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Clinical prediction of advanced hepatic fibrosis (HF) and cirrhosis has long been challenging due to the gold stan-
dard, liver biopsy, being an invasive approach with certain limitations. Less invasive blood test tandem with a
cutting-edge machine learning algorithm shows promising diagnostic potential.
In this study, we constructed and compared machine learning methods with the FIB-4 score in a discovery
dataset (n= 490) of hepatitis B virus (HBV) patients. Models were validated in an independent HBV dataset
(n= 86). We further employed these models on two independent hepatitis C virus (HCV) datasets (n= 254
and 230) to examine their applicability.
In the discovery data, gradient boosting (GB) stably outperformed other methods as well as FIB-4 scores
(p b .001) in the prediction of advanced HF and cirrhosis. In the HBV validation dataset, for classification between
early and advanced HF, the area under receiver operating characteristic curves (AUROC) of GB model was 0.918,
while FIB-4 was 0.841; for classification between non-cirrhosis and cirrhosis, GB showed AUROC of 0.871, while
FIB-4 was 0.830. Additionally, GB-based prediction demonstrated good classification capacity on two HCV
datasets while higher cutoffs for both GB and FIB-4 scores were required to achieve comparable specificity and
sensitivity.
Using the same parameters as FIB-4, the GB-based prediction system demonstrated steady improvements rela-
tive to FIB-4 in HBV and HCV cohorts with different cutoff values required in different etiological groups. A
user-friendly web tool, LiveBoost, makes our prediction models freely accessible for further clinical studies and
applications.
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1. Introduction

Every year, chronic liver disease (CLD) and its complications lead to
approximately 2 million deaths globally [1]. Hepatitis B and C virus
infections, chronic alcohol consumption and immune systemabnormal-
ities are leading causes of liver injury, with thewound-healing response
from liver injury leading to hepatic fibrosis (HF), cirrhosis, and
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ultimately organ failure or liver cancer [2]. Evidence suggests that HF
is reversible in many cases of CLD, but the clinically-significant
regression of cirrhosis is still controversial [3], thus highlighting the
necessity of a clinical tool for early detection of HF, differentiation of cir-
rhosis, and longitudinal surveillance of therapeutic responses. The gold
standard for clinical measurement of HF is the liver biopsy, which is
associated with both significant complications [4] and limitations [5]
(e.g., pain, bleeding, infection, perforation of nearby organs, sampling
errors, inter-observer and intra-observer variability). A less invasive
and more reproducible approach of assessing HF severity and progres-
sion would be of great value in the clinical setting.

The development of scoring systemsbased on simple clinical param-
eters and blood tests (e.g., FIB-4) is one important step towards non-
invasive CLD monitoring and diagnosis [6]. FIB-4 was introduced as a
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

We searched the PubMed database according to the terms [(“pre-
diction” OR “risk prediction” OR “prediction model” OR “predic-
tive” OR “predictive modeling”) AND (“FIB-4” OR “Fibrosis-4”
OR “FIB4”) AND (“machine learning” OR “ensemble learning”
OR “gradient boosting”) AND (“liver fibrosis” OR “hepatic fibro-
sis”)] among English-language articles before March 4th, 2018.
We identified two studies using genotype-based decision tree
models to predict advanced liver fibrosis in patients with chronic
hepatitis C viral infection (HCV) and non-alcoholic fatty liver dis-
ease in patients with chronic hepatitis B viral infection (HBV). Nei-
ther of these studies attempted to use machine learning methods
to augment the diagnostic performance based on commonly used
clinical indicators, nor discussed the performance between differ-
ent viral etiologies. We hypothesized that applying cutting-edge
machine learning algorithms to existing blood-test scoring system
(FIB-4) can augment the detection of advanced hepatic fibrosis
and cirrhosis in chronic liver disease patients.

Added value of this study

Our study constructed and compared machine learning methods
based on the same clinical parameters of the FIB-4 scoring system
in an HBV cohort for detecting advanced hepatic fibrosis and cir-
rhosis. We validated our models in three independent cohorts in-
cluding both HBV and HCV. Our machine learning-based
prediction system, a less-invasive approach, demonstrated steady
diagnostic improvements, which could overcome certain limita-
tions of the gold standard (i.e., liver biopsy), facilitate medical de-
cision making, and enhance long-term clinical surveillance of
chronic liver disease.

Implications of all the available evidence

To fill in gaps betweenmachine learning algorithms and real-world
clinical studies, we built a user-friendly web tool (LiveBoost) that
makes our prediction models easily accessible for further studies
and applications.
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non-invasive method to predict HF stages among Caucasian patients
with hepatitis C virus (HCV) and human immunodeficiency virus
co-infection [7]. Since then, this method has been independently vali-
dated in multiple HCV infected,and hepatitis B virus (HBV) infected
patient cohorts [8–10]. FIB-4 provides an attractive alternative for
biopsy due to its affordable price, objective measurements, and avoid-
ance of complications. The formula of FIB-4 is defined as:

FIB−4 ¼ Age yearsð Þ � AST U=Lð Þ
PLT 109=L

� �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ALT U=Lð Þp

AST: aspartate transaminase; ALT: alanine transaminase; PLT:
platelet count.
This relatively simple formula was originally derived from a multiple
logistic regression (LR)modelwith odds ratios considered [7]. However,
this statistical approach ignores more complex non-linear interactions
between variables that might play significant roles in determining HF
severity, andwhich could be captured usingmore sophisticatedmodel-
ing approaches. In recent years, machine learning alongwith the explo-
sive growth of biomedical big-data has generated much interest in
developing clinical informatics tools for disease diagnosis, staging, and
prognosis [11–13]. Machine learning, especially ensemble learning,
has been successfully applied for recognizing hidden patterns in com-
plex data, allowing for better predictions of clinical outcomes than tra-
ditional statistical models, especially when applied to large-scale
datasets [14]. Unlike conventional regression-based approaches,
ensemble learning algorithms such as random forest (RF) and gradient
boosting (GB), are capable of capturing higher-order, non-linear inter-
actions between predictors [15]. For HBV and HCV patients, pathology
and genetic data have been successfully used for the implementation
of predictive models [16–19]. Here, for the first time, we propose to re-
construct an existing blood test-based clinical scoring system, FIB-4,
with cutting-edgemachine learning approaches for improved detection
and classification of advanced HF and cirrhosis, validating models in
multiple independent datasets from patients with CLD of different
viral etiologies.

2. Materials and methods

2.1. Data and ethics

An HBV discovery dataset included a total of 490 HBV infected sub-
jects recruited from Shuguang Hospital in affiliation with Shanghai Uni-
versity of Traditional Chinese Medicine (Shanghai, China) from April
2013 to June 2015. Patients were included after providing informed
consent and meeting inclusion and exclusion criteria as described in
the appendix (Text S1). An independent HBV dataset (validation-1)
included a total of 86HBV infected subjects recruited fromXiamenHos-
pital of Traditional ChineseMedicine (Xiamen, China). Recruitment and
eligibility criteria were the same as those established for the discovery
dataset. These studies were approved by the institutional review
board of the Shanghai University of Traditional Chinese Medicine and
XiamenHospital of Traditional ChineseMedicine. All participants signed
informed consent forms for the study.

Two additional retrospective anonymous datasets from existing
studies were used to further evaluate the prediction models in HCV
infected patients. Validation-2 (HCV), comprised of a total of 254 HCV
infected subjects, was recruited fromChinaMedical University Hospital,
Taiwan. Detailed information about this cohort was provided in the
original study publication [20]. Another independent dataset,
validation-3 (HCV), comprised of a total of 230 samples from 115 HCV
infected patients, was recruited from Komaki City Hospital (Komaki,
Japan). In this cohort, biopsy results, clinical parameters, andblood sam-
ples were available from before and after antiviral treatment. Detailed
information about this study is provided in the original study publica-
tion [21].

2.2. Liver biopsy

An ultrasound-guided liver biopsy was performed on all patients in
both the discovery and HBV validation datasets. All liver biopsies were
performed within one week after study recruitment. Liver specimens
were placed in 10% neutral buffered formalin and embedded in paraffin
for histologic processing. Tissue sections were stained with Masson's
trichrome staining and hematoxylin and eosin (H&E). The histologic
staging was based on Scheuer's classification using a 5-point scale for
HF severity ranging from S0 (non-fibrosis) to S4 (cirrhosis) [22]. The
staging was performed by three independent pathologists from Shang-
hai Medical College of Fudan University who were blinded to patient
clinical information. In cases of discordant staging, specimens were re-
examined until consensus was reached.

2.3. Serum sample collection and test

Overnight fasting (12h) blood samples were collected from all dis-
covery and validation-1 subjects within one week after recruitment.
Blood specimens were placed on ice, processed by centrifugation, and
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stored in a− 80 °C freezer until analysis. Hematological and standard
biochemical tests were performed according to themanufacturers' pro-
tocols using an LH750 Hematology Analyzer and Synchron DXC800
Clinical System (Beckman Coulter, USA).

2.4. Machine learning and statistics

The original formula for FIB-4 suggested potential interactions
between predictors. Thus we began our machine learning modeling
with a decision tree (DT) considering its intrinsic capacity for interac-
tion detection. We applied DT, along with two ensemble learning
models, RF and GB, to reconstruct the four individual components
(Age, AST, ALT, and PLT) of the FIB-4 score.

DT is a flowchart-like prediction model that depicts a complete
decision-making process where each internal node represents a deci-
sion point on a single attribute, and each leaf represents a single
assigned class label [23]. The structure of the DT model is similar
to the clinical decision-making process, providing a sound rationale
for its application to clinical problems [24]. Unfortunately, it often
suffers from over-fitting and is considered a high-variance model
[25]. The RF model, on the other hand, is an ensemble method
which aggregates a large number of DTs using bootstrap resampling
and often yields lower variances and better model generalization
Fig. 1. Flowchart of the study design. In step 1 ofmodel selection,we performed training-testing
then compared these resultswith FIB-4 on testing sets. In step 2,we constructedfinal GBmodels
validation set. In step 3, GB models and FIB-4 were used to predict the risks for two extra HCV
than single DT [26]. The GB model goes one step further, instead of
averaging prediction results from all DTs in RF, it grows a new DT
based on old trees by decreasing prediction errors that the old
trees made [27].

To optimize the model hyper-parameters, 10-fold cross-validation
was performed with different hyper-parameter settings in the discov-
ery set. We optimized the complexity parameter for DT and themtry pa-
rameter for RF. For GB, we tuned parameters including, interaction.
depth, n.trees, shrinkage, and n.minobsinnode in a grid search manner.
Receiver operating characteristic (ROC) curves were used as evaluation
metrics. The R package caretwas applied for the hyper-parameter opti-
mization [28]. The details of tuned hyper-parameters can be found in
https://github.com/elise-is/LiveBoost.

To determine the final model and test its robustness, we randomly
split the discovery set into training (70%) and testing sets (30%) 100
times. Each time, we trained the three different machine learning
models on the training set using fixed hyper-parameters based on pre-
vious model tuning results and lastly, compared these results with the
FIB-4 score on the testing set. Area under ROC curves (AUROC) and
area under precision-recall curves (AUPR) were calculated to compare
the four methods (Step 1 in Fig. 1). The R packages rpart, randomForest,
and gbm were applied for the DT, RF, and GB model training,
respectively [27, 29, 30].
splitting 100 times on the discovery set and trained DT, RF, GBmodels on the training sets,
and compared resultswith FIB-4 on thewhole discovery set and then validated on theHBV
cohorts. In step 4, we developed a user-friendly web-tool for clinical practices.

https://github.com/elise-is/LiveBoost


Fig. 2. Boxplots of AUPR and AUROC on testing sets for four different methods. P-values
were calculated using Student's t-tests.
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After selecting GB as our preferred reconstruction approach, we
trained the final GB models on the full discovery set using previously
optimized hyper-parameters. Then, we compared our GB prediction
scores with FIB-4 scores on both discovery set and validation set-1
(HBV) using ROC and PR curves. The best GB cutoff points were selected
using Youden's index, maximizing the sum of sensitivity and specificity
[31]. For the FIB-4 score, we applied two previously reported clinical
cutoff points (1.45 and 3.25) [6–8]. We calculated specificity and sensi-
tivity at these cutoff points and their 95% confidence intervals (CIs)
using 500 times bootstrap resampling (Step 2 in Fig. 1). ROC and PR cal-
culation were conducted with the R packages pROC and PRROC, respec-
tively [32, 33].

To further assess the classification robustness of the FIB-4 recon-
struction models for staging HF related to HCV, we applied our trained
GB models on two independent HCV validation cohorts (Step 3 in
Fig. 1). We employed t-tests to compare FIB-4 and GB scores in early
vs. advanced HF and fibrosis vs. cirrhosis within both HCV cohorts.
ROC curves, sensitivity, specificity and 95% CIs for predicting advanced
HF were calculated for the FIB-4 and GB scores.

We additionally included two extra blood test-based clinical indica-
tors (i.e., albumin (ALB) and gamma-glutamyl transpeptidase (GGT)) to
check whether classification performances could be further improved.
We rebuilt new GB models on six predictors (Age, AST, ALT, PLT, ALB,
and GGT) and LR models based on FIB-4, ALB and GGT in the discovery
set and compared with the original models in two HBV cohorts using
ROC curves.

Datasets and R-code related to this study can be found at https://
github.com/elise-is/LiveBoost.

2.5. Web-tool development

To develop a tool for HF staging that is amenable to use in clinical
practices, we designed a web-based application, LiveBoost, providing a
graphical user interface (GUI) to access our final trained GB models
(Step 4 in Fig. 1). This application is hosted on our server which is pub-
licly accessible via https://metabolomics.cc.hawaii.edu/software/
LiveBoost/. Theweb-tool developmentwas conducted using the R pack-
age shiny.

3. Results

3.1. Machine learning model selection

For our first aim (i.e., finding a machine learning approach that ro-
bustly improves the original FIB-4 score), we compared the original
FIB-4 scoring system with different models using a 100-times jackknife
resampling approach by randomly splitting the discovery set into 70%
training set and 30% testing set. We built each model on the training
set with optimized hyper-parameters and compared results to FIB-4
on the testing set. For differentiating between early (S0–2) and ad-
vanced (S3–4) fibrosis, we found that compared to FIB-4 score, DT
was associated with comparable AUPR (0.67 vs. 0.68, p= .15) but sig-
nificantly lower AUROC (0.79 vs. 0.82, p b .001). The RF approach was
associated with significantly higher AUPR (0.73 vs. 0.68, p b .001) and
comparable AUROC (0.82 vs. 0.82, p= .59). The GB approach was asso-
ciated with significantly higher AUPR (0.77 vs. 0.68, p b .001) and
AUROC (0.85 vs. 0.82, p b .001) (left side panels of Fig. 2). Similarly, for
the identifying of cirrhosis cases (S4) (right side panels of Fig. 2), we
found that compared to FIB-4 scoring, the DT based approachwas asso-
ciatedwith significantly lowerAUPR (0.60 vs. 0.66, p b .001) andAUROC
(0.81 vs. 0.87, p b .001). The RF-based approachwas associatedwith sig-
nificantly higher AUPR (0.70 vs. 0.66, p= .0047) and AUROC (0.89 vs.
0.87, p= .0023). The GB approachwas associatedwith even greater sig-
nificant differences in AUPR (0.72 vs. 0.66, p b .001) and AUROC (0.90
vs. 0.87, p b .001). Descriptive statistics of the AUROCs and AUPRs for
these approaches are summarized in Table S1. Altogether, the GB
approach provided the greatest improvements in classification capacity
over FIB-4 scoring system among the three machine learning methods.
Additionally, higher variances associated with the DT approach indi-
cated less robustness than the other approaches. In addition to showing
significantly better classification performance relative to FIB-4, two en-
semble learning approaches were associated with smaller variances
than DT.

3.2. Model construction and validation

After we selected the GB model as our reconstruction approach for
FIB-4, we finalized our prediction models for detecting advanced HF
(discriminating S0–2 from S3–4) and cirrhosis (discriminating S0–3
from S4) by training GBmodels on the full discovery set with optimized
hyper-parameters, to produce GB-based risk scores. To validate this GB-
based scoring system, we applied it to our first validation set whichwas
derived from an independent HBV cohort. Table 1 summarizes the four
clinical indicators and other demographic information for the discovery
and validation-1 datasets. Applying our final trained GB models to gen-
erate risk scores (in log-odds scale) for all the samples in both the dis-
covery and validation-1 sets, we again found higher AUROC (Fig. 3A)
and AUPR (Fig. S1) values for the GB-based scoring relative to FIB-4
scoring for both datasets. For classification between S0-2 and S3-4, GB
showed an AUROC of 0.904 and 0.918, AUPR of 0.836 and 0.925 in the
discovery set and validation set-1, respectively while FIB-4 showed an
AUROC of 0.817 and 0.841, AUPR of 0.688 and 0.844, respectively. For
classification between S0–3 and S4, GB showed an AUROC of 0.961
and 0.871, AUPR of 0.891 and 0.833 in the discovery set and validation
set-1, respectively while FIB-4 showed an AUROC of 0.864 and 0.830,
AUPR of 0.671 and 0.738, respectively. We then compared the specific-
ity and sensitivity at the best cutoff values for GB scores and two recom-
mended cutoffs for FIB-4 (Fig. 3B), finding that the GB prediction model
produced higher specificity (0.86 and 0.85 in the discovery set and val-
idation set-1, respectively) and sensitivity (0.79 and 0.84 in the discov-
ery set and validation set-1, respectively) than FIB-4 (specificity = 0.74
and 0.83, sensitivity= 0.74 and 0.78 in the discovery set and validation
set-1, respectively) with cutoff = 1.45 for discriminating stages S0-2
from S3-4. While FIB-4 scoring with cutoff = 3.25 resulted in higher
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Table 1
Clinical and demographical characteristics of the HBV cohorts.

Data HF stage Total Num Num of M Num of F BMI (kg/m^2) Age (years) AST (U/L) ALT (U/L) PLT (10^9/L)

Discovery Set (HBV) 0 46 39 7 22.1 (20.3–23.5) 32 (27–40) 49 (35–66) 106 (58–171) 190 (161–215)
1 169 125 44 21.2 (19.5–24.1) 30 (25–38) 58 (39–99) 114 (65–190) 179 (155–214)
2 134 93 41 21.6 (20.1–24.0) 31 (27–39) 74 (43–138) 155 (80–267) 176 (150–210)
3 56 47 9 22.5 (20.9–25.0) 39 (29–47) 62 (44–112) 90 (56–250) 148 (108–182)
4 85 53 32 22.5 (20.9–24.5) 50 (40–58) 45 (31–77) 45 (28–100) 86 (43–121)

Validation Set (HBV) 0 15 7 8 23.2 (21.2–24.0) 35 (28–40) 40 (23–67) 65 (33−100) 173 (152–193)
1 21 14 6 22.5 (21. 3–24.8) 31 (26–45) 67 (36–128) 98 (77–183) 193 (174–221)
2 12 7 5 22.4 (21.5–23.3) 39 (34–43) 50 (40–97) 76 (52–357) 161 (145–178)
3 11 8 3 21.5 (20.5–22.8) 40 (31–49) 35 (33–53) 40 (31–95) 108 (93–118)
4 27 18 9 22.4 (20.1–23.9) 45 (37–56) 43 (32–70) 35 (28–82) 74 (40–98)

Continuous variables are displayed as median value (25% - 75% quantile values), Num (number), F (female) M (male).

Fig. 3. Classification performances of GB and FIB-4 on the discovery set and the HBV
validation set. (A) ROC curves of GB and FIB-4 in advanced HF detection (left-panel) and
cirrhosis detection (right-panel). (B) Specificity, sensitivity and their 95% CIs of GB and
FIB-4 scores in advanced HF detection (left-panel) and cirrhosis detection (right-panel).
We selected the best GB cutoff based on the Youden index for the discovery set and two
commonly applied FIB-4 cutoffs (1.45 and 3.25).
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specificity (0.94 and 0.96 in the discovery set and validation set-1,
respectively), it suffered from lower sensitivity (0.50 and 0.68 in the dis-
covery set and 0.68 in the validation-1 set) (left panels of Fig. 3B). Sim-
ilarly, for detecting cirrhosis (S4), the GB prediction model showed
higher and more stable (with smaller CIs) specificity (0.92) and sensi-
tivity (0.88) in the discovery set than FIB-4 using cutoff = 1.45 (speci-
ficity = 0.72 and sensitivity = 0.85) (upper right panel of Fig. 3B).
Again, FIB-4 with cutoff = 3.25 showed high specificity (0.92) with
much lower sensitivity (0.68) (upper right panel of Fig. 3B). In the
validation-1 set, GB still demonstrated more balanced specificity
(0.85) and sensitivity (0.78) while FIB-4 with cutoff = 1.45 showed
lower specificity (0.78) with larger CI and cutoff = 3.25 and showed
lower sensitivity (0.69) (lower right panel of Fig. 3B).

To verify whether the classification performances could be further
improved by introducing extra clinical parameters, ALB and GGT,
which were reported in previous studies [21, 34], we additionally re-
built GB models based on six predictors (Age, AST, ALT, PLT, ALB, and
GGT) and LR models based on FIB-4, ALB and GGT. Comparing to our
original GB models, new GB models slightly improved the AUROC
(0.929 and 0.974 for S0–2 vs. S34 and S0–3 vs. S4, respectively, Fig. S2
upper panel) in the discovery set, and showed similar results in the
HBV validation set-1 (0.91 and 0.874 for S0–2 vs. S34 and S0–3 vs. S4,
respectively, Fig. S2 lower panel). When we compared the new FIB-4
models (FIB-4, ALB, and GGT) to the original FIB-4 score, we found al-
though new FIB-4 models displayed similar AUROC in the discovery
set (0.818 and 0.842 for S0–2 vs. S34 and S0–3 vs. S4, respectively,
Fig. S3 upper panel), showed much lower AUROC in the HBV validation
set-1 (0.738 and 0.757 for S0–2 vs. S34 and S0–3 vs. S4, respectively,
Fig. S3 lower panel). Thus, we did not include these two parameters in
the following analyses.

3.3. Model prediction on HCV cohorts

To investigate potential differences in GB risk score and FIB-4 score
betweenHBV-related andHCV-relatedCLD cohorts,we applied our pre-
dictionmodels on two independent HCV validation data sets.We found
significant differences in both FIB-4 and GB scores between groups
staged S0–2 and S3–4, with more significant differences in GB scores
than FIB-4 scores in bothHBV (p b 2.2e-16 vs. p=1.8e-12 in the discov-
ery set and p=7.8e-14 vs. p=2.5e-6 in the validation set-1) and HCV
cohorts (p = 1.4e-10 vs. p = 3.6e-8 in the validation set-2 and p =
2.2e-9 vs. p = 7.5e-5 in the validation set-3) (Fig. 4). Similar results
were observed when discriminating cirrhosis (S4) from HF (S0–3)
(Fig. S4). The GB and FIB-4 scores in HCV-related cohorts performed
with AUROC = 0.797 and 0.816, respectively in validation set-2 and
AUROC= 0.849 and 0.795, respectively in validation set-3. Thus, classi-
fication performance with the GBmodel was improved relative to FIB-4
in validation set-3 set (HCV), but not in validation set-2 dataset (HCV)
(Fig. S5A).

When HCV-infected cohorts were compared to HBV-infected co-
horts, higher mean FIB-4 scores and GB scores were noted in both the
S0–2 and S0–3 groups (Fig. 4 and Fig. S4), a finding which suggested



Fig. 4. FIB-4 and GB scores for four independent cohorts between S0–2 and S3–4. P-values were calculated using Student's t-tests.
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that cutoff values built on one cohort might not be ideal for other
cohorts with different etiological causes for CLD. Measurement of the
FIB-4 score in the HCV cohorts for staging advanced HF revealed that a
cutoff value of 3.25 resulted in a better specificity and sensitivity
trade-off point relative to a cutoff value of 1.45 which resulted in
more false positive findings due to low specificity (Fig. S5B). In contrast,
a FIB-4 cutoff value of 1.45 exhibited more balance between sensitivity
and specificity values in the HBV cohorts while a cutoff value of 3.25
yielded false negative findings due to low sensitivity (Fig. 3B). Corre-
spondingly, we assessed the sensitivity and specificity of a GB cutoff
value of −0.93 (which produced optimal results on the HBV discovery
set) for HCV in differentiating early and advanced HF. Applying this
Fig. 5. A screenshot of the
cutoff value to the validation-2 and 3 HCV datasets produced a classifi-
cation performance associated with higher sensitivity, but at the
expense of much lower specificity (Fig. S5B). A new GB cutoff value of
−0.14 was calculated based on the Youden's index on the ROC curve
of the validation-2 (HCV) dataset. This higher cutoff value yielded
improvements on the point and interval estimations of specificity in
both HCV cohorts whilemaintaining a reasonable balancewith specific-
ity and sensitivity for discriminating S0–2 vs. S3–4. We did not assess
cirrhosis detection performances on these two HCV datasets due to
the small number of cirrhosis samples. Table S2 includes all point and
interval estimations of AUROC, specificity, and sensitivity of both the
FIB-4 and GB scores.
web-tool (LiveBoost).
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3.4. Web-tool development

To encourage further study of the clinical application of HF staging
using cutting-edge machine learning approaches, we packaged our
trained GB models into a free, accessible web-tool (LiveBoost: https://
metabolomics.cc.hawaii.edu/software/LiveBoost/). Fig. 5 shows the
GUI of the web-tool. To use this web-tool, one can simply input values
for the four clinical indicators along with the disease etiology followed
by a click of the “Predict” button. Two gauge plots will be generated at
the right panel of the interface showing the GB risk score and the
FIB-4 score for this subject. Corresponding descriptions with calculated
disease probabilities will appear below the plots. The next step for pre-
diction of liver cirrhosis is provided in the “Model-2” tab. One clicks the
“Reset” button to bring values back to their default settings.

4. Discussion

An affordable, reproducible, objective and non-invasive method for
predicting the severity of HF is needed to support longitudinal surveil-
lanceandclinical decisionmaking. In this study,we aimed to reconstruct
the current FIB-4 scoring system to improve the sensitivity and specific-
ity of classifications between early and advanced HF and for the detec-
tion of cirrhosis. To our knowledge, this is the first time that machine
learning algorithms have been employed to improve the staging of
CLD by building on an existing clinical scoring system. Furthermore,
this algorithm has been implemented into a user-friendly web-tool to
support further independent explorations of its clinical utility.

We compared the original FIB-4 score with three machine learning
methods: DT, RF, and GB. The results showed that GB outperformed
FIB-4 and other methods regarding AUPR and AUROC. Applying GB to
an independent HBV dataset, we observed consistently superior perfor-
mance to FIB-4 scoring. On two independent HCV validation sets, the
trained GB model also showed good classification performance with
more significant group-differences compared to FIB-4 scoring (Fig. 4,
Fig. S4). Although the GB model produced similar AUROC values to the
FIB-4 scores in validation set-2 (HCV) (Fig. S5), this might due to
group imbalance and a lack of S0 group in this dataset. The GB model
was associated with narrower CIs of specificity and sensitivity,
supporting its potential for robust classification. Also, GB showed better
classification performance than FIB-4 in validation set-3 (HCV) (Fig. S5).
In this validation set, each patient underwent serial liver biopsies before
and after antiviral therapy along with the corresponding blood tests. To
avoid potential confounding factors caused by the therapy, we per-
formed additional validation on the pre-treatment data and achieved
consistent results with our previous analyses (Fig. S6).

In addition to FIB-4 parameters, other clinical indicators (e.g., ALB,
GGT)were discovered as significant diagnostic predictors of liver disease
[21, 34]. To assess whether ALB and GGT values could augment the per-
formance of GB models and FIB-4 for the staging of CLD, we rebuilt GB
and FIB-4 models with these two indicators added to the existing panel.
The inclusionofALBandGGTvaluesdidnotproduce significant improve-
ments over our current models. Notably, the new FIB-4 LR models
displayed even worse classification performances than the original
FIB-4 score. These resultsmightsuggest apotential problemofoverfitting
in LR models when we include redundant predictors, while GB models
did not particularly suffer from overfitting issues. What's more, high-
order non-linear interactions betweenpredictorsmaybe better captured
by innovative machine learning approaches [15] which might explain
why the GB model outperformed FIB-4 for classifying CLD for the HBV
cohorts. Thus, it will be worth trying this approach with other clinical
predictors such as, the AST/platelet ratio index (APRI) [35], the AST/ALT
ratio [36], the AST/ALT ratio/platelet ratio index (AARPRI) [37], the age-
platelet index [38] or the FibroScan score [39]).

In addition to conventional clinical indicators, serum metabolomics
could also serve as a potential source of biomarkers for assessing CLD.
The liver is the principal organ for lipid metabolism in the manufacture
of fatty acids fromexcess acetyl-CoA alongwith transportation and stor-
age of lipidmetabolites [40]. Bile acids are originally synthesized by liver
cells and fibrosis-related changes in their enterohepatic circulationmay
be reflected as serum biomarkers [41]. Additionally, the liver performs a
significant role in the degradation of amino acids [42]. CLD with pro-
gressive HF should therefore lead to alterations of various metabolites
and indeed, previous studies demonstrated that changes in levels of
amino acids [43], free fatty acids [44], and bile acids [45, 46] were highly
correlated with progression of liver disease. Thus, metabolic alterations
might serve as complementary information to existing clinical indica-
tors for HF staging, making it worth exploring whether includingmeta-
bolicmarkers into our CLDpredictionmodelswill improve classification
performances, especially for the early fibrosis stratifications.

A potential caveat worth discussing is the performance of different
cutoff values for FIB-4 andGB scores for different etiological CLD cohorts
(i.e., HBV and HCV cohorts). Compared to HBV cohorts, there was a
trend for higher FIB-4 and GB scores in early stage fibrosis of HCV
patients (Fig. 4) which prompted us to apply a higher cutoff value to
achieve more reasonable classification performances. Age, one of the
parameters used to calculate the FIB-4 score, is also on average higher
in HCV patients than HBV patients as shown in our study (Fig. S7A).
HCV infections which are commonly acquired later in life than HBV in-
fections, likely produce age at exposure differences and age-related
prevalence differences between HBV and HCV induced liver injuries
[47, 48]. Thus, etiologic and epidemiologic differences between HBV
and HCV patients may both be contributing to differences in optimal
FIB-4 and GB scores cutoffs between these groups. AST and ALT were
found at lower levels in S0 and S4 groups versus intermediate groups
(Fig. S7B and C), which is consistent with former studies [49]. PLT levels
decreasedwith HF progression in both HBV andHCV cohorts (Fig. S7D).
Thus, the natural progression of liver injuries induced by different hep-
atitis etiologies may be reflected in different cutoffs of FIB-4 and GB
scores. The first cutoff of FIB-4 (1.45) is a better trade-off point with
specificity and sensitivity in HBV cohorts (Fig. 3)while the second cutoff
(3.25) showed more consistent classification performances in HCV co-
horts (Fig. S5). For GB scores, we found that the best cutoff (−0.93)
for the HBV discovery set showed biased classifications in HCV cohorts
(Fig. S5B). After changing the cutoff from−0.93 to−0.14, we observed
better specificity without drastically decreasing the sensitivity
(Fig. S5B). Thus, different etiologies of CLD may need to be directly fac-
tored into models, or etiology-specific cutoff values should be consid-
ered. However, in this study, HCV datasets suffered from small sample
sizes and a limited number of cirrhosis subjects. In the future, we pro-
pose re-training new machine learning models using GB with larger
HCV cohorts to achieve better staging performances.

Certain limitations of this study and the results need to be discussed.
First, the training sample size remains limited and individual cohorts
were drawn from only Asian ethnic cohorts. We are planning to collect
more samples frommultiple sites in the future which will be necessary
to further establish the robustness of these predictive models. Second,
we trained the GB models on HBV cohorts and recognized the need to
recruit additional cohorts to examinemodels trained on groups affected
by specific etiologies such as HCV patients. Based on the differences in
model performance that we have preliminarily observed between
HBV and HCV-related CLD patients, we believe it is possible to achieve
further refinements of the models through the incorporation of
etiology-related parameters. Third, limitations in clinical data infra-
structure and mechanisms to support data sharing for biomedical
research currently poses a severe bottleneck in validating cutting-edge
machine learning techniques [50, 51]. We have implemented our GB
predictionmodel as an online tool to support its dissemination for inde-
pendent testing in other cohorts. We hope that independent
researchers can share their results and data to help expedite this and
other potential clinical applications of machine learning.

In conclusion, we employed a cutting-edge machine learning algo-
rithm (GB) to reconstruct a well-studied clinical scoring system (FIB-

https://metabolomics.cc.hawaii.edu/software/LiveBoost/
https://metabolomics.cc.hawaii.edu/software/LiveBoost/
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4) for better detection of advanced HF and cirrhosis in HBV cohorts with
CLD. We validated the prediction capacity of our models in multiple
independent groups of HBV andHCV patients. Due to the etiological dif-
ferences between HBV and HCV, we proposed that different cutoff
values for GB and FIB-4 scoring should be applied. Particular machine
learningmodels could be trained on larger HCV cohort in future studies.
The idea of using machine learning to reconstruct existing clinical scor-
ing systems could be applied to other indicators in other disease
cohorts.

Acknowledgements

Wewould like to acknowledge all participants of this project for pro-
viding samples and experts of local hospitals for collectingdata. Also,we
wish to thank Dr. Cheng-Yuan Peng for sharing data to support this
study.

Funding sources

This work was financially supported by the National Institutes of
Health/National Cancer Institute Grant 1U01CA188387-01A1, Key Pro-
gram of National Natural Science Foundation of China (8153000502),
General Program of National Natural Science Foundation of China
(81573873, 81774196), China Postdoctoral Science Foundation funded
project, China (2016T90381, 2015M581652), E-institutes of Shanghai
Municipal Education Commission, China (E03008). The funders had
no role in study design, data collection and analysis, decision to publish,
or preparation of themanuscript. W.J. had full access to all of the data in
the study and had final responsibility for the decision to submit for
publication.

Declaration of interests

The authors declare that they have no competing interests.

Authors' contributions

W.J. and P. L. lead the study. R.W. and J.W. performed the data anal-
ysis, implemented themethodology, and generated theweb-tool; X.W.,
G.X., Y.W., H.Z., and C.Y.P. collected the data and discussed the results;
R.W., J.W, and S.W. prepared the original draft; W.J., P.L., R.W., J.W,
S.W., G.X., C.R., and C.Y.P. reviewed and edited the final manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2018.07.041.

References

[1] Rowe, I.A., 2017. Lessons from epidemiology: the burden of liver disease. Dig Dis 35:
304–309. https://doi.org/10.1159/000456580.

[2] Bataller, R., Brenner, D.A., 2005. Liver fibrosis. J Clin Invest 115:209–218. https://doi.
org/10.1172/JCI24282.

[3] Ellis, E.L., Mann, D.A., 2012. Clinical evidence for the regression of liver fibrosis. J
Hepatol 56:1171–1180. https://doi.org/10.1016/j.jhep.2011.09.024.

[4] Thampanitchawong, P., Piratvisuth, T., 1999. Liver biopsy: complications and risk
factors. World J Gastroenterol 5:301–304. https://doi.org/10.3748/wjg.v5.i4.301.

[5] Regev, A., Berho, M., Jeffers, L.J., Milikowski, C., Molina, E.G., Pyrsopoulos, N.T., et al.,
2002. Sampling error and intraobserver variation in liver biopsy in patients with
chronic HCV infection. Am J Gastroenterol 97:2614–2618. https://doi.org/10.1111/
j.1572-0241.2002.06038.x.

[6] Tapper, E.B., Lok, A.S.-F., 2017. Use of liver imaging and biopsy in clinical practice. N
Engl J Med 377:756–768. https://doi.org/10.1056/NEJMra1610570.

[7] Sterling, R.K., Lissen, E., Clumeck, N., Sola, R., Correa, M.C., Montaner, J., et al., 2006.
Development of a simple noninvasive index to predict significant fibrosis in patients
with HIV/HCV coinfection. Hepatology 43:1317–1325. https://doi.org/10.1002/
hep.21178.

[8] Vallet-Pichard, A., Mallet, V., Nalpas, B., Verkarre, V., Nalpas, A., Dhalluin-Venier, V.,
et al., 2007. FIB-4: an inexpensive and accurate marker of fibrosis in HCV infection.
Comparison with liver biopsy and FibroTest. Hepatology 46:32–36. https://doi.org/
10.1002/hep.21669.

[9] Sumida, Y., Yoneda, M., Hyogo, H., Itoh, Y., Ono, M., Fujii, H., et al., 2012. Validation of
the FIB4 index in a Japanese nonalcoholic fatty liver disease population. BMC
Gastroenterol 12. https://doi.org/10.1186/1471-230X-12-2.

[10] Kim, B.K., Kim, D.Y., Park, J.Y., Ahn, S.H., Chon, C.Y., Kim, J.K., et al., 2010. Validation of
FIB-4 and comparison with other simple noninvasive indices for predicting liver fi-
brosis and cirrhosis in hepatitis B virus-infected patients. Liver Int 30:546–553.
https://doi.org/10.1111/j.1478-3231.2009.02192.x.

[11] Xu, R., Wei, W., Krawczyk, M., Wang, W., Luo, H., Flagg, K., et al., 2017. Circulating
tumour DNAmethylationmarkers for diagnosis and prognosis of hepatocellular car-
cinoma. Nat Mater https://doi.org/10.1038/nmat4997.

[12] Zhang, J.-X., Song, W., Chen, Z.-H., Wei, J.-H., Liao, Y.-J., Lei, J., et al., 2013. Prognostic
and predictive value of a microRNA signature in stage II colon cancer: a microRNA
expression analysis. Lancet Oncol 14:1295–1306. https://doi.org/10.1016/S1470-
2045(13)70491-1.

[13] Zak, D.E., Penn-Nicholson, A., Scriba, T.J., Thompson, E., Suliman, S., Amon, L.M.,
et al., 2016. A blood RNA signature for tuberculosis disease risk: a prospective
cohort study. Lancet 387:2312–2322. https://doi.org/10.1016/S0140-6736(15)
01316-1.

[14] Zhou, Z.-H., 2012. EnsembleMethods: Foundations and Algorithms. https://doi.org/
10.1201/b12207-2.

[15] Zeevi, D., Korem, T., Zmora, N., Israeli, D., Rothschild, D., Weinberger, A., et al., 2015.
Personalized nutrition by prediction of glycemic responses. Cell 163:1079–1095.
https://doi.org/10.1016/j.cell.2015.11.001.

[16] Eslam, M., Hashem, A.M., Romero-Gomez, M., Berg, T., Dore, G.J., Mangia, A., et al.,
2016. FibroGENE: a gene-based model for staging liver fibrosis. J Hepatol 64:
390–398. https://doi.org/10.1016/j.jhep.2015.11.008.

[17] Shousha, H.I., Awad, A.H., Omran, D.A., Elnegouly, M.M., Mabrouk, M., 2018. Data
mining and machine learning algorithms using IL28B genotype and biochemical
markers best predicted advanced liver fibrosis in chronic hepatitis C. Jpn J Infect
Dis 71:51–57. https://doi.org/10.7883/yoken.JJID.2017.089.

[18] Shang, G., Richardson, A., Gahan, M.E., Easteal, S., Ohms, S., Lidbury, B.A., 2013.
Predicting the presence of hepatitis B virus surface antigen in Chinese patients by
pathology data mining. J Med Virol 85:1334–1339. https://doi.org/10.1002/
jmv.23609.

[19] Tsipouras, M.G., Giannakeas, N., Tzallas, A.T., Tsianou, Z.E., Manousou, P., Hall, A., et
al., 2017. A methodology for automated CPA extraction using liver biopsy image
analysis and machine learning techniques. Comput Methods Programs Biomed
140:61–68. https://doi.org/10.1016/j.cmpb.2016.11.012.

[20] Chen, S.-H., Lai, H.-C., Chiang, I.-P., Su, W.-P., Lin, C.-H., Kao, J.-T., et al., 2018.
Changes in liver stiffness measurement using acoustic radiation force impulse
elastography after antiviral therapy in patients with chronic hepatitis C. PLoS
One 13, e0190455.

[21] Tachi, Y., Hirai, T., Toyoda, H., Tada, T., Hayashi, K., Honda, T., et al., 2015. Predictive
ability of laboratory indices for liver fibrosis in patients with chronic hepatitis C after
the eradication of hepatitis C virus. PLoS One 10. https://doi.org/10.1371/journal.
pone.0133515.

[22] Scheuer, P.J., Standish, R.A., Dhillon, A.P., 2002. Scoring of chronic hepatitis. Clin Liver
Dis 6:335–347. https://doi.org/10.1016/S1089-3261(02)00009-0.

[23] Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1984. Classification and Regres-
sion Trees. vol. 19. https://doi.org/10.1371/journal.pone.0015807.

[24] Fonarow, G.C., Adams, K.F., Abraham, W.T., Yancy, C.W., Boscardin, W.J., 2005. Risk
stratification for in-hospital mortality in acutely decompensated heart failure: clas-
sification and regression tree analysis. JAMA 293:572–580. https://doi.org/10.1001/
jama.293.5.572.

[25] Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical learning. Ele-
ments 1:337–387. https://doi.org/10.1007/b94608.

[26] Breiman, L., 2001. Random forests. Mach Learn 45:5–32. https://doi.org/10.1016/j.
compbiomed.2011.03.001.

[27] Greg R. gbm, 2010. Generalized Boosted RegressionModels. R Packag Version 16–31
http://CRAN.R-project.org/package=gbm.

[28] Kuhn, M., 2008. Building predictive models in R using the caret package. J Stat Softw
28:1–26. https://doi.org/10.1053/j.sodo.2009.03.002.

[29] Therneau, T., Atkinson, B., Ripley, B., Ripley, M.B., 2015. rpart: recursive partitioning
and regression trees. R Packag Version 41–10 https://CR.

[30] Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R News 2:
18–22. https://doi.org/10.1177/154405910408300516.

[31] Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recognit Lett 27:
861–874. https://doi.org/10.1016/j.patrec.2005.10.010.

[32] Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.C., et al., 2011.
pROC: an open-source package for R and S+ to analyze and compare ROC curves.
BMC Bioinformatics 12. https://doi.org/10.1186/1471-2105-12-77.

[33] Grau, J., Grosse, I., Keilwagen, J., 2015. PRROC: computing and visualizing precision-
recall and receiver operating characteristic curves in R. Bioinformatics 31:
2595–2597. https://doi.org/10.1093/bioinformatics/btv153.

[34] Attallah, A.M., Abdallah, S.O., Attallah, A.A., Omran, M.M., Farid, K., Nasif, W.A., et al.,
2013. Diagnostic value of fibronectin discriminant score for predicting liver fibrosis
stages in chronic hepatitis C virus patients. Ann Hepatol 12, 44–53.

[35] Wai, C.T., Greenson, J.K., Fontana, R.J., Kalbfleisch, J.D., Marrero, J.A., Conjeevaram,
H.S., et al., 2003. A simple noninvasive index can predict both significant fibrosis
and cirrhosis in patients with chronic hepatitis C. Hepatology 38:518–526. https://
doi.org/10.1053/jhep.2003.50346.

[36] Williams, A.L.B., Hoofnagle, J.H., 1988. Ratio of serum aspartate to alanine amino-
transferase in chronic hepatitis relationship to cirrhosis. Gastroenterology 95:
734–739. https://doi.org/10.1016/S0016-5085(88)80022-2.

https://doi.org/10.1016/j.ebiom.2018.07.041
https://doi.org/10.1016/j.ebiom.2018.07.041
https://doi.org/10.1159/000456580
https://doi.org/10.1172/JCI24282
https://doi.org/10.1172/JCI24282
https://doi.org/10.1016/j.jhep.2011.09.024
https://doi.org/10.3748/wjg.v5.i4.301
https://doi.org/10.1111/j.1572-0241.2002.06038.x
https://doi.org/10.1111/j.1572-0241.2002.06038.x
https://doi.org/10.1056/NEJMra1610570
https://doi.org/10.1002/hep.21178
https://doi.org/10.1002/hep.21178
https://doi.org/10.1002/hep.21669
https://doi.org/10.1002/hep.21669
https://doi.org/10.1186/1471-230X-12-2
https://doi.org/10.1111/j.1478-3231.2009.02192.x
https://doi.org/10.1038/nmat4997
https://doi.org/10.1016/S1470-2045(13)70491-1
https://doi.org/10.1016/S1470-2045(13)70491-1
https://doi.org/10.1016/S0140-6736(15)01316-1
https://doi.org/10.1016/S0140-6736(15)01316-1
https://doi.org/10.1201/b12207-2
https://doi.org/10.1201/b12207-2
https://doi.org/10.1016/j.cell.2015.11.001
https://doi.org/10.1016/j.jhep.2015.11.008
https://doi.org/10.7883/yoken.JJID.2017.089
https://doi.org/10.1002/jmv.23609
https://doi.org/10.1002/jmv.23609
https://doi.org/10.1016/j.cmpb.2016.11.012
http://refhub.elsevier.com/S2352-3964(18)30281-0/rf0100
http://refhub.elsevier.com/S2352-3964(18)30281-0/rf0100
http://refhub.elsevier.com/S2352-3964(18)30281-0/rf0100
https://doi.org/10.1371/journal.pone.0133515
https://doi.org/10.1371/journal.pone.0133515
https://doi.org/10.1016/S1089-3261(02)00009-0
https://doi.org/10.1371/journal.pone.0015807
https://doi.org/10.1001/jama.293.5.572
https://doi.org/10.1001/jama.293.5.572
https://doi.org/10.1007/b94608
https://doi.org/10.1016/j.compbiomed.2011.03.001
https://doi.org/10.1016/j.compbiomed.2011.03.001
http://CRAN.R-project.org/package=gbm
https://doi.org/10.1053/j.sodo.2009.03.002
http://refhub.elsevier.com/S2352-3964(18)30281-0/rf0145
http://refhub.elsevier.com/S2352-3964(18)30281-0/rf0145
https://doi.org/10.1177/154405910408300516
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1093/bioinformatics/btv153
http://refhub.elsevier.com/S2352-3964(18)30281-0/rf0170
http://refhub.elsevier.com/S2352-3964(18)30281-0/rf0170
https://doi.org/10.1053/jhep.2003.50346
https://doi.org/10.1053/jhep.2003.50346
https://doi.org/10.1016/S0016-5085(88)80022-2


132 R. Wei et al. / EBioMedicine 35 (2018) 124–132
[37] Tseng, P.-L., Wang, J.-H., Hung, C.-H., Tung, H.-D., Chen, T.-M., Huang, W.-S., et al.,
2013. Comparisons of noninvasive indices based on daily practice parameters for
predicting liver cirrhosis in chronic hepatitis B and hepatitis C patients in hospital
and community populations. Kaohsiung J Med Sci 29:385–395. https://doi.org/
10.1016/j.kjms.2012.11.007.

[38] Poynard, T., Bedossa, P., 1997. Age and platelet count: a simple index for
predicting the presence of histological lesions in patients with antibodies to
hepatitisC virus. J Viral Hepat 4:199–208. https://doi.org/10.1046/j.1365-
2893.1997.00141.x.

[39] Foucher, J., Chanteloup, E., Vergniol, J., Castéra, L., Le Bail, B., Adhoute, X., et al., 2006.
Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study.
Gut 55:403–408. https://doi.org/10.1136/gut.2005.069153.

[40] Canbay, A., Bechmann, L., Gerken, G., 2007. Lipid metabolism in the liver. Z
Gastroenterol 45:35–41. https://doi.org/10.1055/s-2006-927368.

[41] Roberts, M.S., Magnusson, B.M., Burczynski, F.J., Weiss, M., 2002. Enterohepatic cir-
culation: physiological, pharmacokinetic and clinical implications. Clin
Pharmacokinet 41:751–790. https://doi.org/10.2165/00003088-200241100-00005.

[42] Campollo, O., Sprengers, D., McIntyre, N., 1992. The BCAA/AAA ratio of plasma
amino acids in three different groups of cirrhotics. Rev Invest Clin 44, 513–518.

[43] Zhang, Q., Takahashi, M., Noguchi, Y., Sugimoto, T., Kimura, T., Okumura, A., et al.,
2006. Plasma amino acid profiles applied for diagnosis of advanced liver fibrosis
in patients with chronic hepatitis C infection. Hepatol Res 34:170–177. https://doi.
org/10.1016/j.hepres.2005.12.006.
[44] Zhang, J., Zhao, Y., Xu, C., Hong, Y., Lu, H., Wu, J., et al., 2014. Association between
serum free fatty acid levels and nonalcoholic fatty liver disease: a cross-sectional
study. Sci Rep 4. https://doi.org/10.1038/srep05832.

[45] Chen, T., Xie, G., Wang, X., Fan, J., Qiu, Y., Zheng, X., et al., 2011. Serum and urine me-
tabolite profiling reveals potential biomarkers of human hepatocellular carcinoma.
Mol Cell Proteomics 10. https://doi.org/10.1074/mcp.M110.004945 M110.004945.

[46] Wang, X., Wang, X., Xie, G., Zhou, M., Yu, H., Lin, Y., et al., 2012. Urinary metabolite
variation is associatedwith pathological progression of the post-hepatitis B cirrhosis
patients. J Proteome Res 11:3838–3847. https://doi.org/10.1021/pr300337s.

[47] El-Serag, H.B., 2012. Epidemiology of viral hepatitis and hepatocellular carcinoma.
Gastroenterology 142. https://doi.org/10.1053/j.gastro.2011.12.061.

[48] Poynard, T., Mathurin, P., Lai, C.-L., Guyader, D., Poupon, R., Tainturier, M.-H., et al.,
2003. A comparison of fibrosis progression in chronic liver diseases. J Hepatol 38:
257–265. https://doi.org/10.1016/S0168-8278(02)00413-0.

[49] Tai, D.-I., Tsay, P.-K., Jeng, W.-J., Weng, C.-C., Huang, S.-F., Huang, C.-H., et al., 2015.
Differences in liver fibrosis between patients with chronic hepatitis B and C. J Ultra-
sound Med 34, 813–821.

[50] Manamley, N., Mallett, S., Sydes, M.R., Hollis, S., Scrimgeour, A., Burger, H.U., et al.,
2016. Data sharing and the evolving role of statisticians. BMC Med Res Methodol
16:37–43. https://doi.org/10.1186/s12874-016-0172-9.

[51] Geifman, N., Bollyky, J., Bhattacharya, S., Butte, A.J., 2015. Opening clinical trial data:
are the voluntary data-sharing portals enough? BMC Med 13. https://doi.org/
10.1186/s12916-015-0525-y.

https://doi.org/10.1016/j.kjms.2012.11.007
https://doi.org/10.1016/j.kjms.2012.11.007
https://doi.org/10.1046/j.1365-2893.1997.00141.x
https://doi.org/10.1046/j.1365-2893.1997.00141.x
https://doi.org/10.1136/gut.2005.069153
https://doi.org/10.1055/s-2006-927368
https://doi.org/10.2165/00003088-200241100-00005
http://refhub.elsevier.com/S2352-3964(18)30281-0/rf0210
http://refhub.elsevier.com/S2352-3964(18)30281-0/rf0210
https://doi.org/10.1016/j.hepres.2005.12.006
https://doi.org/10.1016/j.hepres.2005.12.006
https://doi.org/10.1038/srep05832
https://doi.org/10.1074/mcp.M110.004945
https://doi.org/10.1021/pr300337s
https://doi.org/10.1053/j.gastro.2011.12.061
https://doi.org/10.1016/S0168-8278(02)00413-0
http://refhub.elsevier.com/S2352-3964(18)30281-0/rf0245
http://refhub.elsevier.com/S2352-3964(18)30281-0/rf0245
https://doi.org/10.1186/s12874-016-0172-9
https://doi.org/10.1186/s12916-015-0525-y
https://doi.org/10.1186/s12916-015-0525-y

	Clinical prediction of HBV and HCV related hepatic fibrosis using machine learning
	1. Introduction
	2. Materials and methods
	2.1. Data and ethics
	2.2. Liver biopsy
	2.3. Serum sample collection and test

	Evidence before this study
	Added value of this study
	Implications of all the available evidence
	2.4. Machine learning and statistics
	2.5. Web-tool development

	3. Results
	3.1. Machine learning model selection
	3.2. Model construction and validation
	3.3. Model prediction on HCV cohorts
	3.4. Web-tool development

	4. Discussion
	section14
	Acknowledgements
	Funding sources
	Declaration of interests
	Authors' contributions
	Appendix A. Supplementary data
	References


