, NAFLD/NASH. Synthesis of

TGs requires esterification of one glycerol molecule with three

Figure 1. Histochemical features of liver parenchyma of C57BL/6J lean (A) and C57BL/6J Lepob/Lepob obese (B) mice. Semi-thin sections
of the liver specimens were embedded in Epoxy resin and stained with Toluidine blue-PAS. Morphometric and semi-quantitative estimation of TG
deposits in the liver parenchyma was assessed by an automated computerized methodology (see Materials and Methods for details). (A) Normal liver
of C57BL/6J control lean mouse. (B) Simple steatosis with macrovesicular infiltration of hepatocytes in ob/ob mouse liver parenchyma. Hepatic
parenchymal cells appear swollen with accumulated lipids which widen the parenchymal cell plates, narrow and distort the lumens of sinusoids so as
to reduce the intrasinusoidal volume, as well as altering the architecture of the sinusoidal network. Many hepatocytes resemble mature adipocytes.
ld, lipid droplet; ss, sinusoidal space. Bar, 30 mm.
doi:10.1371/journal.pone.0078139.g001

Table 1. Metabolic plasma parameters in starved lean and
ob/ob mice.

Lean control ob/ob

n 6 6

Body weight, grams 21.3661.2 39.7964.8*

Liver weight, grams 0.9860.2 2.7260.4*

Glucose, mmol/liter 8.3360.8 17.9263.2*

Glycerol, mmol/liter 0.6260.1 0.9660.1*

Triacylglyceroles, mmol/liter 0.5660.1 0.8260.1*

Free fatty acids, mmol/liter 0.4960.1 0.7160.1

Total cholesterol, mmol/liter 1.7460.2 3.6460.6*

Insulin, nmol/liter 0.3160.1 9.6160.3*

ALT, IU/liter 36.462.9 242.3622*

ALT, alanine aminotransferase. Values are means 6 S.E.M.; n, number of mice;
*,P,0.01 lean compared with ob/ob.
doi:10.1371/journal.pone.0078139.t001

Figure 2. Expression analysis of liver Aqp9 mRNA. (A) RT-PCR
analysis, representative gel. The intensity of the Aqp9 band (893 bp) is
not significantly different between obese and lean mice. (B) Densito-
metric analysis of hepatic Aqp9 mRNA expression normalized against
that of the housekeeping gene ß-actin. The expression of Aqp9 in lean
mice is arbitrarily assumed as 100%. Data are mean 6 S.E.M. (n, 6).
doi:10.1371/journal.pone.0078139.g002
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fatty acids, and AQP9 plays a major role in glycerol import by

mouse hepatocytes. The way AQP9 is handled in hepatosteatosis

may vary depending on the origin, grade and histological pattern

of steatosis. Moreover, AQP9 expression in the liver might

influence and/or might be influenced by ongoing liver steatosis.

In this study, the leptin-deficient obese adult mice, a murine

model of NAFLD, displayed ectopic TG accumulation beside

AQP9 down-regulation and consequent reduction of liver glycerol

and water permeability. The ob/ob adult mouse was chosen as a

well established model of ‘‘simple’’ liver steatosis [29] with high

translational value into the human condition of metabolic fatty

liver. Indeed, ob/ob mice resemble more the model of early

steatosis (in our case this is due to the relatively young age of mice)

and not steatohepatitis, i.e. more advanced stage of inflammatory

and fibrotic modifications, a condition that in ob/ob mice is

reached with the exposure to lipopolysaccharide [33]. The

decreased AQP9 expression might be a defensive cell reaction

for the steatotic hepatocyte.

A valuable result of this work regards the way AQP9, an

aquaglyceroporin not acutely regulated by vesicular trafficking, is

altered in hepatosteatosis. The observation that hepatocyte AQP9

is slightly diminished in terms of transcript whereas it is strongly

reduced as protein indicates post-translational down-regulation.

Moreover, the lower glycerol and water permeability correlated

with AQP9 expression suggests that such post-translational

regulation allows the hepatocyte to survive to stress rather being

the consequence of a damage causing the dysfunction of the

protein. Notably, most of the AQP9 reduction occurs at level of

glycosylated form (Fig. 3A,B). It is conceivable to hypothesize that

AQP9 is misrouted in its trafficking to the Golgi apparatus,

following its synthesis at the rough endoplasmic reticulum.

Misrouted hepatocyte AQP9 associated with decreased water

and glycerol membrane permeability has also been reported in a

rat model of extra-hepatic cholestasis [30]. In line with this

scenario, immunohistochemical studies confirmed that obese mice

show most AQP9 reactivity at the intracellular compartment of

hepatocytes (Fig. 4B), whereas the immunolabeling at the plasma

membrane is markedly reduced. Indeed, low levels of glycosylated

Figure 3. Immunoblotting analysis of hepatocyte AQP9.
Immunoblots were carried out using the sinusoidal fraction of
hepatocyte plasma membrane prepared by gravitational approach
from the livers of obese mice and lean littermates as described in
Materials and Methods. (A) Representative immunoblot for AQP9
normalized against the expression of the housekeeping protein ß-
actin. Immunoreactive bands of 32 and 37–43 kDa, corresponding to
the core (coreAQP9) and glycosylated (glycoAQP9) forms of AQP9,
respectively, are detected. (B) Densitometric analysis of AQP9
immunoreactivity. Between the two forms of AQP9, the glycosylated
one is that undergoing the strongest reduction. The expression of
whole AQP9 (coreAQP9 plus glycoAQP9) in lean mice is arbitrarily
assumed as 100%. Data are mean 6 S.E.M. (n, 6). *P , 0.01.
doi:10.1371/journal.pone.0078139.g003

Figure 4. Immunohistochemical localization of liver AQP9 in ob/ob mice. Semi-thin liver sections submitted to immunoperoxidase as
described in Materials and Methods. (A) Liver section from C57BL/6J control lean mouse. Immunolabeling (brown staining) is seen over the sinusoidal
domain of the basolateral membrane of hepatocytes (arrows; inset). (B) Liver of C57BL/6J obese mice. Low AQP9 reactivity is present over the
basolateral membrane of hepatocyte (arrows). Labeling is rather observed over the intracellular compartment (double arrowheads; inset). Large lipid
droplets (ld), clear sign of macrovesicular steatosis, are seen in most hepatocytes. Considerable immunoreactivity is seen around the lipid droplets
(single arrowheads) where organelles abound within the rim of cytoplasm surrounding the vesicle. ss, sinusoidal space. Bar, 30 mm.
doi:10.1371/journal.pone.0078139.g004
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AQP9 might result from inefficiency of Golgi apparatus, since

excessive lipid storage in hepatocytes have been reported to lead to

organelle (i.e., endoplasmic reticulum, ER) stress and failure

together with proteasome dysfunction [34]. The ER is the

organelle responsible for the initial steps of N-glycosylation of

secretory, lysosomal, and many integral membrane proteins, and it

is well known that structural changes in glycoproteins trigger ER

stress and represent an indication for liver damage [35]. Thus, it

seems plausible that the reduction of total and glycosylated AQP9

may be reflecting an increase in ER stress associated to fatty liver.

In this regard, the potential crosstalk between ER stress and AQP

expression has been recently reported by Rojek and colleagues

[36] showing that the deletion of AQP11 results in disrupted ER

homeostasis and increased sensitivity to ER injury upon metabolic

challenge in the liver.

Glycerol utilization by hepatocytes is rate-limited by the

membrane permeation step [37] and hepatocyte AQP9 plays a

major role in facilitating glycerol import as proved experimentally

by blocking chemically the related channel [13] or evaluating the

liver glycerol permeability of wild type vs AQP9 null mice [14]. It

is therefore reasonable to hypothesize that post-translational

modifications of AQP9 may represent a way to modulate the

glycerol influx at the physiological and pathological level. AQP9 is

not only a glycerol and water channel, but also a urea transporter

in murine hepatocytes. AQP9 contributes to urea transport in the

basolateral membrane of murine hepatocytes, given that trans-

genic Aqp9-knockout mice showed a 30% decrease in urea

permeability [38]. Thus, despite the protective role of AQP9

against hepatic steatosis, the effect of a sustained reduction of

AQP9 on the accumulation of ammonia in the liver cannot be

discarded. Further work is warranted to decipher the exact

mechanism governing the down-regulation of AQP9 in hepatic

steatosis. An interesting aspect that could be evaluated with other

models, animals or cells is the impact of ER stress on the

expression and function of AQP9. The involvement of signaling

pathways such as the unfolded protein response (UPR), a pathway

evoked in the degradation of abnormal protein aggregates and

damaged organelles, is also matter for future investigation.

The hepatic down-regulation observed in the ob/ob mice should

be contextualized on the metabolic features expressed by such

model, namely hyperphagia, obesity, slight hyperglycemia, hyper-

insulinemia, insulin resistance, hyperlipidemia, and hepatocellular

steatosis. Up-regulation has been described for AQP9 in cultured

human hepatoma cells treated with oleic acid, a compound with

steatogenic effect [39]. Lowering of hepatocyte AQP9 in ob/ob

mice may be a compensatory mechanism whereby liver counter-

acts further triacylglycerol deposition within its parenchyma.

Alternatively, mechanisms involved in intrahepatic transport of

glycerol might be affected during ongoing steatosis and become

defective with further evolution of damage. A reduction of

hepatocyte AQP9 protein with no changes in transcript level

was recently observed in n3-PUFA (v3 polyunsaturated fatty

acids)-depleted female rats, a model of metabolic syndrome

displaying several features of the disease also including liver

steatosis [20]. Surprisingly, the down-regulation appeared to be

accompanied by an increase in liver [U-14C]glycerol uptake.

However, this interesting observation was not verified by assessing

the liver glycerol permeability of the n3-PUFA-depleted rats. The

apparent discrepancy between decreased AQP9 and increased

uptake of glycerol was explained as due to a raise in glycerol kinase

activity resulting from the alteration of the intracellular metabo-

lism. Pathophysiological relevance of AQP9 in NAFLD was also

suggested in a recent study using rats fed a high-fat diet (HFD)

[28]. Reduction of HFD-induced steatosis was observed after

decreasing the expression of liver Aqp9 by RNA interference.

Again, no functional analysis was carried out to link the expression

of liver AQP9 with the extent of glycerol membrane permeability.

One possibility is that AQP9 increases during early steatosis

whereas it decreases at a later stage when consistent and excessive

steatosis has occurred. Further studies are needed to verify this

provocative hypothesis by evaluating the time course of hepatocyte

AQP9 expression and glycerol permeability during the pathogen-

esis of liver steatosis. The expression and subcellular localization of

hepatocyte AQP9 in steatohepatitis need also to be assessed.

The adipose tissue is the most important source of plasma

glycerol. Under lipolytic conditions, TGs are hydrolysed into free

fatty acids and glycerol, which are released into the bloodstream

[40]. AQP7 constitutes the major glycerol channel in adipocytes,

but our group has recently shown that AQP9 also represents a

novel additional pathway for the transport of glycerol in human

adipocytes [24]. In the present study, leptin-deficient ob/ob mice

showed increased circulating free fatty acids and glycerol,

Figure 5. Liver glycerol and water permeability of obese and
lean mice. The coefficient of membrane glycerol or water permeability
(Pgly and Pf, respectively) of the hepatocyte sinusoidal plasma
membrane were assessed as described in Materials and Methods. (A)
Glycerol permeability analysis. Representative tracings of stopped-flow
light scattering of sinusoidal membrane vesicles from obese (ob/ob) and
lean mouse livers in response to a 150 mM inwardly directed gradient
of glycerol at 10uC. The initial increase in light scattering results from
osmotic water efflux (vesicle shrinkage), followed by a slower decrease
caused by glycerol entry. (B) The hepatocyte Pgly of ob/ob mice is
significantly lower than lean littermates. (C) Osmotic water permeability
analysis. Representative tracings of stopped-flow light scattering of
sinusoidal membrane vesicles from ob/ob and control wild type mouse
livers in response to a 140 mM inwardly directed hyperosmotic gradient
of mannitol at 10uC. (D) The hepatocyte Pf of obese mice is moderately
lower than that of lean mice. Data are mean 6 S.E.M. from four
independent experiments carried out using vesicles from each one of
the liver preparations from six obese and six lean mice. *, P,0.01.
doi:10.1371/journal.pone.0078139.g005
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suggesting an increased lipolytic activity in these genetically obese

mice. Obesity has been associated with an increased gene and

protein expression of AQP9 in human visceral fat [24]. Thus, it

seems plausible that AQP9, if also expressed in murine adipocytes,

is also dysregulated in mouse adipose tissue under obesogenic

conditions. Further studies are warranted in order to ascertain this

question.

Conclusions

In summary, ob/ob mice show reduced liver AQP9 associated to

a decrease in glycerol (and water) permeability, a finding that may

explain the increase in plasma glycerol characterizing such animal

model. Pathophysiological implication of AQP9 in hepatosteatosis

is reasonably suggested. Because an intracellular glycerol accu-

mulation triggers the enzymatic activity of glycerol kinase (GK),

that catalyses the conversion of glycerol to glycerol-3-phosphate,

thereby accelerating TG synthesis and leading to a progressive fat

accumulation, the decrease in hepatic AQP9 and glycerol

permeability may also constitute a defensive mechanism against

an enhanced glycerol accumulation in order to prevent the

observed hepatosteatosis in leptin-deficient ob/ob mice. However,

we cannot exclude that during liver steatosis hepatocyte AQP9

undergoes to diverse mechanisms of dysregulation depending on

the origin, pattern and extent of ectopic TG accumulation.

Further investigation is needed, especially considering the com-

plexity of the disease. Besides being a new important player in

metabolic homeostasis, AQP9 may prove a new target to treat a

common feature of metabolic syndrome such as NAFLD.
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