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Abstract: Exercise and cognitive training can improve the brain-related health of the elderly. We
investigated the effects of a cognitive walking program (CWP) involving simultaneous performance
of indoor walking and cognitive training on cognitive function and physical fitness compared to
normal walking (NW) outdoors. Participants were grouped according to whether they performed
regular exercise for at least 3 months prior to the participation in this study. Active participants were
assigned to the CWP-active group (CWPAG). Sedentary participants were randomly assigned to the
CWP (CWPSG) or NW group (NWSG). CWP and NW were performed for 60 min, 3 times a week,
for 6 months. Cognitive function (attention, visuospatial function, memory, and frontal/executive
function) and physical fitness (cardiorespiratory fitness, lower extremity muscular strength, and
active balance ability) were measured at baseline, 3 months, and 6 months after the program onset.
Cognitive function showed improvements over time in all three groups, especially in CWPAG. No
clear difference was observed between CWPSG and NWSG. Improvements in all fitness measures
were also observed in all three groups. These findings collectively indicate the beneficial effects of
CWP, as well as NW, on improving cognitive function and physical fitness in older adults, especially
those who are physically active.
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1. Introduction

Previous studies have demonstrated that physical activity can improve the function
of various body systems, including cardiovascular, metabolic, endocrine, and skeletal
systems [1,2]. In addition, physical activity has been repeatedly shown to prevent neurode-
generative diseases such as Alzheimer’s disease and improve cognitive function [3,4].

Walking is a complex process involving the interaction of neuromuscular, sensory, and
cognitive functions [5], and walking ability is related to improved cognitive and executive
function [6]. Many studies have shown that participation in walking exercises may help to
prevent cognitive decline and lower the risk of dementia. For example, regular long-term
walking in elderly women improved cognitive function and lowered the level of cognitive
decline [7]. In addition, older adults who participated in brisk walking for 2 years showed
relatively improved cognitive function compared to those who did not participate [8],
and increased walking was associated with a lower incidence and risk of dementia [9,10].
However, contradictory findings have also been reported. For example, Eggermount et al.
showed that walking exercise had no beneficial effects for improving cognitive function
in individuals with cognitive impairment [11], and the same authors also reported that
walking has minimal or no effect when cardiovascular risk factors are involved [12].
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Cardiorespiratory fitness (CRF), which refers to the ability of the circulatory and
respiratory systems to supply oxygen to skeletal muscles during sustained physical ac-
tivity, generally decreases with age [13]. However, elderly populations with better CRF
were able to perform better in cognitive tasks [14], especially in tasks requiring executive
functions [15]. Evaluation of executive function requires simultaneous performance of
dual-tasks and two additional tasks, and a dual-task paradigm has been suggested as a
useful method to assess the relationship between brain function and CRF [16]. Based on the
findings of previous studies, exercise, cognitive function, and physical fitness or dual-task
performance level are related, and it is thought that a program that combines exercise and
cognitive training would have beneficial effects on cognitive function in the elderly. In
fact, sequential [17] and simultaneous [18] performance of dual-task cognitive training
improved cognitive function, although a meta-analysis indicated that the overall effect
sizes for combined interventions versus control groups or physical practice alone were
only 0.29 and 0.22, respectively, which are relatively small effects [19].

These findings indicate a need to further develop combined training methods that are
more effective than physical practice alone. Therefore, we developed a cognitive walking
exercise program (CWP), which is a walking-based indoor exercise program designed to
improve cognitive function and fitness in the elderly. CWP is based on the idea of square
stepping exercise [20] but also includes other exercise and cognitive training such as dual-
tasks and visual memory. The dual-task program in CWP requires physical movements
of the upper and lower body, rather than language or arithmetic used in most cognitive
training, which may lead to additional benefits due to its game-like features.

Therefore, the purpose of this study was to assess the effects of CWP on cognitive
function and physical fitness in the elderly compared to normal walking (NW). The specific
aims of this study were as follows: (1) to assess the effects of CWP and NW on cognitive
function and physical fitness, (2) to assess the effects of CWP on active and sedentary
participants, and (3) to assess the time required for changes in cognitive function and
physical fitness to occur.

2. Methods
2.1. Participants

Participants were recruited through two community health care centers in Seoul,
Korea. The inclusion criteria were as follows: (1) at least 65 years old and (2) normal
cognitive function as assessed through Korean mini-mental state examination (K-MMSE).
The exclusion criteria were as follows: (1) a recent history of severe cardiovascular disease,
(2) neurological disease or peripheral disorder affecting movement of their arms and
legs, (3) significant orthopedic conditions limiting mobility, (4) visual impairment, (5)
probable dementia as assessed by K-MMSE (score < 24), and (6) any other factors that could
potentially limit the ability to fully participate in the intervention (e.g., musculoskeletal
problems, severe depression, plans to leave out of town for more than 4 days in a row
during the participation period, etc.).

After recruitment, participants were classified as active or sedentary according to
the Stanford Brief Active Survey (SBAS) [21]. Active participants were assigned to the
CWP-active group (CWPAG), and sedentary participants were randomly assigned to
the CWP-sedentary group (CWPSG) or normal walking sedentary group (NWSG). At
baseline (T0) and after 3 months (T1), there were a total of 75 participants (CWPAG = 31,
CWPSG = 29, NWSG = 15, N = 75). After 6 months (T2), 23 participants had dropped out
of the study for personal reasons (surgery, family problems, injuries, etc.) Therefore, data
from 52 participants (CWPAG = 20, CWPSG = 21, NWSG = 11, N = 52) were used for the
final analysis (Table 1). Table 1 also shows the physical characteristics of the participants.
We measured the body mass index and waist circumference to see if the subject groups had
any differences in terms of their physiques.
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Table 1. Characteristics of study participants.

Group Age (years) Body Mass Index
(kg/m2)

Waist Circumference
(cm)

CWPAG (n = 20) 72.40 ± 3.90 24.2 ± 1.64 86.59 ± 5.19
CWPSG (n = 21) 73.29 ± 4.80 24.42 ± 2.34 86.34 ± 8.41
NWSG (n = 11) 74.45 ± 4.47 25.53 ± 2.13 89.95 ± 6.42

Results are expressed as mean ± standard deviation. CWPAG: cognitive walking program-active group; CWPSG:
cognitive walking program-sedentary group; NWG: normal walking-sedentary group.

All participants signed the consent form prior to the participation in this study, which
was approved by the Institutional Review Board of Sangmyung University.

2.2. Exercise Programs

The subjects who were assigned to CWP performed the physical activity in indoor
classrooms at two community health care centers in Seoul, and those assigned to NW
performed the activity on outdoor trails near the two centers between 2018 and 2019. A
total of six exercise classes were offered at the two health care centers for 2 years. Each
exercise program was conducted three times a week for 60 min per session for 6 months.

2.2.1. Cognitive Walking Program

CWP includes both walking exercise and cognitive training programs and is per-
formed indoors using a specially designed rubber mat. The mat consists of 24 cells
(6 × 4 cells, 180 × 80 cm) with a number assigned to each cell, and the participants are
asked to walk forward, backward, and diagonally according to the numbers shown on
the board placed at the front of the room (Figure 1), which indicate which foot should be
placed in which cell in a proper sequence [22].
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Figure 1. Visual memory program in cognitive walking program (CWP).

CWP consists of three types of walking: cardiorespiratory walking, dual-task walking,
and visual memory walking. Cardiorespiratory walking involves walking patterns that are
focused on improving CRF by moving the lower limbs rigorously and widely (e.g., squat,
lunge, and ad/abduction). Additionally, bending and straightening the knees to strengthen
the lower extremity muscles and side-step motions to change the center of gravity are
included. Dual-task walking involves walking patterns that require the upper and lower
limbs to perform specific movements concurrently. (Here, a dual task is defined as a
task that requires coordination, maintenance, and integration of two tasks [16,23]). Visual
memory walking involves presenting various levels and stages of walking patterns to the
participants and having them perform the exercise based on memory (Figure 1). Three
levels of stepping patterns are available for each type of walking: beginner, intermediate,
and advanced, and each level consists of 15 stages, thus providing 45 different stepping
patterns. The difficulty of the 45 stepping patterns varies based on the complexity of
the arm and/or leg movements required to perform within each stepping pattern. All
participants in CWP started with the easiest stepping pattern (beginner, stage 1) for each
type of walking in the very first session, and they advanced to the next stage/level for each



Healthcare 2021, 9, 419 4 of 10

walking type once they mastered the given stepping pattern. The subjects were instructed
to maintain a moderate intensity (Borg rating of perceived exertion (RPE scale: 12–13).

To determine the feasibility of this program, we had conducted a pilot study, in which
we had 10 older adults participate in CWP for 2 weeks (60 min/session, 3 sessions/week).
Following the 2-week program, all participants filled out a survey and had an interview
with the experimenter. The survey consisted of 10 questions, which asked whether the
intensity of CWP seemed appropriate, whether it seemed to have beneficial effects for
improving balance, muscular strength, and cardiorespiratory fitness and also for improving
memory and cognitive function, whether it was fun enough to continue participating, etc.,
and the responses were assessed using a 5 Likert scale. The overall responses were very
positive, based on which we decided to conduct our current study.

2.2.2. Normal Walking Program

The effects of CWP were compared to those of NW, which was performed on outdoor
trails. Participants assigned to the NWSG walked together with an instructor. Walking
speed was adjusted by the instructor to maintain moderate to somewhat-hard exercise
intensity for the participants (RPE scale: 12–13).

2.3. Measurements
2.3.1. Physical Characteristics

Body mass index (BMI) was determined using body mass and height measurements,
and waist circumference was measured.

2.3.2. Cognitive Function

Cognitive function was evaluated using the Seoul Neuropsychological Screening
Battery (SNSB-II) [24,25] by certified clinical psychologists who had at least 3 years of
experience with administering the SNSB-II. Scores for attention, visuospatial function,
memory, and frontal/executive function were calculated, and T-scores of each variable
were used to analyze these factors.

2.3.3. Fitness Test

CRF, lower extremity muscle strength, and active balance ability were measured
to evaluate the physical fitness of the participants [26]. Cardiorespiratory fitness was
evaluated by measuring the number of times the knee was lifted by 70◦ for 2 min. Lower
extremity muscle strength was measured by the number of times the participants sat and
stood up completely from a chair for over 30 s. Active balance ability was measured by the
time required to run to a target located 3 m ahead, starting from a seated position and then
returning to a seated position on the chair.

2.3.4. Measurement Frequency

All variables were measured at baseline (T0) and at 3 (T1) and 6 months (T2) thereafter.

2.4. Statistical Analysis

A series of one-way ANOVAs were performed to see if there was any significant
difference among the three subject groups in terms of their physical characteristics (age,
BMI, waist circumferences). To test the intervention effects, a mixed-factors ANOVA was
performed with group as a between-subjects factor and time as a within-subjects factor. If
the interaction effect was found to be statistically significant, contrasts of marginal linear
predictions were performed as post hoc analyses to test changes in group differences over
time. For cognitive function, changes in outcome variables over time within each subject
group were examined using contrasts of marginal linear predictions as a priori analyses
(i.e., regardless of whether the group main or interaction effects were significant or not).
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3. Results

One-way ANOVAs indicated that the group main effect was not significant for any of
the physical characteristics (age, BMI, waist circumferences).

3.1. Cognitive Function

Table 2 shows the detailed results of the ANOVA for the four factors of cognitive
function in each subject group measured at T0, T1, and T2. Neither the main effect of group
nor the group × time interaction was significant for any of the four factors. The main effect
of time was significant for all factors except attention, indicating improvements over time
in general.

Table 2. Comparison of cognitive function.

Cognitive
Function Group T0 T1 T2 Group Time Group × Time

Interaction

Attention
CWPAG 49.97 ± 9.17 53.33 ± 8.291 1 54.15 ± 8.35 * F(2) = 0.68,

p = 0.510,
partial η2 = 0.066

F(2) = 1.3,
p = 0.277,

partial η2 = 0.025

F(4) = 0.91,
p = 0.461,

partial η2 = 0.034
CWPSG 48.71 ± 8.22 50.06 ± 11.28 50.93 ± 9.87
NWSG 52.17 ± 8.47 51.93 ± 8.9 51.71 ± 7.24

Visuospatial
function

CWPAG 39.58 ± 17.64 45.12 ± 15.73 50.87 ± 18.8 ** F(2) = 2.41,
p = 0.097

partial η2 = 0.013

F(2) = 4.45,
p = 0.014,

partial η2 = 0.08

F(4) = 1.53,
p = 0.198,

partial η2 = 0.056
CWPSG 46.32 ± 15.08 52.87 ± 7.7 53.99 ± 12.8 *
NWSG 49.97 ± 11.16 55.52 ± 6.28 48.48 ± 15.66

Memory
CWPAG 52.95 ± 8.04 55.85 ± 9.35 * 61.18 ± 12.12 *** F(2) = 0.38,

p = 0.682,
partial η2 = 0.046

F(2) = 47.77,
p < 0.001,

partial η2 = 0.481

F(4) = 0.91,
p = 0.464,

partial η2 = 0.034
CWPSG 48.89 ± 9.83 56.37 ± 11.42 ** 60.33 ± 10.21 ***
NWSG 46.68 ± 6.14 55.74 ± 6.07 *** 58.43 ± 6.34 ***

Frontal/
executive
function

CWPAG 56.26 ± 12.52 57.37 ± 12.77 59.45 ± 14.42 2 F(2) = 0.15,
p = 0.863,

partial η2 = 0.035

F(2) = 6.55,
p = 0.002,

partial η2 = 0.113

F(4) = 0.97,
p = 0.425,

partial η2 = 0.036
CWPSG 57.88 ± 10.11 59.48 ± 11.27 60.02 ± 11.77
NWSG 51.7 ± 16.66 52.75 ± 16.48 58.3 ± 17.59 **

Results are expressed as mean ± standard deviation. CWPAG: cognitive walking program-active group; CWPSG: cognitive walking
program-sedentary group; NWG: normal walking-sedentary group. Significance level of the contrasts of marginal linear predictions vs.
Time 0: 1 p = 0.051, 2 p = 0.057, * p < 0.05, ** p < 0.01, *** p < 0.001.

A priori comparisons revealed significant differences over time within each group. As
shown in Table 2, attention was significantly different between T0 and T1 and between
T0 and T2 in CWPAG. Visuospatial function was significantly different between T0 and
T2 in both CWPAG and CWPSG. Memory was significantly different between T0 and T1
and between T0 and T2 in all three groups. Frontal/executive function was significantly
different between T0 and T2 in a marginal manner in CWPAG, and between T0 and T2
in NWSG.

3.2. Fitness Tests

The ANOVA results for three measures of physical fitness in each subject group
assessed at T0, T1, and T2 are provided in Table 3. Significant group × time interactions
were found for CRF and active balance ability. Post hoc analyses indicated a significant
difference between T0 and T1, and between T0 and T2 for all three groups, but at different
rates, in terms of both CRF and active balance ability. For lower extremity muscle strength,
the main effect of time was significant, indicating an improvement over time. Neither the
main effect of group nor the group × time interaction was significant for lower extremity
muscle strength.
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Table 3. Comparison of physical fitness.

Physical Fitness
Components Group T0 T1 T2 Group Time Group × Time

Interaction

Cardiorespiratory
fitness

CWPAG 113.9 ± 16.41 120.7 ± 10.47 * 135.65 ± 10.52 *** F(2) = 0.52,
p = 0.599,

partial η2 = 0.025

F(2) = 39.82,
p < 0.001,

partial η2 = 0.434

F(4) = 4.26,
p = 0.003,

partial η2 = 0.141
CWPSG 111.71 ± 19.4 124.05 ± 15.15 ** 125.48 ± 22.46 **
NWSG 97.27 ± 10.94 126.82 ± 6.87 *** 127 ± 13.04 ***

Lower extremity
muscular
strength

CWPAG 16.65 ± 2.62 19.6 ± 3.89 24.8 ± 5.05 ** F(2) = 0.24,
p = 0.79,

partial η2 = 0.004

F(2) = 10.91,
p < 0.001,

partial η2 = 0.173

F(4) = 0.39,
p = 0.817,

partial η2 = 0.015
CWPSG 17.67 ± 3.38 19.9 ± 3.02 27.24 ± 26.35 **
NWSG 13.45 ± 2.66 20.55 ± 2.7 22.55 ± 2.5 *

Active balance
ability

CWPAG 7.03 ± 0.98 6.56 ± 1.02 ** 5.56 ± 0.56 *** F(2) = 1.35,
p = 0.266,

partial η2 = 0.069

F(2) = 77.65,
p < 0.001,

partial η2 = 0.599

F(4) = 4.04,
p = 0.004,

partial η2 = 0.134
CWPSG 7.37 ± 1.16 6.5 ± 0.78 ** 5.8 ± 0.74 ***
NWSG 7.82 ± 0.9 5.88 ± 0.69 *** 5.73 ± 0.74 ***

Results are expressed as mean ± standard deviation. CWPAG: cognitive walking program-active group; CWPSG: cognitive walking
program-sedentary group; NWG: normal walking-sedentary group. Significance level of the contrasts of marginal linear predictions vs.
Time 0: * p < 0.05, ** p < 0.01, *** p < 0.001.

4. Discussion

In the current study, we aimed to assess the effects of CWP, compared to NW, on
cognitive function and physical fitness in older adults. The main finding of this study is that
regular performance of CWP can cause long-term improvements in the cognitive function
and physical fitness of the elderly. More factors of cognitive function were improved at T2
than at T1, and additional improvement was observed at T2. Similar effects were observed
in the NWSG.

CWP was originally developed based on the square stepping exercise (SSE) [20]. In a
previous study, SSE improved physical strength and cognitive function in the elderly [27].
However, CWP differs from SSE in that it includes dual-task programs that simultaneously
use lower body and upper body motions to perform stepping for cognitive training. In
addition, the program includes visual memory training, which involves memorizing the
contents of the program at various difficulty levels and recalling the sequence of memorized
stepping. Including cognitive function training benefited CWP participants by improving
cognitive function and feelings of challenge and achievement during the course of the
exercise program [22].

In our study, the group × time interaction for cognitive function was not significant.
Because of that, we cannot determine whether CWP is more beneficial than NW in terms
of its effect on improving cognitive function. However, in CWPAG, all four factors of
cognitive function improved over time, and in CWPSG, visuospatial function and memory
improved. These findings suggest that dual-task training and visual memory training
incorporated into CWP play a positive role in improving cognitive function.

Dual tasks involve attention and executive function processes. It is thought that the
elderly have deteriorated central processing function [28], which is why their dual-task
performance ability is lower than that of young adults [29]. Moreover, analysis of age,
mobility, and cognitive performance has shown that age negatively affected mobility and
cognitive performance. It has also been suggested that dual-task training would be useful
to improve cognitive and motor skills [30], and simultaneous performance of exercise and
cognitive training were more effective than cognitive training or exercise alone [31]. Our
findings are partly in line with this argument by demonstrating that the simultaneous
performance of exercise and cognitive training incorporated in CWP improved the cognitive
function of older adults tested in this study.

With respect to the time required for changes in cognitive function, it varied across
the subject groups and also across the four factors of cognitive function. Improvements in
attention and visuospatial function were observed at T1 and T2, respectively, in CWPAG;
those in visuospatial function were observed at T2 in CWPSG. Improvements in memory
were observed at T1 in all three groups. Finally, it took 6 months (T2) to observe an
improvement in frontal/executive function in CWPAG and NWSG. These findings suggest
that CWP can demonstrate its beneficial effects for improving certain features of cognitive
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function as early as 3 months following the participation in regular exercise. It is interesting
to note here that cognitive function was improved in both CWPSG and CWPAG. In fact, it
is CWPAG who benefited the most from participating in our exercise program in terms of
improving cognitive function, in that this is the only group who showed improvement in
all four factors of cognitive function. Given that the participants in CWPAG have already
been exercising prior to their participation in this study, this finding suggests that while
CWP is beneficial for all, its beneficial effect may be greater for those who exercise regularly
for a longer period of time.

In our study, we did not analyze the mechanism underlying cognitive function im-
provement. However, previous studies have explained that participation in exercise can
improve cognitive function through neurophysiological changes, and these findings sup-
port the results of our study. General aging leads to decreased volume of the corpus
callosum [32], functional changes [33], and decreased volume [34] of the hippocampus,
which is a brain region related to learning and decreased neuronal regeneration and plas-
ticity [35]. As a result, these changes in brain structure and function decrease cognitive
function [36]. However, regular exercise over time increases the production of brain-
derived neurotrophic factor and nerve growth factor, which leads to changes in neuronal
cells and increases neurogenesis [37,38]. These previous studies have shown that long-term
exercise can induce positive changes in the brain, and the results of our study may be
attributed to such changes. In particular, performing exercise and cognitive training at
the same time improved neurogenesis and angiogenesis and upregulated neurotrophic
factor [39], and cognitive training increased neurons and neuronal networks [40]. Thus, ex-
ercise and cognitive training incorporated together in CWP might have shown synergistic
effects [41] to improve cognitive function.

With regard to the changes in physical fitness, improvements in CRF and active
balance ability were observed at T1, and those in lower extremity muscular strength at
T2 in all three groups. These findings indicate that at least 3 months may be required
to improve certain features of physical fitness and that both CWP and NW are effective
exercise methods for improving physical fitness. In particular, improved physical fitness
in our study may be related to improved cognitive function. Lower extremity muscular
strength [42] and grip strength [43,44] are related to cognitive ability. Lower extremity
muscular strength is a key physical factor that can affect mobility, which is also related to
cognitive ability [45]. In addition, higher CRF is related to higher brain function [46], less
structural brain atrophy [47], greater brain activation, and better cognitive function [13,48].
A meta-analysis study reported that exercise intervention is effective in improving cognitive
function [49]. Based on these previous findings, it is thought that improved physical fitness
following CWP and NW had positive effects on the improvement in cognitive function.

In this study, the effect size (partial η2) for significant main effects of time (p < 0.05)
for visuospatial function, memory, and frontal/executive function were 0.08, 0.481, and
0.113, respectively (Table 2), which are medium to large effect sizes [50]. The effect size for
significant main effects of time for cardiorespiratory fitness, leg muscular strength, and
balance were 0.434, 0.173, and 0.599, respectively, which are large effect sizes. These results
indicate that the intensity and duration of the exercise programs employed in the current
study are adequate to improve both cognitive function and physical fitness in older adults
regardless of the type of the program (i.e., CWP, NW).

This study has several limitations. First, we did not include any control group whose
members participated in some programs other than physical activity. Thus, while it is
reasonable to assume that the significant changes observed across different time points
within each subject group can be attributed to CWP or NW, it is possible (though unlikely)
that those changes may be attributed to certain factors other than the exercise programs
per se (e.g., passage of time). Second, we were not able to detect a significant difference
between subject groups, probably due to lack of statistical power. It would have been ideal
if we tested additional subjects, but we were not able to do so because of the pandemic
caused by COVID-19. Third, both CWP and NW were performed for 60 min, 3 times a
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week, for 6 months. However, the two programs may have some differences other than the
involvement of cognitive demands (e.g., the number of steps), which may have contributed
to the observed changes in each group differently. In addition, we did not assess the
physical and physiological demands of each level of exercise in each subject group. The use
of heart rate monitors or triaxial accelerometers during the activity of each program would
have provided more objective assessments of the physical and physiological demands
of each exercise program. Finally, SNSB-II, which was used for cognitive testing, was
administered repeatedly, and its learning effect may have affected the outcome. Moreover,
we did not test for intra- or inter-observer reliability for administering SNSB-II in this study,
although we tried to minimize inter-observer variability by having the same observer test
the same subjects across all three assessments of the SNSB-II. We also tried to have the
same observer test as many subjects as possible.

5. Conclusions

In the present study, significant changes in terms of cognitive function and physical
fitness were observed across three different time points following the subjects’ participation
in both CWP, which involves indoor walking and cognitive training, and NW, which
involves typical walking outdoors. We did not observe a significant difference between the
two exercise programs, possibly due to lack of statistical power. However, our findings
confirm that CWP is an effective exercise method that can improve both cognitive function
and physical fitness, especially for older adults who exercise regularly. These findings
suggest that an exercise program similar to the CWP employed in the current study,
which requires performing cognitively stimulating patterns of upper and lower limb
movements together, can be used for older adults who prefer performing physical activities
indoors. Future studies are warranted to determine the beneficial effects of CWP in
individuals of varying ages (e.g., middle-aged vs. older adults), especially those with mild
cognitive impairment.
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