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Abstract

Background

Strongyloides stercoralis infection typically causes severe symptoms in immunocompro-

mised patients. This infection can also alter the gut microbiota and is often found in areas

where chronic kidney disease (CKD) is common. However, the relationship between S. ster-

coralis and the gut microbiome in chronic kidney disease (CKD) is not understood fully.

Recent studies have shown that gut dysbiosis plays an important role in the progression of

CKD. Hence, this study aims to investigate the association of S. stercoralis infection and gut

microbiome in CKD patients.

Methodology/Principal findings

Among 838 volunteers from Khon Kaen Province, northeastern Thailand, 40 subjects with

CKD were enrolled and divided into two groups (S. stercoralis-infected and -uninfected)

matched for age, sex and biochemical parameters. Next-generation technology was used to

amplify and sequence the V3-V4 region of the 16S rRNA gene to provide a profile of the gut

microbiota. Results revealed that members of the S. stercoralis-infected group had lower

gut microbial diversity than was seen in the uninfected group. Interestingly, there was signifi-

cantly greater representation of some pathogenic bacteria in the S. stercoralis-infected CKD

group, including Escherichia-Shigella (P = 0.013), Rothia (P = 0.013) and Aggregatibacter

(P = 0.03). There was also a trend towards increased Actinomyces, Streptococcus and Hae-

mophilus (P > 0.05) in this group. On the other hand, the S. stercoralis-infected CKD group

had significantly lower representation of SCFA-producing bacteria such as Anaerostipes (P

= 0.01), Coprococcus_1 (0.043) and a non-significant decrease of Akkermansia, Eubacte-

rium rectale and Eubacterium hallii (P > 0.05) relative to the uninfected group. Interesting,
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the genera Escherichia-Shigella and Anaerostipes exhibited opposing trends, which were

significantly related to sex, age, infection status and CKD stages. The genus Escherichia-

Shigella was significantly more abundant in CKD patients over the age of 65 years and

infected with S. stercoralis. A correlation analysis showed inverse moderate correlation

between the abundance of the genus of Escherichia-Shigella and the level of estimated glo-

merular filtration rate (eGFR).

Conclusions/Significance

Conclusion, the results suggest that S. stercoralis infection induced gut dysbiosis in the

CKD patients, which might be involved in CKD progression.

Author summary

Human strongyloidiasis is caused by a soil-transmitted helminth, Strongyloides stercoralis,
which typically causes severe symptoms in immunocompromised individuals. This infec-

tion can also alter the gut microbiota and is often found in areas where chronic kidney

disease (CKD) is common. However, the relationship between S. stercoralis and the gut

microbiome in CKD is not known. This is the first study to investigate the gut microbiota

of CKD patients with and without S. stercoralis using high-throughput sequencing of the

V3–V4 region of the 16S rRNA gene. Infection with S. stercoralis was associated with

reduced gut microbial diversity. In addition, infection with this nematode led to reduced

abundance of SCFA-producing bacteria and enrichment of pathogenic bacteria. In partic-

ular, there were significant differences in abundance of the beneficial genus Anaerostipes
(a decrease) and the pathogenic taxon Escherichia-Shigella (an increase) in CKD patients

infected with S. stercoralis relative to controls. In the infected group, the representation of

Escherichia-Shigella was significantly higher in patients over the age of 65 years. There was

a significant inverse moderate correlation of Escherichia-Shigella with the estimated glo-

merular filtration rate (eGFR).

Introduction

An imbalance within the microbiota in the gastrointestinal tract, termed gut dysbiosis, con-

tributes to the development and progression of many diseases including chronic kidney dis-

ease (CKD) [1]. Many studies have shown a significant difference in the abundance of

bacterial populations in the gastrointestinal tract (GI) between CKD and control individuals.

Substantially lower proportions of Bifidobacterium, Lactobacillaceae, Bacteroidaceae and Pre-
votellaceae were seen in CKD patients, including those undergoing hemodialysis, while the

proportions of Enterobacteriaceae, especially Enterobacter, Klebsiella and Escherichia, were

notably higher [2–5]. The production of uremic toxins (indoxyl sulphate (IS), trimethylamine-

N-oxide (TMAO)), which results from nutrient processing by gut microbiota, and the reduc-

tion of fiber-derived short-chain fatty acids, are linked with CKD progression [6–8]. Recent

studies have found various factors involved in microbial dysbiosis and CKD, such as the use of

antibiotics [9], decreased consumption of dietary fiber [10], and oral iron intake [11]. How-

ever, many etiological factors associated with CKD remain obscure [12], particularly those due

to infection with intestinal parasites.
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The ability of GI parasitic infection to change the gut microbiota and host-microbiota inter-

actions has been clearly identified. Infection with intestinal parasites either induced gut dys-

biosis or provided protection against dysbiosis and inflammatory disease [13]. Strongyloides
stercoralis is one of the most medically important parasites in northeastern Thailand, where

the prevalence of CKD is also high [14]. Typically, S. stercoralis infection causes only mild GI

symptoms. However, when immunity is suppressed by, for example, CKD or HIV infection,

the parasite can rapidly multiply leading to hyperinfection and disseminated strongyloidiasis,

which is a life-threatening condition [15–18].

Recent studies have demonstrated that S. stercoralis induces an increase in bacterial diver-

sity and changes faecal microbiota [19,20]. By using metagenomic analysis, microbial alpha

diversity was found to increase and beta diversity decrease, in the faecal microbial profiles of S.

stercoralis-infected individuals compared to uninfected. Faecal metabolite analysis detected

marked increases in the abundance of selected amino acids and decrease in short-chain fatty

acids in S. stercoralis infection, relative to uninfected controls [20]. Taken together, we there-

fore hypothesize that S. stercoralis infection changes the gut microbiome, contributing to pro-

gression of CKD.

To test this hypothesis, metagenomic analysis was done in patients with CKD to investigate

the changes in the gut microbiota that can be attributed to S. stercoralis infection. The result

from this study might be useful for identifying strategies to limit development and progression

of chronic kidney disease.

Methods

Ethics statement

The human ethical review committee of Khon Kaen University (HE631200) approved the pro-

tocol of study. Informed consent was obtained from all participants under the CKD project

and was verbal or written [14].

Study population

The study was conducted between January 2017 and May 2018 at Donchang sub-district,

Khon Kaen Province, northeastern Thailand as a part of the Chronic Kidney Disease North-

eastern Thailand (CKDNET) project. Included in the study were individuals (>35 years of

age) with chronic kidney disease. Their diagnosis, done by a nephrologist [14], included clini-

cally proven impaired kidney structure or renal function, as detected using ultrasonography,

and a finding of reduced eGFR. The staging (stages 1 to 5) based on the estimated glomerular

filtration rate (eGFR) [21,22] was estimated for each individual. In patients with eGFR> 60

ml/min/1.73 m2, kidney damage was confirmed based on urine albumin-to-creatinine ratio

(UACR), hematuria and abnormal renal ultrasound. Stool examination was performed on

CKD patients using the modified formalin ethyl acetate concentration technique (FECT) and

modified agar plate culture (mAPC) as previously reported [23].

Exclusion criteria were as follows: use of antibiotics or probiotics, diabetes, autoimmune

disease, urinary tract infection and infection with intestinal parasites other than S. stercoralis.
Twenty CKD patients with S. stercoralis infection (Ss+) met these criteria and were included.

The control group consisted of 20 CKD patients free of S. stercoralis infection (Ss-) who other-

wise matched the characteristics (including sex, age and biochemical factors) of the Ss+ group

(Table 1). These datasets were obtained from the medical records of CKDNET and from a

recent study [23]. Absence of S. stercoralis infection in members of the control group was also

confirmed using PCR tests.
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Sample collection, DNA extraction

Faecal and serum samples (n = 40) were collected from the CKD Northeast Thailand project

and kept at -20˚C until analyzed. DNA was extracted from faecal samples using the QIAamp

Kit (Qiagen, Germany). A Nanodrop 2000 spectrophotometer (NanoDrop Technologies, Wil-

mington, DE, USA) was used to measure DNA concentration and 1.5% agarose gel electropho-

resis was used to check the DNA quality.

16S rRNA gene sequencing and analysis

To confirm that V3-V4 regions (about 450-500 bp) of the prokaryotic 16S rRNA gene could be

amplified, PCR was used to amplify DNA from each faecal sample. Specific V3-V4 primers

were used, V3-forward: 5’-CCTACGGGNGGCWGCAG and V4-reverse: 5’-TACNVGGG-

TATCTAATCC [24]. Each reaction (20.1 μL) contained 2 μL of 10x buffer MgCl2, 0.4 μL of

50mM MgCl2, 0.6 μL of 10mM dNTP, 1 μL of 5 μM of each primer, 0.1μL Platinum Taq DNA

polymerase and distilled water. The amplification profile was initial denaturation at 94˚C for 5

min, at 94˚C for 40 sec, then 35 cycles of 52.8˚C for 30 sec, 72˚C for 2 min, followed by a final

extension at 72˚C for 10 min. PCR product was electrophoresed in a 1.5% agarose gel to con-

firm the presence of a band of the expected size.

Table 1. Characteristics of chronic kidney disease patients.

Parameters Normal range Ss- (n = 20) Ss+ (n = 20) P value

Sex Male 12 12

Female 8 8

Age years 64.60±11.3 64.85±13.4 0.95a

BMI kg/m2 18-25 23.6±3.8 22.14±4.1 0.26a

MCV fL 79.0-94.8 80.53±8.9 83.45±9.7 0.33a

MCH pg 25.6-32.2 26.25±3.7 27.48±3.7 0.30a

MCHC g/dL 32.2-36.5 32.49±1.2 32.84±0.9 0.29a

eGFR ml/min/1.73 m2 >=90 73.3±20.3 71.3±25.4 0.78a

Neutrophil (NE)% 50-70 52.00±7.0 48.50±13.6 0.3a

Lymphocyte (LY)% 20-40 31.99±6.6 33.42±10.0 0.60a

Monocyte (MO)% 2-8 7.56±1.8 7.27±1.9 0.63a

Eosinophil (EO)% 1-3 7.60±4.5 9.98±8.7 0.62b

Basophils (BA) % 0-1 0.78±0.4 0.84±0.5 0.84b

Glucose mg/dL 70-100 89.3±11.2 90.45±13.0 0.90b

LDL Cholesterol mg/dL 10-150 121.0±34.4 114.75±28.4 0.94b

Hemoglobin g/dL 13.0-16.7 12.18±2.4 12.44±1.8 0.70a

Hematocrit % 34-51 37.8±5.7 37.7±4.9 0.95a

Uric acid mg/dL 2.7-7.0 6.14±1.6 5.85±1.6 0.57a

Urine creatinine mg/dL 25-400 128.89±63.2 114.82±61.7 0.43b

Microalbumin mg/dL 0.2-1.9 6.90±18.3 5.55±6.2 0.29b

UACR mg/g <30 50.02±114.8 140.43±229.2 0.096b

Hemoglobin A1c % 4.6-6.5 5.50±0.6 5.45±0.5 0.75a

Bpsys mmhg <140 125.94±17.7 129.56±16.5 0.54a

Bpdia mmhg <90 81.38±7.87 76.33±9.43 0.46a

Data are presented as mean ± standard deviation of the mean. Independent t-tests (a) and Mann-Whitney U tests (b) were used to calculate P values.

Abbreviations: BMI, body mass index; Bpsys mmhg, Blood pressure systolic (mmhg); Bpdia mmhg, Blood pressure diastolic (mmhg); MCV, Mean corpuscular volume;

MCH, Mean Corpuscular Hemoglobin; MCHC, mean corpuscular hemoglobin concentration; U, urine; UACR, urine albumin-to-creatinine ratio.

https://doi.org/10.1371/journal.pntd.0010302.t001

PLOS NEGLECTED TROPICAL DISEASES Strongyloides stercoralis infection induces gut dysbiosis in CKD patients

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010302 September 6, 2022 4 / 16

https://doi.org/10.1371/journal.pntd.0010302.t001
https://doi.org/10.1371/journal.pntd.0010302


A sequencing library was generated for each sample using NEBNext Ultra DNA Library

Prep Kit for Illumina (Thermo Scientific) following the manufacturer’s recommendations.

The library quality was assessed on the Qubit@ 2.0 Fluorometer (Thermo Scientific) and Agi-

lent Bioanalyzer 2100 system. Finally, the library was sequenced on an Illumina platform and

250 bp paired-end reads were generated. Processing and quality control of these reads used the

following steps: 1) Data split (based on their unique barcode) and truncation by cutting off the

barcode and primer sequences; 2) Sequence assembly (paired-end reads were merged using

FLASH [25] to generate raw tags; 3) Data filtration (quality filtering on the raw tags was per-

formed to obtain high-quality clean tags [26] according to the QIIME(V1.7.0, http://qiime.

org/index.html) quality-control process [27]; 4) Chimera removal (the tags were compared

with a reference database [28] using the UCHIME algorithm [29] to detect chimera sequences,

which were then removed [30].

Sequences sharing�97% similarity were assigned to the same operational taxonomic unit

(OTU) by using Uparse v7.0.1001) [31] and species annotated by reference to the GreenGene

Database [32] based on RDP 3 classifier [33] algorithm. The sequence alignment was con-

ducted using the MUSCLE software (Version 3.8.31) [34]. Information on abundance of each

OTU was normalized relative to the sample with the fewest sequences. Subsequent analyses of

alpha diversity were performed based on this normalized data. Alpha diversity indicates spe-

cies diversity for a sample using six indices (observed-species, Chao1, Shannon, Simpson, ACE

and Good’s coverage). All these indices were calculated using QIIME (Version 1.7.0) and dis-

played with the help of R software (Version 2.15.3). To show beta diversity, weighted and

unweighted UniFrac metrics were used to evaluate differences of samples in species complexity

by using QIIME software (Version 1.7.0). Principal Coordinate Analysis (PCoA) was per-

formed to visualize complex and multidimensional data. PCoA analysis was done using the

WGCNA package, stat packages and ggplot2 package in R software (Version 2.15.3). Metastats

was used to detect taxa with significant intra-group variation. The potential biomarkers were

detected by using LEfSe (linear discriminant analysis (LDA) Effect Size) [35]. Raw data are

available from Mendeley Data (DOI: 10.17632/hvbvrtc34x.1).

Polymerase Chain Reaction (PCR)

Conventional PCR was used to confirm the absence of S. stercoralis infection in members of

the control group (n = 20). Primers were designed specifically to amplify a 125-bp fragment

from a S. stercoralis dispersed repetitive sequence, GenBank: AY08262 [36]. The forward

primer was SSC-F 50 CTCAGCTCCAGTAAAGCAACAG 30 and reverse primer was SSC-R 50

AGCTGAATCTGGAGAGTG AAGA 30. PCR amplification was performed in a 12.5 μL vol-

ume with Dream Taq PCR Master-mix (Thermo Fisher Scientific, Vilnius, Lithuania), 1 μL of

each primer, 5 μL of 9–155 ng/μL DNA, and PCR-grade water. The amplification profile was

initial denaturation at 95˚C for 10 min, followed by 35 cycles of 95˚C for 1 min, 60˚C for 1

min 30 s and 72˚C for 1 min; then a final extension at 72˚C for 10 min. To confirm amplifica-

tion and amplicon size, the PCR products were resolved on a 2% agarose gel stained with

ethidium bromide.

Statistical analysis

Statistical analyses, including ANOVA, independent t-test, Welch’s t-test, Kruskal-Wallis test,

Mann-Whitney U tests and Pearson’s correlation coefficient, were conducted using IBM SPSS

Statistics version 20 (IBM, Armonk, New York). Statistically significant features were further

examined with post-hoc tests (Tukey-Kramer) to determine which groups of profiles differed

from each other. Non-normal distribution data of two genera (Anaerostipes and Escherichia-
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Shigella) in association with CKD were log-transformed into normal distributions. Statistical

significance and 95% confidence intervals (95%CI) were calculated and considered as

P< 0.05.

Results

Study population characteristics

Demographic, socioeconomic and clinical characteristics of CKD patients with and without S.

stercoralis infection were matched (Table 1). No significant differences in these characteristics

were found between the Ss+ and Ss- groups.

Characterization of bacterial diversity and community structure

In total, 1551 OTUs were identified based on the 97%-similarity rule, with an average of 477

OTUs per sample. Sequences were classified into 16 bacterial phyla, 26 classes, 45 orders, 72

families and 258 genera and 189 species (including unidentified species). The species accumu-

lation curves showed a saturation phase (Fig 1). This indicates that the sample size was suffi-

cient to capture the overall microbiota structure.

The unweighted UniFrac distances, reflecting beta diversity, were significantly greater in

the Ss- group than the Ss+ group (P = 0.00019). In terms of alpha diversity overall, there were

no significant differences in estimated OTU richness, Chao1, the ACE metric, the Shannon

diversity index and Good’s coverage, (P> 0.05) (Table 2). In contrast, the alpha diversity in

Fig 1. Species accumulation curve. X-axis: Number of samples, Y-axis: number of OTUs. Following an initial sharp

rise in the number of OTUs as number of samples increases, there is a levelling of the plot. The narrow spread of the

boxplots as the total number of samples is approached indicates that the number of samples was adequate to capture

most of the microbial diversity present.

https://doi.org/10.1371/journal.pntd.0010302.g001
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males in the Ss- group was significantly higher than in males in the Ss+ group (Shannon diver-

sity index, P = 0.015; Simpson diversity index, P = 0.058) (Fig 2B and 2C).

The principal coordinate analysis (PCoA) was used to illustrate the beta diversity based on

the unweighted UniFrac distances (Fig 2D). PCoA analysis revealed that the gut microbiota of

Ss+ subjects deviated from the Ss- group (Fig 2E).

The LDA score showed a significant difference in abundance of certain taxa between the

two groups. The candidate biomarker for the Ss- category was order Bradymonadales and for

CKD with S. stercoralis infection (Ss+) was species E. coli, genus Escherichia-Shigella as well as

the genus Dialister, family Veillonellaceae and order Selenomonadales (Fig 3).

Differences in bacterial abundance between the Ss+ and Ss- groups

Proportions of sequence reads were compared between groups at the phylum and genus levels

using Metastats. At the phylum level, there were no significant differences (Fig 4). For example,

relative abundances of some principal taxa were: Firmicutes (Ss- 64.14% vs. Ss+ 59.33%;

P = 0.39), Proteobacteria (Ss- 15.01% vs. Ss+ 18.83%; P = 0.50), Bacteroidetes (Ss- 12.61% vs.

Ss+ 12.68%; P = 0.98), Actinobacteria (Ss- 3.46% vs. Ss+ 4.34%; P = 0.67) and Fusobacteria (Ss-

Table 2. Alpha diversity of the gut microbiota in Ss- and Ss+ groups, calculated according to several indices.

Group No. of Reads No. of OTUs Good’s (%) ACE Chao 1 PD whole tree Shannon Simpson

Ss- 73173.3 483.7 0.99765 515.713 517.886 32.7308 5.25775 0.9182

Ss+ 74770.1 470.15 0.9976 507.982 504.266 32.5759 4.82045 0.88145

P 0.45a 0.706b 0.78a 0.76b 0.92a 0.08b 0.218b

Independent t-tests (a) and Mann-Whitney U tests (b) were used to calculate P values.

Abbreviations: OTU: Operational taxonomic units; ACE: Abundance-based coverage estimator; PD: Phylogenetic diversity

https://doi.org/10.1371/journal.pntd.0010302.t002

Fig 2. Comparison of alpha diversity indexes and beta diversity in CKD patients with and without S. stercoralis
infection. (A) Shannon index (B) Shannon index in males (C) Simpson index in males. (D) Boxplot based on

unweighted UniFrac distance. (E) Principal coordinate analysis (PCoA).

https://doi.org/10.1371/journal.pntd.0010302.g002
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1.88% vs. Ss+ 3.81%; P = 0.52). However, at the genus level, 42 taxa were differentially relative

abundance (Table 3).

To study the similarity among different samples, clustering analysis was applied. The

unweighted pair group method with arithmetic mean (UPGMA), a type of hierarchical cluster-

ing method widely used in ecology. This showed that Ss- vs. Ss+ samples tended to cluster sep-

arately (Fig 5).

Fig 3. Histogram of cladogram and linear discriminant analysis (LDA) score. The histogram of the LDA scores

presents taxa (potential biomarkers) whose abundance differed significantly among groups (Ss+ vs. Ss-) order

Bradymonadales in Ss- (green color). Species E. coli belongs to the genus Escherichia-Shigella; genus Dialister belongs

to the order Selenomonadales, class Negativicutes and family Veillonellaceae in Ss+ (red color). The cladogram shows

specific taxa relevant to Ss+ and Ss- in the red and green nodes. The highest taxonomic level is towards the center of

the diagram. The diameter of each circle represents the relative abundance of the taxon.

https://doi.org/10.1371/journal.pntd.0010302.g003

Fig 4. The gut microbiota composition. (A) and (B), Control group compared with S. stercoralis-infection group (Ss

+) at the phylum and genus levels, respectively.

https://doi.org/10.1371/journal.pntd.0010302.g004
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Table 3. Taxa in the gut microbiome differing significantly between CKD patients with and without S. stercoralis.

Phylum Family Genus Change in

abundance

Ss+ Ss-

Actinobacteria Coriobacteriaceae Atopobium "

Coriobacteriaceae_UCG-003 "

Gordonibacter "

unidentified_Coriobacteriaceae "

Corynebacteriaceae Corynebacterium "

Micrococcaceae Rothia "

Bacteroidetes Porphyromonadaceae Petrimonas "

Proteiniphilum "

Prevotellaceae Paraprevotella "

Prevotella_1 "

Cyanobacteria unidentified_Gastranaerophilales unidentified_Gastranaerophilales "

Firmicutes Carnobacteriaceae Lacticigenium "

Leuconostocaceae Leuconostoc "

Christensenellaceae Christensenella "

Eubacteriaceae Anaerofustis "

Family_XI Gallicola "

Peptoniphilus "

Tissierella "

Lachnospiraceae [Eubacterium]_xylanophilum_group "

Anaerosporobacter "

Anaerostipes "

Coprococcus_1 "

Lachnospiraceae_UCG-010 "

Tyzzerella_3 "

Peptostreptococcaceae Paeniclostridium "

Ruminococcaceae Pseudoflavonifractor "

Ruminiclostridium_1 "

Ruminococcaceae_UCG-011 "

Erysipelotrichaceae Erysipelotrichaceae_UCG-003 "

Erysipelotrichaceae_UCG-004 "

unidentified_Erysipelotrichaceae "

Veillonellaceae Dialister "

Fusobacteria Leptotrichiaceae Leptotrichia "

Proteobacteria Neisseriaceae Eikenella "

Rhodocyclaceae Dechlorobacter "

Desulfobulbaceae Desulfobulbus "

Cardiobacteriaceae Cardiobacterium "

Enterobacteriaceae Cronobacter "

Enterobacteriaceae Escherichia-Shigella "

Pasteurellaceae Actinobacillus "

Pasteurellaceae Aggregatibacter "

Xanthomonadaceae Arenimonas "

https://doi.org/10.1371/journal.pntd.0010302.t003
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The trends of some bacteria in S. stercoralis infection

Fig 6 shows the comparisons of abundance of some bacteria between Ss- and Ss+ groups at the

genus level. Pathogenic taxa were more abundant in the Ss+ group and included genera such

as: Escherichia-Shigella (3.36% vs. 13.33%; P< 0.05), Streptococcus (0.97% vs. 2.18%; P> 0.05),

Haemophilus (0.46% vs 0.71%; P> 0.05), Rothia (0.024% vs. 0.11%; P< 0.05), Actinomyces
(0.038% vs. 0.067%; P> 0.05) and Aggregatibacter (0.0013% vs. 0.025%; P< 0.05). Reduction

of some SCFA-producing bacteria in the Ss+ group was observed, including Eubacterium rec-
tale_group (4.51% vs. 3.78%; P> 0.05), Eubacterium hallii_group (1.24% vs. 0.94%; P> 0.05),

Anaerostipes (0.54% vs. 0.074%; P< 0.05), Coprococcus_1 (0.11% vs. 0.057%; P< 0.05) and

Akkermansia (0.081% vs. 0.043%; P> 0.05).

Fig 5. Clustering using the unweighted pair group method with arithmetic mean (UPGMA). UPGMA cluster tree

based on unweighted UniFrac distances between CKD patients with or without S. stercoralis infection. The red

branches represent individuals with S. stercoralis infection (Ss+) and the dark blue branches indicate uninfected (Ss-)

individuals.

https://doi.org/10.1371/journal.pntd.0010302.g005

Fig 6. Comparisons of abundance (numbers of sequence reads) of some bacteria between Ss- and Ss+ group.

Pathogenic bacteria: Escherichia-Shigella, Streptococcus,Haemophilus, Rothia, Actinomyces, Aggregatibacter. SCFA-

producing bacteria: Eubacterium rectale_group, Eubacterium hallii_group, Anaerostipes, Coprococcus_1, Akkermansia.

https://doi.org/10.1371/journal.pntd.0010302.g006
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Anaerostipes and Escherichia-Shigella exhibit opposing trends in

abundance and correlate with sex, age and CKD stage

Fig 7 shows the opposing trends in abundance in the genera Anaerostipes and Escherichia-Shi-
gella. The proportion of reads of Anaerostipes was lower in those aged over 65 years (Fig 7A),

in females (7B), and with increasingly advanced CKD stage (7C) and in those infected with S.

stercoralis (Fig 7A, 7B and 7C). The opposite was observed in the case of Escherichia-Shigella:

higher proportions of sequence reads of this genus were seen in elderly (>65 years) individuals

(Fig 7D), in females (Fig 7E) and in those infected with S. stercoralis (Fig 7D, 7E and 7F). More

reads of Escherichia-Shigella were seen with increasingly advanced CKD stage (Fig 7F).

Discussion

In this study, we first characterized the gut microbiota of CKD patients with and without S.

stercoralis using high-throughput sequencing of the V3–V4 region of the 16S rRNA gene. The

results showed that S. stercoralis infection altered gut microbiota composition in CKD patients,

leading to lower microbial diversity. This study also suggested that microbial candidate bio-

markers for CKD concurrent with S. stercoralis infection include Escherichia coli (genus

Escherichia-Shigella, phylum Proteobacteria) and the genus Dialister (family Veilslonellaceae,

order Selenomonadales, class Negativicutes, phylum Firmicutes).

Various parameters including gender, age and other factors have been reported to affect the

gut microbiota [37]. With this in mind, we matched Ss+ and Ss- subjects for these parameters

to reduce confounding factors. This allowed us to identify changes in the gut microbiome due

to infection with S. stercoralis in CKD patients. Our results revealed that the alpha-diversity

indices (Chao1, the ACE metric, the Shannon diversity index, Good’s coverage) did not signif-

icantly differ between the two groups. However, the Shannon diversity index in males (n = 12)

in Ss+ group was significantly lower than in the Ss- group. In addition, the beta diversity,

based on the unweighted UniFrac distances, was significantly lower in the Ss+ group, suggest-

ing a decrease in ecological diversity in CKD concurrent with S. stercoralis infection. These

Fig 7. Opposing trends in abundance of two genera, Anaerostipes and Escherichia-Shigella. (A) and (D) Different

trends related to age; (B) and (E) sex; (C) and (F) CKD stages. � P< 0.05, ��P< 0.01, ���P< 0.001. Analysis of the

difference among groups of sex, age and CKD stages based on one-way ANOVA test.

https://doi.org/10.1371/journal.pntd.0010302.g007
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slight differences spanned all taxonomic levels of the microbiota. At the phylum level, abun-

dance of Firmicutes was reduced while abundance of Proteobacteria and Fusobacteria

increased in Ss+ subjects. At the family level, there was an increase of Clostridiaceae, Strepto-

coccaceae, Desulfovibrionaceae and Enterobacteriaceae in the Ss+ group. A previous study

demonstrated that these families were associated with trimethylamine (TMA) production [38].

The high abundances of families Enterobacteriaceae, Clostridiaceae and Veillonellaceae in Ss

+ subjects are in agreement with a previous study [39]. These bacteria are associated with

increasing fecal pH [39] to a level where most opportunistic bacterial pathogens prefer to grow

[40]. The change of microbiota composition that we observed may influence the environment

in the gut, suggesting that S. stercoralis infection may influence the microbiota and modulate

the pH of the gut environment.

Forty-two genera showed contrasting abundances between the two groups. Interestingly,

there were significant increases of pathogenic bacteria including Escherichia-Shigella, Rothia
and Aggregatibacter and some increase of Actinomyces, Streptococcus and Haemophilus in

CKD patients infected with S. stercoralis compared to uninfected controls. In contrast, signifi-

cant reduction of some SCFA-producing bacteria, such as Anaerostipes and Coprococcus_1

and some decrease of Akkermansia, Eubacterium rectale_group and Eubacterium hallii_group

were noted in the Ss+ group. Specifically, abundance of the genus Escherichia-Shigella is

known to be positively correlated with uremic toxins such as trimethylamine-N-oxide and

indoxyl sulfate [41,42]. Our results demonstrated a significant inverse correlation of Escheri-
chia-Shigella with the estimated glomerular filtration rate (eGFR r = -0.37, P = 0.018). eGFR is

one criterion for diagnosis and staging of CKD. Thus, high abundance of Escherichia-Shigella
was correlated with low eGFR value and higher CKD stage. In addition, Enterobacteriaceae
and E. coli are markedly more abundant in individuals with impaired kidney function as dem-

onstrated previously [43], highlighting that there is an association between the genus Escheri-
chia-Shigella and CKD with concurrent S. stercoralis infection.

Interestingly, the genusAnaerostipeswas less abundant in CKD patients with concurrent S. ster-
coralis infection than in those without. Members of this genus are Gram-variable, obligate anaerobes

which produce acetate, butyrate and lactate from glucose fermentation [44]. Our findings were par-

tially consistent with those of a previous study, which found thatAnaerostipes had low relative abun-

dance in CKD in an animal model and noted that this genus was negatively correlated with amount

of intestinal urea. Nephrectomized mice with low levels ofAnaerostipes exhibited negative effects on

kidney parameters (BUN and creatinine) [45]. However, we found no correlation here between

Anaerostipes and kidney parameters. This may be due to the limited sample size. Recent research

indicated that elevated levels ofAnaerostipes led to increased eGFR and improvement in renal func-

tion [46]. Furthermore, the relative abundance of the genusAnaerostipeswas markedly reduced in

nonsurvivors with end-stage kidney disease (ESKD) [47]. Specifically, we found that one species,

Anaerostipes hadrus, an important microbe in maintaining intestinal metabolic balance [48], was

significantly reduced in CKD with concurrent S. stercoralis infection.

A previous study using a rat model revealed that increased levels of Rothia were positively

associated with creatinine levels in acute kidney injury and with severity of kidney damage

[49]. Rothia spp. are Gram-positive cocco-bacilli that cause a wide range of serious infections,

especially in immunocompromised hosts. Rothia is often identified in blood cultures from

patients with bacteremia [50]. In this study, we found a positive correlation between Rothia
and the genus Streptococcus (r = 0.47, P = 0.002). A similar relationship was observed in a

recent study, which found that the log-ratio between the presence of the genera Rothia and

Streptococcus was the best predictor of creatinine level [49].

The main SCFA-producing bacteria in humans [51] including Faecalibacterium prausnitzii
(butyrate-producing bacteria in the phylum Firmicutes), Eubacterium rectale and E. hallii
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(family Lachnospiraceae) and Anaerostipes spp. (sugar/lactate-utilizing bacteria producing

butyrate from lactate and acetate) were all less abundant in S. stercoralis infection. A previous

study observed a decrease in the level of serum SCFAs in CKD patients and an inverse correla-

tion between butyrate level and renal function [52]. Our study suggested that SCFA-producing

bacteria are depleted in CKD with concurrent S. stercoralis infection, which may affect CKD

progression. However, further studies are needed to confirm this association.

Our study has strengths and limitations. An important strength of this study is that we used

groups that were pair-matched for sex, age and biochemical factors. However, we did not

obtain data for concentrations of uremic toxins (TMAO and IS) or for amounts of SCFAs.

Moreover, we did not record the clinical manifestation of S. stercoralis infection in CKD

patients so we were not able to show the association between some pathogenic bacteria and S.

stercoralis infection in CKD. In addition, the sample size in this study was small due to the lim-

ited number of individuals in the population with CKD and infection with S. stercoralis only.

The small sample sizes affect the estimation of microbiome alpha diversity and statistical

power in analyses.

Conclusions

This study suggests that S. stercoralis infection reduces the diversity of the gut microbiota in

CKD patients. An increased abundance of harmful bacteria and reduction of some SCFA-pro-

ducing bacteria in S. stercoralis infection was found. In addition, the abundance of members of

the genus Escherichia-Shigella was significantly and inversely correlated with eGFR levels. Sig-

nificant elevation of members of this genus in CKD patients with S. stercoralis infection may

indicate potential diagnostic markers for CKD in S. stercoralis-endemic areas. Thus, we sug-

gest that these changes in the composition of the gut microbiome in S. stercoralis infection

may result in disruption of the gut barrier structure and absorption of harmful products that

can contribute to toxicity, inflammation and malnutrition, contributing to CKD progression.

Future metabolomics studies are required to unravel the relationship between CKD and S. ster-
coralis infection.
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