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Abstract: The use of high-throughput small RNA sequencing is well established as a technique
to unveil the miRNAs in various tissues. The miRNA profiles are different between infected and
non-infected tissues. We compare the SARS-CoV-2 positive and SARS-CoV-2 negative RNA samples
extracted from human nasopharynx tissue samples to show different miRNA profiles. We explored
differentially expressed miRNAs in response to SARS-CoV-2 in the RNA extracted from nasopharynx
tissues of 10 SARS-CoV-2-positive and 10 SARS-CoV-2-negative patients. miRNAs were identified
by small RNA sequencing, and the expression levels of selected miRNAs were validated by real-
time RT-PCR. We identified 943 conserved miRNAs, likely generated through posttranscriptional
modifications. The identified miRNAs were expressed in both RNA groups, NegS and PosS: miR-
148a, miR-21, miR-34c, miR-34b, and miR-342. The most differentially expressed miRNA was miR-21,
which is likely closely linked to the presence of SARS-CoV-2 in nasopharynx tissues. Our results
contribute to further understanding the role of miRNAs in SARS-CoV-2 pathogenesis, which may be
crucial for understanding disease symptom development in humans.

Keywords: miRNAs; small RNA sequencing; SARS-CoV-2; real-time RT-PCR; mir-21

1. Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is currently a global
threat leading to considerable disease and mortality worldwide. SARS-CoV-2 is a close
relative of SARS-CoV with 45–90% sequence similarity and has resulted in more than 8000
confirmed cases of severe acute respiratory syndrome in [1,2]. Coronaviruses are a diverse
family of viruses associated with multiple respiratory diseases with different severities,
such as the common cold, pneumonia, and COVID-19 [3].

SARS-CoV-2 belongs to the order Nidovirales, family Coronaviridae, subfamily Ortho-
coronavirinae, genus Betacoronavirus, and subgenus Sarbecovirus. It has a single-stranded
positive-sense RNA genome, 26–32 kilobases (kb) in length [4]. Similar to an mRNA, the
virus genome consists of a 5′ cap structure together with a 3′ poly(A) tail that translates its
proteins. Most of the genome at the 5′ end is occupied by the replicase gene, which encodes
polyproteins ORF1a and ORF1b. ORF1a and ORF1b are further processed to generate
nonstructural proteins (nsps). ORF1a contributes to the production of nsp1–nsp11, while
the rest of the nsps (nsp12–nsp16) originate from ORF1b [5]. Additionally, viral structural
proteins comprise surface (S), envelope (E), membrane (M), and nucleocapsid (N) proteins
encoded by one-third of the genome at the 3′ end [5,6].

Small noncoding endogenous RNAs called microRNAs (miRNAs) play a major role
in posttranscriptional gene regulation related to diverse biological processes, including
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development, immune system responses, or cell death [7]. The aspects of viral replication
and proliferation that are included in host antiviral responses and viral pathogenesis may
be influenced by miRNAs. A class of miRNAs function by directly binding to the target
transcript. Ideal binding in the seed region has an important impact on the regulatory
function of a miRNA. The seed sequence or seed region is a conserved heptametrical
sequence. Even though base pairing between the miRNA and its target mRNA does
not match perfectly, the seed sequence must be perfectly complementary [8]. miRNAs
might hold a negative or positive role in virus-related processes in three ways: direct
binding to the viral genome, binding to viral transcripts, or binding to host transcripts [8].
Human miRNAs can promote stability, replication, and infection of viral RNA, they also
can reinforce host antiviral responses against viruses. miRNAs can also be used for antiviral
therapeutic approaches [9–11].

Computational analyses of high-throughput sequencing data, followed by experimen-
tal validation, have been used to identify highly conserved miRNAs, some of which play
important roles in human ontogeny [12–15]. In total, 2300 true human mature miRNAs
were extrapolated, of which 1115 were annotated in miRBase V22 [16]. miRNA expression
analysis could indicate links between gene expression regulation in human nasopharynx
tissue and the response to SARS-CoV-2 infection and could also reveal which miRNAs
undergo changes in expression in response to the infection.

We hypothesize that the obtained miRNA profiles will show differences between
SARS-CoV-2-negative and SARS-CoV-2-positive RNA samples.

2. Materials and Methods
2.1. RNA Samples, RNA Extraction, and Real-Time RT-PCR Detection of SARS-CoV-2

Total RNA was extracted from the nasopharynx using flocked swabs and a 1 mL
viral transport medium (various vendors). RNA was extracted using an in-house method
adapted from He et al. [17] using Sera-Mag beads (GE Healthcare, Chicago, IL, USA). Real-
time RT-PCR was performed according to the diagnostic detection of Wuhan coronavirus
2019 by real-time RT-PCR [18]. RdRp, E, and human RNAseP assays were run in separate
real-time RT-PCR reactions using a GB OneStep IPC Elite real-time RT-PCR Kit (Generi
Biotech, Hradec Kralove, Czech Republic), which employs an internal positive control for
the detection of PCR inhibition. For relative quantification of the viral titer in positive
samples, the E gene assay results were normalized to hsa-mir-148a housekeeping miRNA.
The reverse transcription and real-time PCR conditions for the hsa-mir-148a assay were,
except for the fact that the RNA was not diluted, the same as described below in the
validation of miRNA expression profiles by real-time RT-PCR section. The relative quantity
of viral titer was calculated according to the 2−∆∆Ct method [19] by using the qBase+
software (Biogazelle, Zwijnaarde, Belgium). In total, the study was conducted on 10
SARS-CoV-2-positive (PosS) and 10 SARS-CoV-2-negative (NegS) RNA samples listed in
Table 1.

2.2. Small RNA Library Preparation and High-Throughput Sequencing

A small RNA library was constructed using the NEBNext® Small RNA Library Prep
Set for Illumina® (NEB, Ipswich, MA, USA), and purification was performed with the
TailorCut Gel Extraction Tool Set (SeqMatic, Fremont, CA, USA). The quality and quantity
of the library were determined using the Agilent High Sensitivity DNA Kit (Agilent, Santa
Clara, CA, USA). The quantity of the library was also determined by a Modulus™ Single
Tube Multimode Reader (Turner Biosystems, Sunnyvale, CA, USA) using a Quant-iT™
dsDNA Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) and finally with an
MCNext™ SYBR® Fast qPCR Library Quantification Kit (MCLAB, San Francisco, CA, USA)
used with Rotor-Gene 3000 (Corbett Research, Sydney, Australia). All kits were used
according to the manufacturer’s instructions. The libraries were pooled at a concentration
of 2 nM according to fluorimetry measurements, assuming that the final cloned small RNA
products were ~150 bp.
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For each sequencing run, a final pooled library of small RNAs consisted of pooled sam-
ples. In total, 20 RNA samples were sequenced, 10 SARS-CoV-2-negative and 10 positive RNA
samples, which were previously tested by real-time PCR. In total, six runs were performed on
a MiniSeq instrument (Illumina, San Diego, CA, USA). The MiniSeq High Output Reagent
Kit, 75 cycles (Illumina, San Diego, CA, USA) providing 36-nt long reads, was used.

Table 1. List of the RNA samples. Ct values were generated with the E gene assay [18]. The relative
quantity of the virus was generated with the E gene results normalized to hsa-mir-148a miRNA.

Negs Group Ct (Threshold
Cycle) Poss Group Ct (Threshold

Cycle)

Relative
Quantity

(Arbitrary
Values)

1A >40 D3 31.90 87.2
2A >40 H3 27.68 5245.9
3A >40 H5 32.51 92.9
5A >40 F5 33.75 2.2
6A >40 A7 25.83 18,529.1
9A >40 B1 29.52 18.3
10A >40 G9 24.82 12,161.2
11A >40 F11 33.04 4.6
13A >40 D11 26.50 12,220.1
15A >40 F7 32.00 29.5

2.3. Bioinformatics and Data Evaluation

Sequence quality was controlled by using FastQC-0.10.1 [20]. Then, the reads were
imported to CLC Genomics Workbench 6.5.1 (CLC Bio, Aarhus, Denmark) using the following
parameters: sequence length 10–50 nucleotides, no ambiguous nucleotides, removal of the
Illumina universal adapter sequence, and a Phred score assigned a Q score of 30 (Q30); reads
were trimmed using the following parameters: removal of smallRNA_adapter (TGGAATTC),
removal of sequences of length: minimum 19 nucleotides and maximum 25 nucleotides.
The total number of known miRNAs was counted and annotated using miRbase—Release
22.1 (Homo sapiens) in CLC Genomics Workbench 6.5.1 (CLC Bio, Aarhus, Denmark). The
statistical method to quantify differential expression in CLC Genomics Workbench 6.5.1 was
used: Transcriptomic Analysis: Small RNA Analysis: Extract and Count and Annotate and
Merge Counts. The numbers of miRNA sequences were normalized to 1 million reads (RPM)
in order to enable a comparative analysis. Statistics as Kruskal–Wallis test, ANOVA, PCA, and
scattered plot graphs were performed using PAST version 2.17c [21].

2.4. Validation of miRNA Expression Profiles by Real-Time RT-PCR

For validation of miRNA expression profiles, hsa-mir-21, hsa-mir-34b, hsa-mir-34c, and
hsa-mir-342 and a housekeeping hsa-mir-148a were chosen. These miRNAs were selected
according to the statistical significances of small RNA sequencing results. Prior to reverse
transcription, the RNA samples were treated with DNase I (Sigma-Aldrich, Saint-Louis, MO,
USA). From each sample, 1 ng of RNA was used for reverse transcription of each miRNA by
using the TaqMan MicroRNA Reverse Transcription Kit Assay (Applied Biosystems, Foster
City, CA, USA) according to the manufacturer’s instructions. Oligonucleotides for reverse
transcription and real-time PCR of each miRNA were supplied in TaqMan MicroRNA Assays
(Applied Biosystems, Foster City, CA, USA), where the assay IDs for tested miRNAs were as
follows: ID: 000397 for hsa-mir-21; ID: 000427 for hsa-mir-34b; ID: 000428 for hsa-mir-34c; ID:
002147 for hsa-mir-342; ID: 000470 for hsa-mir-148a. Real-time PCR amplification conditions
and reactions using TaqMan Universal Master Mix II (Applied Biosystems, Foster City, CA,
USA) were performed according to the TaqMan MicroRNA Assay (Applied Biosystems, Foster
City, CA, USA) instructions. Each miRNA sample was amplified in triplicate and run in a
qTower cycler (Analytik Jena, Jena, Germany). Prior to miRNA expression measurement, the
primer pair efficiency (E) values were evaluated on the standard curves of serial dilutions of
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pooled cDNA for each miRNA. For miRNA expression normalization, the ∆∆Ct method [22]
was used with hsa-mir-148a miRNA as a normalizer using qPCRsoft 3.4 software (Analytik
Jena, Jena, Germany). The normalized expression values were then statistically evaluated
by analysis of variance (ANOVA) (p-value ≤ 0.05) in Statistica 13 software (Tibco, Palo Alto,
CA, USA). The same software was used in the analysis of correlation (Pearson’s correlation
coefficient) between relative viral quantity and normalized miRNA expressions.

3. Results
3.1. The Abundance of miRNAs Detected in Nasopharynx Tissues

The selected samples from the SARS-CoV-2 negative group (NegS) were assayed by
using the SARBECO primer detection protocol [18] and were determined to be negative based
on a Ct value threshold of 40. Samples from the SARS-CoV-2-positive group (PosS) were
assayed by the same real-time RT-PCR method and the Ct values ranged from 24.82 (G9)
to 33.75 (F5). The median Ct of the PosS group was 30.71. After normalization, the relative
viral quantities ranged in the PosS group between 2.2 (F5) to 18529.1 (A7) showing almost a
10,000× difference in the viral quantity within the samples (Table 1). The median relative
viral quantity of the PosS group was 90.1.

In the present study, libraries representative of small RNA populations extracted from
nasopharynx tissues and sequenced by Illumina SBS technology contained a quality of Q30
following the number of reads: in the NegS group ranging from 510,211 (3A) to 5,844,091
(13A) reads and in the PosS group ranging from 178,950 (D3) to 5,007,768 (H5) reads, the
normalized numbers of reads are shown in Table 2. Sequencing data are deposited under
BioProject acc. no. PRJNA747809, where the SRA experiments are available by acc. nos.
SRX11490726–SRX11490735 (NegS group) and SRX11493797–SRX11493806 (PosS group).

The reads were normalized to reads per million values. The most abundant sRNAs
belonged to the 21- and 22-nt classes in general (Figures 1 and 2). The highest median read
value was for the 21-nt class sRNAs in both the NegS (9,598 reads) and PosS (6331 reads)
groups. However, the average value in the NegS group (Figures 1 and 2) was the highest
for the 22-nt class (13,261 reads), and that in the PosS group was the highest for the 21-nt
class (15,088 reads) sRNAs (Table 2).

Table 2. Numbers of size distributions of unique reads normalized to reads per 1,000,000. The length
of detected small RNAs was 19–25 nucleotides.

Group Sample 19 20 21 22 23 24 25 Total

G
ro

up
N

eg
S

1A 4215 6687 13,399 18,965 8843 1624 125 53,858
2A 574 1062 2058 3768 1502 907 224 10,095
3A 657 1172 2068 4796 1784 755 104 11,336
5A 1271 2164 3701 4485 1707 476 49 13,853
6A 2909 5335 9794 10,830 4356 835 57 34,116
9A 4552 10,212 19,191 17,643 8898 2746 298 63,540
10A 3370 6228 22,709 50,524 11,225 3031 286 97,373
11A 891 1601 3247 2211 817 146 16 8929
13A 2589 3674 8894 8365 3924 774 101 28,321
15A 2679 5458 8792 11,024 5776 947 71 34,747

Median 2634 4505 8843 9598 4140 871 103 31,219
Average 2371 4359 9385 13,261 4883 1224 133 35,617



Genes 2022, 13, 348 5 of 16

Table 2. Cont.

Group Sample 19 20 21 22 23 24 25 Total

G
ro

up
Po

sS

D3 1936 4308 6113 6331 3895 1174 173 23,930
H3 2459 5712 7016 5567 2308 852 96 24,010
H5 2073 3081 5488 5702 2676 778 146 19,944
F5 3832 6566 10,998 12,974 8704 1704 141 44,919
A7 6065 12,807 48,308 26,818 5361 1182 100 100,641
B1 6225 13,122 48,366 30,578 5131 903 120 104,445
G9 2696 4525 5930 6959 3343 1041 74 24,568
F11 7574 12,936 23,790 23,718 12,065 2358 165 82,606
D11 2569 3715 5992 4420 1286 274 25 18,281
F7 1097 2472 3949 3922 1832 476 57 13,805

Median 2569 4525 6113 6331 3343 903 100 24,289
Average 3322 6297 15,088 11,546 4239 979 102 45,715
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3.2. Conserved miRNAs Identified in Nasopharynx Tissues

A total of 943 conserved miRNAs were identified in nasopharynx tissues (Supplementary
Materials Tables S1 and S2). Among them, five conserved miRNAs were selected for detailed
evaluation based on small RNA sequencing results (Figures 3 and 4). The distribution of
conserved miRNAs within the NegS and PosS groups is depicted in Figure 5 and Supplementary
Materials Table S3. The most highly expressed miRNA in the NegS group was miR-148a, and
the reads ranged from 3373 (sample 11A) to 38,424 (1A) with a median value of 22,341. The
most highly expressed miRNA in the PosS group was miR-148, which ranged from 3209 (F7) to
53,305 reads (F5) with a median value of 7233 (Figure 6, Supplementary Materials Table S4).
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Black diamonds—NegS; aqua dots—PosS. miRNAs miR-21, miR-34c, miR-203b, miR-34b, miR-342,
and miR-148a are included.

A test for normal distribution showed that the obtained numbers of reads did not fit a
normal distribution of the residuals. We used a nonparametric method, the Kruskal–Wallis
test, and the p-values of the most abundant miRNA datasets ranged from 0.0113 (miR-100)
to 0.04125 (miR-29a). Statistically significant differences were determined between NegS
and PosS for miR-100, miR-34b, miR-200a, miR-34c, mir-342, let-7i, and miR-29a (Table 3,
Figure 7), where the miRNAs were upregulated in samples of the PosS group. The abundance
of conserved mir-148a and mir-21 was not significantly different between NegS and PosS.
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Table 3. Kruskal–Wallis test emphasizing statistically significant differences between the NegS and
PosS groups of five selected miRNAs. All miRNA sequences with total abundance >2000 reads are
included. The normalized read (RPM) abundances are listed. Significantly different expressions
(* p ≤ 0.05) are indicated with an asterisk.

miRNA p-Value NegS (Median) PosS (Median)

mir-100 0.0113 * 86 282

mir-34b 0.01258 * 49 124

mir-200a 0.01556 * 2406 5631

mir-34c 0.02334 * 1444 3550

mir-342 0.0411 * 18 55

let-7i 0.04125 * 903 1856

mir-29a 0.04125 * 130 246

mir-141 0.06954 100 153

mir-222 0.06954 99 148

mir-200c 0.06964 672 1152

mir-146a 0.0821 231 416

let-7f 0.1124 252 592

mir-21 0.1306 3531 5772

let-7a 0.1509 193 410

mir-203b 0.1736 122 300

mir-99a 0.1857 1327 2536

mir-25 0.1986 141 195

mir-183 0.1986 207 102

mir-200b 0.1988 1656 2222

let-7c 0.2265 251 532

mir-1301 0.239 7 9

mir-146b 0.2568 150 316

mir-22 0.2896 269 290

mir-148a 0.2899 22,341 7233

let-7b 0.2899 1296 2747

mir-320a 0.2899 145 213

mir-26b 0.2899 115 164

mir-429 0.4497 263 263

mir-423 0.4629 368 467

mir-26a 0.4963 292 532

mir-20b 0.5182 0 0

mir-30a 0.5453 240 248

mir-92b 0.5453 244 251

mir-3960 0.623 167 76

mir-99b 0.677 82 110

let-7g 0.6964 469 771

mir-3074 0.7054 472 522
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Table 3. Cont.

miRNA p-Value NegS (Median) PosS (Median)

mir-27a 0.7055 1326 1027

mir-30d 0.7055 860 672

mir-27b 0.7624 1264 1072

mir-205 0.7624 252 157

mir-375 0.8205 797 687

mir-151a 0.8206 1627 1523

mir-10400 0.9097 171 82

3.3. miRNA Expression Measured by Real-Time RT-PCR

Analysis of miRNA expressions normalized to mir-148a miRNA revealed that three
miRNAs (miR-21, miR-34b, and miR-342) were upregulated in the PosS group (Table 4,
Figure 8). Of these miRNAs, only miR-21 showed significantly higher expression in the
PosS group than in the NegS group. One miRNA, miR-34c, was downregulated in the PosS
group; however, there was no significant difference between the PosS and NegS groups in
the expression of this miRNA (Table 4, Figure 8).

Table 4. Normalized miRNA expression measured by real-time RT-PCR between the NegS and
PosS groups of four selected miRNAs and correlation determination between normalized miRNA
expressions and relative quantities of viral titer. Significantly different expressions (* p ≤ 0.05) are
indicated with an asterisk.

miRNA p-Value Negs (Mean) Poss (Mean)
Pearson’s

Correlation
Coefficient

mir-21 0.03156 * 111.56 235.61 0.73

mir-34c 0.49070 5.76 4.26 0.15

mir-34b 0.22542 2.25 4.79 0.48

mir-342 0.24653 0.042 0.065 0.87

Correlation analysis revealed that the expressions of mir-21 and mir-342 were in strong
and very strong, respectively, positive correlation with viral relative quantity (Table 4). The
expressions of mir-34c and mir-34b showed only very weak and moderate, respectively,
correlation with the viral relative quantity.
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4. Discussion

This is the first attempt to use a small RNA high-throughput sequencing technique
to identify conserved miRNAs differentially expressed in human nasopharynx tissues in
response to SARS-CoV-2 infection. The experimental strategy of this study was designed to
investigate the profile of human miRNAs in two groups with 10 samples that tested nega-
tive (NegS) and positive (PosS) for SARS-CoV-2 by real-time RT-PCR. Human–pathogen
interactions were completely evaluated at the level of total extracted RNA with no addi-
tional information concerning the examined individuals. miRNA profiling and prediction
associated with SARS-CoV-2 in positive human RNA was performed in previous studies by
Arisan et al. [23], Chen et al. [24], Chow and Salmena [25], Demongeot and Seligman [26],
Hosseini Rad and McLellan [27], and Sardar et al. [28]; however, these studies used theoret-
ical prediction based on the available datasets without performing practical sequencing
experiments. The study of Li et al. [29] first used a high-throughput sequencing approach
for profiling the miRNAs in the peripheral blood from patients with SARS-CoV-2 infec-
tion. Lu et al. [30] used the real-time RT-PCR method to quantify SARS-CoV-2-associated
miRNAs in mouse cardiomyocytes targeting the SARS-CoV-2 entry receptor ACE2.

Based on the hypothesis that miRNAs associated with SARS-CoV-2 infection are
present in nasopharynx tissues, we identified 943 conserved miRNAs. We revealed that the
most abundant small RNAs were the 21-(PosS) and 22-nt classes (NegS). Fang et al. [31]
mentioned that the majority of mature human miRNA sequences consist of 22 nucleotides.
We revealed that the reads of the 22-nt miRNA class were not normally distributed among
NegS and PosS, and the values were not significantly different (p-value 0.7624). The
reads of the 21-nt class did not show any significant difference, similar to the 22-nt class
(p-value 0.4057). The overexpression of 21-nt miRNA class reads in PosS could be associated
with the disease course. According to published results, duplexes of 21 nucleotide short
interference RNA (siRNA) with 2-nucleotide in the 3′-overhangs are the most efficient
triggers of nucleotide sequence-specific mRNA degradation [32,33].

According to the differences in abundances between the NegS and PosS groups, we
focused on the five following conserved miRNAs: miR-148a, miR-21, miR-34c, miR-34b,
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and miR-342. The most abundant miRNA was miR-148a in the NegS group and in the
PosS group, with no significant difference, but a higher expression was observed in the
NegS group. MiR-148a in human tissues plays a key role in many biological processes.
MiR-148a has ordinary functions shared by many miRNA classes, including a role in cellu-
lar differentiation and development. Porstner et al. [34] proved that miR-148a expression
increased after pre-B cell activation. Moreover, upregulated miR-148a expression helps
to the differentiation of activated B cells to plasma cells and so it helps the survival of
plasma cells by constraining various transcription and proapoptotic factors. This miRNA is
a muscle-derived miRNA that may facilitate the differentiation of myoblasts and skeletal
muscle cells by targeting regulatory Rho-associated coiled-coil containing protein kinase
1. MiR-148a may also promote the growth of myoblasts in the G1 phase of the cell cycle
and shorten the S phase. This role prompts myoblast differentiation into myotubes [35].
Van Wijnen et al. [36] showed that miR-148a is involved in osteoclast formation. MiR-148a
induces the transformation of monocytes to osteoclasts by inhibition of the transcription
factor V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. Gailhouste et al. [37]
showed that enhanced expression of miR-148a might induce the differentiation and mat-
uration of liver cells by inhibiting DNA. MiR-148a also can promote primary adipocytes
to differentiate into mature adipocytes [38]. MiR-148a may affect the development of the
nervous system by targeted regulation too [39]. It has been shown that miR-148a regulates
several phenotypes, including those present in embryonic stem cells [40]. Downregulated
expression of miR-148a can control the phenotype of mesenchymal stem cells. This is
done by helping the expression of the endothelial PAS domain that contains protein 1
transforming factor [41]. The downregulated expression of miR-148a can be detected in
many types of cancers, including gastric, colorectal, pancreatic, liver, oesophageal, breast,
non-small cell lung, and urogenital system cancers. Nonetheless, upregulated expression
of miR-148a may be seen also in glioma and osteosarcoma. Moreover, the expression levels
of miR-148a have been clearly and strongly linked to the clinical classification, efficacy, and
prognosis of cancer [42].

Second, the most abundant miRNA in both investigated groups was miR-21. miR-21 was
significantly differentially expressed between the NegS and PosS groups according to real-time
RT-PCR (p-value 0.03156). In contrast to miR-148, based on the results miR-21 probably has a
direct link to SARS-CoV-2 infection. No significant difference (p-value 0.1306) was observed
between the NegS and PosS groups by small RNA sequencing, but higher expression of
miR-21 was observed in the PosS group according to both detection methods (Tables 3 and 4,
Figures 4–6). The scatter plot (Figure 6) also showed that higher abundances of miR-21
were typical for the PosS group. This means that the trend is the same as was found out by
real-time RT-PCR. Moreover, a strong positive correlation between miR-21 expression and
COVID-19 titer (Pearson’s correlation coefficient 0.73, Table 4) indicates a tight connection
between miR-21 expression and infection with COVID-19. Farr et al. [43] have recently
posted the same results, showing that miR-21 was upregulated in COVID-19. miR-21, a
SARS-CoV-2-binding microRNA, has confirmed four binding sites on the SARS-CoV-2
genome. mir-21 is one of the better-known miRNAs whose expression increases in many
pathological conditions, including asthma, pulmonary fibrosis, and viral infection [44,45].
There are no reports on the direct binding of miR-21 to other human viral genomes in recent
years, and current reports about the involvement of miR-21 in viral infections are very
limited to host transcripts modulating. For example, the positive role of miR-21 in influenza
A replication was attributed to the miR-21-host HDAC8 interaction [46]. In addition, it
has been shown that miR-21 reduces the antiviral NF-KB pathway by binding to IRAK1
and TRAF6 transcripts in HIV and HCV infections [47,48]. According to the results of
Jafarinejad-Farsangi et al. [49], miR-21 has two binding sites in the spike protein-coding
regions. In addition, miR-21 was one of the top miRNAs that targeted the upregulated
host DEGs in response to SARS-CoV-2, which agrees with our results, and it showed
normalized median reads of NegS (3531) versus PosS (5772). One of the miR-21 targets is
CXCL-10, which is a biomarker for viral, bacterial, fungal, and parasitic contamination [50].
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In the study of Jafarinejad-Farsangi et al. [49], high levels of CXCL-10 were observed in the
lungs of COVID-19-infected patients compared to healthy patients. miR-21 expression was
increased in the COVID-19 group compared to healthy controls [51].

The rest of the comprehensively quantified miRNAs in this study showed significant
differences between the NegS and PosS groups according to small RNA sequencing. The
third most expressed miRNA was mir-34c. The number of normalized miR-34c reads was
significantly different according to a p-value of 0.02334, and miR-34c was upregulated
in PosS (3350 reads) compared to NegS (1444 reads); however, this phenomenon was
not confirmed by real-time RT-PCR. This is only one miRNA where the trend is different
between small RNA sequencing and real-time RT-PCR results. The results of small RNA
sequencing are in contrast with a case-control study [52] in which respiratory syncytial
virus (family Paramyxoviridae)-infected patients showed low levels of miR-34c expression
compared with controls. qPCR is often considered a gold standard in the detection and
quantitation of various gene expressions. Nevertheless, the rapid increase in the number
of miRNAs renders qPCR inefficient on a genomic scale, and it is probably better used
as a validation rather than a discovery tool [53]. Small RNA sequencing comes into
wider use and is unmatched for the discovery and experimental validation of novel or
predicted miRNAs [53]. miR-34c is a 77 bp long noncoding RNA. This miRNA is located on
human chromosome 11 belonging to the miR-34 family. The miR-34 family may regulate
cell processes by binding to target gene sequence fragments. miR-34c inhibits Bcl2 by
binding to the 3′ untranslated region (UTR) of the Bcl2 gene, thus downregulating the
viability of laryngeal cancer cells and inducing apoptosis [54]. miR-34c is also associated
with emphysema severity and thus modulates SERPINE1 expression [55]. SERPINE1
encodes a member of the serine proteinase inhibitor superfamily. SERPINE1 is the principal
inhibitor of tissue plasminogen activator and urokinase. The final protein also functions as
a component of innate antiviral immunity and high concentrations of the gene product are
associated with thrombophilia [56].

miR-34b was detected by small RNA sequencing by 49 reads in the NegS group and by
124 reads in the PosS group, and the p-value was 0.01258. The results were confirmed by real-
time RT-PCR but not with significant values (p-value 0.22542, Pearson’s correlation coefficient
0.48). In total, we determined seven miRNAs with statistically significant expression level
differences (miR-100, miR-34b, miR-200a, miR-34c, miR-342, let-7i, and miR-29a). The results
are not in line with the current study by Demiray et al. [57]. Statistically significant expression
level differences (p < 0.05) were detected by real-time RT-PCR in nine miRNAs in COVID-19
patients and healthy controls. Seven miRNA (let-7d, miR-17, miR-34b, miR-93, miR-200b,
miR-200c, and miR-223) expression levels were found to be significantly decreased, and
the expression levels of two miRNAs (miR-190a and miR-203) were significantly increased
compared to healthy controls [57]. In total, the findings that have been captured by Demiray
et al. [57] can be validated by our experiment only in the case of miR-203 and miRNAs let-7d,
miR-17, miR-34b, miR-93, miR-200b, miR-200c, miR-223, and miR-190a showed the opposite
expression. Moreover, it is not clear why Demiray et al. [57] focused on 21 miRNAs expressed
in serum and how selected these 21 miRNAs.

The lowest level of expression of the selected miRNAs was observed for miR-342; in the
NegS group, it was detected by 18 reads, and in the PosS group, it was detected by 55 reads
(p-value 0.0411). Its upregulation was also observed by real-time RT-PCR, and the relative
expression values were 0.042 (NegS) and 0.065 (PosS group) with a significance p-value of
0.24653. Interestingly, there was a very strong positive correlation between miR-342 expression
and the COVID-19 titer (Pearson’s correlation coefficient 0.87, Table 4). However, the correlation
result may not be relevant as, although significantly upregulated in the PosS group unveiled
by small RNA sequencing, the miR-342 expression did not differ in PosS and NegS in real-
time RT-PCR. The computational approach revealed an exciting hypothesis that miR-342 is
involved in MERS-CoV pathogenesis [58]. mir-342-5p also suppresses coxsackievirus B3
biosynthesis by targeting the 2C-coding region [59].
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The identified miRNAs were expressed in both RNA groups, NegS and PosS: miR-
148a, miR-21, miR-34c, miR-34b, and miR-342. The most differentially expressed miRNA
was miR-21, which is likely closely linked to the presence of SARS-CoV-2 in nasopharynx
tissues. Upregulation of miR-21 in the PosS group was almost two times higher and
could also be linked with cardiac fibroblast and endothelial cell dysfunction in COVID-19
patients [51]. Due to the nature of our results, it is probable that a rapid increase in the
number of miRNAs renders qPCR inefficient on a genomic scale, and it is maybe better
to use small RNA sequencing as a discovery tool. To our knowledge, this is the first
study reporting important miRNAs detected in SARS-CoV-2-positive RNA extracted from
nasopharyngeal tissues. Although this study encompasses the role of RNAs, a description
of the symptoms caused by SARS-CoV-2 is missing and future studies should include this
information. These findings should serve as a foundation for larger studies and should
contribute to evaluating the long-term course of COVID-19 patients.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes13020348/s1, Tables S1 and S2: A total of conserved miRNAs
identified in nasopharynx tissues, Table S3: The distribution of conserved miRNAs within the NegS
and PosS groups (RPM), Table S4: The most highly expressed miRNA in the PosS group.
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