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Purpose. Gap junction protein (Connexin) family is the basic unit of cellular connection, whose multiple members were recently
demonstrated to be associated with tumor progression. However, the expression pattern and prognostic value of connexin in lung
adenocarcinoma (LUAD) have not yet been elucidated. Methods. Consensus cluster algorithm was first applied to determine a
novel molecular subtype in LUAD based on connexin genes. The differentially expressed genes (DEGs) between two clusters
were obtained to include in Cox regression analyses for the model construction. To examine the predictive capacity of the
signature, survival curves and ROC plots were conducted. We implemented GSEA method to uncover the function effects
enriched in the risk model. Moreover, the tumor immune microenvironment in LUAD was depicted by CIBERSORT and
ssGSEA methods. Results. The integrated LUAD cohort (TCGA-LUAD and GSE68465) were clustered into two subtypes
(C1 = 217 and C2 = 296) based on 21 connexins and the clinical outcomes of LUAD cases in the two clusters showed
remarkable discrepancy. Next, we collected 222 DEGs among two subclusters to build a prognostic model using stepwise Cox
analyses. Our proposed model consisted of six genes that accurately forecast patient outcomes and differentiate patient risk.
GSEA indicated that high-risk group was involved in tumor relevant pathways were activated in high-risk group, such as
PI3K/AKT signaling, TGF-β pathway, and p53 pathway. Furthermore, LUAD cases with high-risk presented higher infiltration
level of M2 macrophage and neutrophil, suggesting high-risk group were more likely to generate an immunosuppressive status.
Conclusion. Our data identified a novel connexin-based subcluster in LUAD and further created a risk signature which plays a
central part in prognosis assessment and clinical potency.

1. Introduction

Lung cancer is one of the most common malignancies
worldwide, and the prevention of lung cancer is a worldwide
public health issue. According to the latest statistics pub-
lished by the International Agency for Research on Cancer
(IARC), the global incidence and mortality rates of lung can-
cer in 2020 are among the highest in the world [1]. The risk
of lung cancer will continue to intensify and become prom-
inent within the future given the huge population base,
aging, and high levels of tobacco consumption [2]. The inci-
dence of lung adenocarcinoma (LUAD) is increasing every
year and accounts for more than half of nonsmall cell lung
cancer [3]. Front-line clinicians have been pushing for the

promotion of new technologies for comprehensive treat-
ment (such as radiotherapy, immunotherapy, and targeted
therapy), which have greatly reduced intraoperative injuries
and postoperative complications for LUAD patients, but the
diagnosis and treatment of LUAD is still encountering criti-
cal challenges [4]. For example, most patients have obvious
symptoms at the time of consultation. In addition, the high
incidence of resistance to radiotherapy and immunotherapy
has contributed to unfavorable clinical outcomes for
patients. Lung cancer is a highly heterogeneous tumor, and
its occurrence is the result of coregulation of multiple genes
[5]. In-depth investigation of the molecular mechanism of
LUAD will provide valuable guidance for early diagnosis
and individualized treatment of LUAD.
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Tumor-infiltrating immune cells (TIICs) are an integral
part of the tumor microenvironment (TME), including
tumor-associated macrophages (TAMs), lymphocytes, and
natural killer (NK) cells [6]. These immunocytes play a cen-
tral part in killing management of tumors (e.g. CD8+ T cells
and NK cells) on the one hand and in fostering tumor devel-
opment on the other. In view of its vital role in tumor pro-
gression, the TME has emerged as an essential therapeutic
target [7]. Immunosuppression of CD8+ T cells within the
TME can be relieved by the use of PD1 inhibitors. It has
achieved remarkable effect on the treatment of melanoma,
lymphoma, and other tumors, suggesting that immunother-
apy holds favorable prospects [8]. However, most patients
are still experiencing poor outcomes after immunotherapy.
Therefore, the immune landscape of TME in LUAD needs
to be further elucidated.

The gap junction (GJ) is a special membrane structure
consisting of an arrangement of connecting channels
between two adjacent cells. Gap junction proteins (Con-
nexins) are the basic units of GJ formed mainly in the cell
membrane and cytoplasm [9]. Connexin participates in
the exchange of messages and substances between cells
and serves as an important regulator of physiological pro-
cesses such as cell metabolism, internal environment sta-
bility, proliferation, and differentiation. Posttranslational
modifications of connexin are often precisely regulated
by cellular signaling networks [10]. Studies have demon-
strated that connexin is closely bound up with a variety
of classical cellular signaling pathways including MAPK,
TGF-β, and Wnt pathways [11, 12]. Previous findings
indicated that tumor cells present defective gap junction
communication and abnormal expression of gap junction
protein (connexin, Cx) [13]. As the most widely expressed
gene in the Cx family, Cx43 shows the closest relationship
with tumors. Poyet et al. revealed that downregulation of
Cx43 expression correlates with gastric cancer tissue type,
tumor differentiation degree, and clinical stage [14]. In
bladder cancer, overexpression of Cx43 boosts tumor cell
survival and progression by reinforcing the activity of
intercellular gap junctions [15]. Moreover, GJA1 was
proved to be a target gene of miR-30b-5p which could
contribute to pancreatic cancer angiogenesis [16]. Never-
theless, up to now, it remains very little research on the
role of connexins in LUAD.

With the advent of histological technologies and big data
analysis, researchers can obtain more detailed information
from tumor cells and effectively identify complex molecular
features of tumors from massive amounts of data, enabling a
deeper understanding of tumor biological features and clin-
ical phenotypes [17]. Advances in bioinformatic analysis
technologies have permitted researchers to observe a pano-
ramic view of the biological process of tumor progression
directly through clinical samples, which has furthered our
insights into the identification of novel multiple
biomarker-based signatures for clinical prediction [18, 19].
Consequently, exploring important clinically relevant vari-
ables and validating their reliable correlation with patient
prognosis is a pivotal factor in facilitating the evolution of
precision tumor therapy.

In this academic research, the genetic characteristics of
connexins in LUAD were detected according to the data
from public databases. Furthermore, we determine a novel
molecular subtype based on connexins and uncover the clin-
ical potency of the connexin-related model in LUAD cases.

2. Methods

2.1. Data Collection. The gene expression profile and the
corresponding clinical information were obtained from the
GEO (https://www.ncbi.nlm.nih.gov/geo/) and TCGA
(https://portal.gdc.cancer.gov/) databases, respectively. The
LUAD cohort from the TCGA database containing the gene
expression and the clinical information of 535 LUAD
patients was utilized as the training set to establish the prog-
nostic model, and the GSE68465 dataset containing RNA
sequencing of 442 LUAD samples was selected as the valida-
tion set. The exclusion benchmarks were set as follows: (1)
histologic diagnosis is not LUAD, (2) cases without com-
pleted data, and (3) overall survival time of less than 30 days.
A total of 21 connexins were retrieved from previous
research [20]. The gene information of all connexins is sum-
marized in Supplementary Table 1.

2.2. Connexins Gene Cluster Analysis. A total of 21 connex-
ins were subjected to determine the connexin-based molecu-
lar subtype using the R package “ConsensusClusterPlus”
[21]. The difference between different subclusters was evalu-
ated using the Kaplan–Meier survival analysis. The differen-
tially expressed genes (DEGs) were screened by the “limma”
package [22], before being processed for subsequent
analysis.

2.3. Construction of Connexin-Related Signature. All the
samples in training cohort were randomly divided into
training and internal validation cohorts at a 1 : 1 ratio. Uni-
variate Cox analysis was employed to discover prognostic
genes in the training cohort. Next, the corresponding coeffi-
cients of these model genes were calculated to establish a
prognostic model by multivariate analysis. The formula
was established as follows: the risk score =∑n

i=1ðcoef × Expi
Þ. The Expi

̲
was the expression level of each gene and the

coef was the risk coefficient of each gene. All the patients
were divided into high- and low-risk group base on median
risk value. To verify the predictive performance of the
connexin-related gene signature, an external dataset,
GSE68465, was enrolled into subsequent validation.

2.4. Immune Activity Analysis. The CIBERSORT algorithm
(https://cibersort.stanford.edu/) was used to quantify the rel-
ative infiltration levels of 21 types of immune cells, as
described before. The immune activity between the two risk
subgroups, as demonstrated by normalized enrichment
score (NES), were compared by the single sample gene set
enrichment analysis (ssGSEA) [23].

2.5. Functional Enrichment Analysis. GSEA analysis was per-
formed to reveal the potential molecular mechanisms of
prognosis related genes and adjusted p < 0:05was set as the
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cutoff value [24]. To obtain the signaling pathways for
LUAD patients, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) was performed and visualized by the
use of “clusterProfiler” and “ggplot2” R package,
respectively.

2.6. Statistical Analysis. All statistical data in this research
was analyzed by R version 4.0.5. In order to further assess
the predictive capacity of the established signature, the
Kaplan–Meier survival analysis was performed using the
“survival” R package, and the time-dependent receiver oper-
ational feature curves (ROC) were drawn based on the “sur-
vival ROC” R packages. The area under the ROC (AUC)
values for 1-, 3-, and 5-year survival rate were calculated.
Univariate and multivariate Cox analyses were implemented
to confirm the independence of the model.

3. Results

3.1. The Genetic Characteristics of Connexins. First, we
detected the correlation between 21 connexins in TCGA-
LUAD dataset. The results suggested that there was a signif-
icant coexpression relationship between GJA4 and GJA5,
GJA9 and GJE1, and GJB2 and GJB6 (Figure 1(a)). To
explore the interaction relationship of 21 connexins at pro-
tein level, a PPI network was set up by STRING tool
(Figure 1(b)). As suggested by Figure 1(c), the GJA3,
GJA10, GJB2, GJB3, GJB4, GJB5, and GJB6 were remarkably

enriched in LUAD tissues, while GJA1, GJA4, GJA5, GJB7,
GJC1, GJC2, GJC3, and GJD2 were greatly downregulated.

3.2. Determination of a Connexin-Based Molecular Subtype.
With the 21 connexins included in consensus cluster analy-
sis, we found that all LUAD cases were clustered into two
subgroups (Figure 2(a)). The intergroup relationship
between two subtypes was lowest when k = 2 (Figures 2(b)
and 2(c). Survival curves illustrated that there were notable
discrepancies in patient outcomes between two subgroups
(Figure 2(d)). PCA analysis revealed two groups of signifi-
cant cluster characteristics (Figure 2(e)). In Figure 2(f), there
was a tight correlation between cluster and different clinical
traits. Then, a total 222 DEGs were obtained between two
clusters for next Cox analysis.

3.3. Construct of a Prognostic Signature. In the training set,
we first employed univariate Cox regression to discover 20
genes with prognostic values in LUAD (Figure 3(a)). Next,
these 20 genes were enrolled into multivariate Cox regres-
sion and six model genes (LOXL2, PTPRH, DKK1, PKP2,
NKX2-1, and KRT6A) were determined to create a prognos-
tic model (Figure 3(b)). The risk score = ð−0:2665 × LOXL2
Þ + ð0:1905 × PTPRHÞ + ð0:1281 × DKK1Þ + ð0:5798 × PKP
2Þ + ð0:4434 × NKX2 − 1Þ + ð0:0103 × KRT6AÞ. Then, we
performed GEPIA database to explore the expression pat-
terns of six model genes. As shown in Figure 3(c), LOXL2,
PTPRH, PKP2, and KRT6A were greatly upregulated in
LUAD tissues.
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Figure 1: The genetic characteristics of Connexins in LUAD. (a) Correlation between expression levels of 21 connexins. (b) PPI network of
21 connexins. (c) Expression patterns of 21 connexins.
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Survival analysis indicated that patients with high-risk
displayed a dismal clinical outcome (Figure 4(a)). The
AUC (area under the curve) values of 1-, 3-, and 5-year sur-
vival rate generated by the model were 0.717, 0.702, and
0.627, respectively (Figure 4(b)). The risk plot of six genes
signature is shown in Figure 4(c). Moreover, the same
methods were conducted in GSE68465 cohort to confirm

the performance of the model, and the similar results were
observed (Figures 4(d)–4(f)).

3.4. Independent Prognostic Analysis and Subgroup Analysis.
To examine the independence of the risk model, univariate
and multivariate methods were applied. In the TCGA
cohort, univariate analysis showed that stage and the risk
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Figure 2: Connexin-based consensus clustering analysis. (a) Consensus cluster analysis. (b)-(c) Relative change of CDF curve. (d) The
Kaplan–Meier survival analysis. (e) Principal component analysis of the two clusters. (f) Heatmap of connexin-related cluster.
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score were hazard factors for evaluating patient outcome
(Figure 5(a)). Multivariate Cox analysis showed that risk
score (p < 0:001) was independent factor for assessing prog-
nosis of LUAD (Figure 5(b)). Meanwhile, the independence
of our established signature was validated in the GSE68465
cohort (Figure 5(c) and 5(d)). Next, we further detected
whether the risk model is a prognostic factor for the survival
assessment in different subgroups with various clinical traits.
In Figure 5(e), the survival rates of the high-risk patients
based on age, gender, stage, T stage, and N stage were lower
than those of the low-risk patients.

3.5. GSEA of the Risk Model. GSEA showed that top five
Hallmarks were greatly enriched in high-risk group, includ-
ing epithelial-mesenchymal transition, glycolysis, hypoxia,
PI3K/AKT/MTOR signaling, and TGF-β signaling
(Figures 6(a) and 6(b)). KEGG analysis revealed that high-
risk group was positively correlated with pathway in cancer,
cell cycle, and p53 pathway (Figures 6(c) and 6(d)).

3.6. The Immune Landscape of LUAD. In order to character-
ize the immune microenvironment of LUAD cases, we first
calculate the proportion of 21 different immunocytes by
CIBERSORT algorithms. The results revealed that macro-
phages M0, macrophages M2, activated CD4 memory T
cells, and neutrophils were enriched in high-risk cohort,
whereas memory B cells and resting CD4 memory T cells
were upregulated in low-risk cohort (Figure 7). Further-

more, we compared the difference in immune activity
between the two groups by ssGSEA. As revealed by
Figure 8, APC-related function, immune checkpoints,
inflammation−promoting, and IFN type II were activated
greatly in high-risk groups.

4. Discussion

LUAD is one of the most frequently diagnosed malignancies
globally and is currently the leading cause of cancer death
[25, 26]. Jemal et al. once reported that nearly 70% of LUAD
patients were discovered at terminal stages at the first time of
diagnosis, with 60% of them already developed distant
metastasis by then [27]. Although great efforts have been
made in the exploration of gene mutation targeted therapy,
the five-year survival rate of LUAD patients remain dismal,
which is mainly due to the lack of specific and reliable bio-
markers [28]. Taken together，it is urgently needed to
explore effective and less invasive surrogate molecular bio-
markers that can help determine the clinical outcome of
LUAD patients and further develop more promising thera-
peutic targets for cancer treatment.

Connexin hemichannels have long been recognized as
structural precursors to form gap junctions [29]. Thus, con-
nexins play important role in the maintaining tissue homeo-
stasis, and their mutation is implied to induce the onset of
multiple disorders. Following that, accumulating evidence
has unveiled the involvement of connexins in
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Figure 3: Development of a prognostic model. (a) Univariate Cox regression analysis. (b) Multivariate regression analysis for model
construction. (c) Expression level of six model genes (LOXL2, PTPRH, DKK1, PKP2, NKX2-1, and KRT6A) from the GEPIA database.
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carcinogenesis, including prostate cancer, renal cancer, and
glioma cancer [30–33]. Intriguingly, connexins are reported
to have distinct expression patterns at different stages of
tumor progression. More specifically, connexins showed
declined expression in the primary stage, while can be an
overexpression when tumor cells developed a more invasive
phenotype [34]. Until now, the understanding of connexin
channels in LUAD is rather restrained [35, 36]. In the cur-
rent study, we divided LUAD into two distinct subtypes
based on expression profiles of 21 types of connexins. In

principle, LUAD patients in cluster 1 showed much poorer
outcome compared to their counterparts in cluster 2. Subse-
quently, we identified 222 DEGs between the two popula-
tions for the establishment of prognostic model.

Advances in “Next-generation” sequencing technology
have laid the foundation for the development of gene signa-
tures in which clinical outcome of patients can be assessed
on the basis of their transcriptomic data as well as the path-
ological grading. A total of six-gene based were verified to
play a critical role in predicting clinical outcome patients

++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++++++++++++++++++++++++++++++
++ + +

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++

+
+++

+++ +++++++++++++ + +
++ + +

+ + + +

p < 0.001
0.25

0.00

0.50

0.75

1.00

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

High risk
Risk

Low risk

250181 92 52 28 21 11 6 4 1 1 0 0 0 0 0 0 0 0 0 0
250214127 79 48 31 27 21 13 11 8 6 6 6 3 3 3 3 3 2 0

High risk
Low risk

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (years)

Ri
sk

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

Se
ns

iti
vi

ty

0.8

1.0

AUC at 1 years: 0.717

AUC at 3 years: 0.702

AUC at 5 years: 0.627

1 – specifcity

(b)

0

Patients (increasing risk score)

Patients (increasing risk score)
200 300 400 500

1

2

3

4

5

6

High risk
Low Risk

Dead
Alive

Su
rv

iv
al

 ti
m

e (
ye

ar
s)

Ri
sk

 sc
or

e

0 100

100

200 300 400 500

0

5

10

15

20

(c)

High risk
Risk

Low risk

+
+

+++
++++++++++++++++++ ++++++++++++++++++++++++++++++++ ++ + + ++

++ +

+
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++ ++

+ + ++ +
p < 0.001

0.25

0.00

0.50

0.75

1.00

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

202 165 126 102 81 67 54 32 20 14 13 8 7 3 2 1 1
237 225 204 168 131 101 62 39 26 17 9 4 4 3 0 0 0

High risk
Low risk

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time (years)

Ri
sk

(d)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4

1 – specifcity

0.6 0.8 1.0

Se
ns

iti
vi

ty

AUC at 1 years: 0.684
AUC at 3 years: 0.656
AUC at 5 years: 0.616

(e)

Patients (increasing risk score)

Patients (increasing risk score)

Su
rv

iv
al

 ti
m

e (
ye

ar
s)

Ri
sk

 sc
or

e

0 100 200 300 400

1

2

3

4

5

6

High risk
Low Risk

Dead
Alive

0 100 200 300 400

0

5

10

15

(f)

Figure 4: Predictive performance of the signature. (a) and (d) Survival analysis in the TCGA and the GEO datasets. (b) and (e) ROC curves
of the signature. (c) and (f) The risk distribution plots in two independent cohorts.

6 Journal of Oncology



with LUAD. LOXL2, which is strongly induced by hypoxia
condition, has been identified to exert its protumor effects
by promoting tumor progression in various cancers, includ-
ing breast cancer, colorectal cancer, cervical cancer, and
LUAD [37, 38]. In LUAD, LOXL2 was demonstrated to con-
tribute to cell surface matrix remodeling and subsequently
bring dissemination of tumor cell aggregates [39]. Protein
tyrosine phosphatases (PTP) family is well known for its role
in regulating tumor cell proliferation, migration, and inva-
sion in pathology of cancers. Chen et al. once validated the
prognostic value of PTPRH in LUAD tissues. The transcrip-
tion as well as the protein level of PTPRH was found to be

noticeably upregulated in LUAD tissues, as demonstrated
by qRT-PCR and immunohistochemistry, respectively [40].
The role of DKK1 in cancer development remains uneluci-
dated. Although DKK1 has been reported to act as a tumor
suppressor in various malignant tumors, opposing results
regarding DKK1 expression and its role in cancer have been
achieved recently [41, 42]. For instance, Zeybek et al.
reported that the expression levels of the DKK1 in early-
stage LUAD tissue were significantly downregulated com-
pared to their counterparts in normal tissues and were
closely related to the tumor progression [43]. Aberrantly
expressed PKP2 has been found in a number of tumors,
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including bladder, osteosarcoma, and ovarian cancers [44,
45]. GSEA analysis revealed that PKP2 expression is posi-
tively associated with EGFR signaling in LUAD. It is worth
noting that studies regarding the precise functions of these
genes in regulating the development of LUAD remain rare
until now, further research should focus on elucidating their
biological functions on the basis of our work.

Molecular mechanisms participating in the regulation of
LUAD were validated using the GSEA analysis. Top five
Hallmarks including “EMT”, “hypoxia”, “glycolysis” “PI3K/
AKT”, and “TGF-β” were observed to be associated with
the prognosis of LUAD patients in our gene signature. Acti-

vation of EMT, characterized by the loss of cell polarity and
the breakdown of basement membrane, can bring mesen-
chymal characteristics to epithelial cells and finally promote
tumor metastasis [46, 47]. EMT can also interact with “hyp-
oxia” and “glycolysis” signaling to induce metabolic repro-
gramming in cancer cells [48]. The tumor progression
renders the nutrients limited supply. As a result, tumors
attempt to adapt to the hypoxia TME by switching to glycol-
ysis from mitochondrial oxidative phosphorylation for their
energy production, which is now known as the Warburg
effect [49]. The involvement of genetic alterations of PI3K/
AKT signaling in promoting the onset and development of
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LUAD has been largely reported [50]. In line with previous
studies, the PI3K/AKT pathway was found to be aberrantly
activated in high-risk LUAD patients. Altogether, these hall-
marks represent attractive therapeutic targets for the detec-
tion of novel anticancer therapies.

Additionally, we determined the distinct immunocyte
infiltration status in high- and low- risk LUAD patients.
M0 macrophages, M2 macrophages, activated CD4 memory
T cells, and neutrophils were enriched in high-risk patients,
whereas memory B cells and resting CD4 memory T cells
were relatively abundant in low-risk patients. Our results
revealed that there may be some existing interactions
between the expression pattern of connexins and infiltration

situation in LUAD patients, which sheds lights on the detec-
tion of novel tumor immunotherapy.

Numerous reports have demonstrated a tight relation-
ship between inflammation and cancer. The inflammatory
component of tumor development involves a various popu-
lation of leukocytes. These immune cells could be served as a
crucial inflammatory contributor to cancer progression by
releasing cytokines, chemokines, and cytotoxic mediators.
Cancer-associated inflammation has impact on malignancies
in many ways, including cell growth, cancer metastasis, and
therapeutic resistance [51]. Although short-term IFN-γ
stimulation can enhance the expression of MHC class I
and antigen presentation in tumor cells, prolonged IFN-γ
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exposure may lead to immune escape. On the one hand,
tumor cells can reduce the IFN-γ-dependent immunosur-
veillance by affecting the expression and activity of IFN-γ,
leading to the occurrence of immune escape. Also, IFN-γ
can activate crucial immune escape genes such as PD-L1
and CTLA-4 [52]. In our data, we found that promoting
inflammation and IFN response were activated in high-risk
group, suggesting patients are prone to be immunosuppres-
sive status. In addition, LUAD cases with high-risk may
benefit from Immuno-Checkpoint Inhibitor (ICI) since
these patients presented higher expression of immune
checkpoints.

However, there are some limitations in our analysis.
The data for building the model were mainly from public
databases. Although the model has been confirmed in two
independent datasets, its reliability still needs further vali-
dation in more real-world cohorts. The expression pat-
terns of six model genes should be detected based on
clinical LUAD specimens. Moreover, various experiments
need to be conducted to explore the underlying molecular
functions and mechanisms of connexin-related biomark-
ers. In the present study, we observed that the risk model
displayed robust predictive power for assessing patient
outcomes and could be stably applied to patients with
LUAD. Furthermore, our constructed model could be
served as a predictor for mirroring immune status of
LUAD cases and provide valuable reference for therapeu-
tic strategies.

In conclusion, we established an effective prognostic
model consist of six genes on the basis of connexins molec-
ular subtypes. Molecular signaling, immune phenotypes, and
immune activities in two risk cohorts were further assessed.
Taken together, our gene signature can help provide poten-
tial therapeutic targets for the different subclusters of LUAD
patients and may aid in helping them choose personalized
immunotherapy.
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