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Abstract

DC-SIGN receptor articulated by macrophages and dendritic cells is encoded by CD209

gene and plays a role to activate and proliferate the T-lymphocytes in response of virus

attack. The dysfunctional activity of DC-SIGN receptor because of missense SNPs can lead

to cause dengue haemorrhage fever, HIV-1 infection etc. Out of 11 transcripts of CD209, all

missense SNPs of canonical transcript were retrieved from Ensembl database and evalu-

ated by their deleteriousness by using Polyphen-2, PMut, SIFT, MutPred, PROVEAN and

PhD-SNP together with stimulation of its complete 3D structure. 10 nsSNPs were chosen

depending on both the significance value of nsSNP and their prediction among SNPs evalu-

ating servers which are based on different algorithms. Moreover, the position and native role

of 10 nsSNPs in wild 3D model has been described which assist to acknowledge their impor-

tance. This study urges the researcher’s community to experimentally validate these SNPs

and their association in causing the diseases like dengue fever, Tuberculosis etc.

Introduction

CD209 gene encodes dendritic cell-specific intracellular adhesion molecule-3 grabbing non-

integrin (DC-SIGN) receptor which is articulated by macrophages and dendritic cells [1–3]

that participant in innate immune response. DC-SIGN is a soluble transmembrane protein

which belongs to C-type lectin protein family and possesses three renown domains; N-termi-

nal cytoplasmic domain, neck region (encompassing octa 23 amino acids repeats) and a C-

type lectin domain (C-terminal) [4]. CD209 interacts with the surface mannose or
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oligosaccharides moieties of extraneous intruders, including HIV-1, Ebola virus, Cytomegalo-

virus, and Dengue virus, resulting in T-lymphocyte activation and proliferation which in turn

activate the immune response cascade [5, 6]. Several studies have described an association of

single nucleotide polymorphism (SNPs) and human diseases. As SNPs are the prevalent form

of mutation in the human genome and have been reported in coding, non-coding as well as in

intergenic zones [7, 8]. Coding SNPs are either synonymous, having a nucleotide transition

that does not bring about the amino acid shift, or non-synonymous (nsSNPs), a nucleotide

transition concordant with the amino acid shift. nsSNPs. The latter ones are more effective

and can potentially effect protein stability, charge, solubility, structure and function. A small

fraction of nsSNPs is deleterious which are always been a great interest for scientific commu-

nity as being associated to cause various complex diseases in humans [9–11].

Many nsSNPs of non-coding regions of CD209 have been investigated previously, which

were implicated to cause different diseases [12–17]; for instance, promoter region SNP -939 G/

A was found to trigger tuberculosis in Indonesian and African populations [18, 19]. In addi-

tion, one more mutation -336 G/A in promoter region was reported to contribute [20–22] in

parental HIV-1 infections in the European-American population, dengue hemorrhagic fever

in Thailand and Taiwan population [23] and Kawasaki disease in Chinese population [24].

Despite of promoter region, a few mutations are also reported in 3’UTR regions such as

rs2287886 and rs7248637, associated with colorectal cancer [25] and severe form of tick-borne

encephalitis in the Russian population [5]

Based on these infectious threats posed by the nsSNPs reported in non-coding regions, the

present study is aimed to locate nsSNPs in coding regions of CD209 and to narrow down the

list of deleterious nsSNPs by using computational tools. This advantageous study will help to

screen future genotypes and identify the notorious variants in CD209 which can exacerbate

aforementioned diseases.

Methodology

Dataset used for missense SNPs annotation

A list of missense SNPs of CD209 was retrieved from Ensembl database which includes the

reported SNPs of dbSNP and Cosmic database Out of 11 transcripts with different length,

transcript having longest length known as the canonical transcript was selected and further dig

to retrieve all missense SNPs.

Prediction of damaging SNPs

The functional effect of all missense SNPs was predicted by the enlisted software. Table 1 sum-

marizes all servers used in this study to estimate deleterious impact of missense SNPs and to

design CD-209 structure.

Polyphen-2 tool is used to predict the potential effect of the amino acid substitution i.e.,

damaging or benign by utilizing structural and evolution characteristics. The Polyphen-2

score ranges from 0 to 1. If the score is near to 1, missense SNP comes under probably damag-

ing [26].

PMut predicts the severity (pathological or neutral) of the substituted amino acid in a par-

ticular position. PMut relies on sequence alignment and structural factors by using the feed-

forward neural network. The output file is comprised of the confidence index and binary pre-

diction of “neutral” versus “pathological” [27].

SIFT (Sorting Intolerant From Tolerant) web tool uses the protein database by PSI-BLAST

and collects functionally related protein sequences. Subsequently, by sequence alignment, it

PLOS ONE Role of missense SNPs in progressing the CD209 disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0247249 February 26, 2021 2 / 16

https://doi.org/10.1371/journal.pone.0247249


finds out the probability of an amino acid at a particular position. The scores<0.05 are consid-

ered as in-tolerated whereas scores >0.05 are taken as tolerated [28].

MutPred is used to predict the changes in structural features and functional site due to

amino acid substitution. MutPred builds upon the established SIFT method and a gain or loss

of 14 different functional and structural properties. In MutPred results, the G-value ranges

from 0 to 1. Higher the G-value, greater will be the effect of amino acid substitution on struc-

ture and function of protein(s) [29].

PROVEAN uses the primary sequence of target protein and its homologs are searched via

sequence alignment by BLAST in NCBI nr-database. The result of PROVEAN is measured as

PROVEAN score whereas cut-off value is -2.5. amino acid substitution with PROVEAN scores

greater than -2.5 is considered deleterious [30].

PhD-SNP (Predictor of human Deleterious Single Nucleotide Polymorphisms) is an SVM-

based classifier. The output result is tabulated and mentioning the nature of change either del-

eterious or neutral [31].

Table 1. Summary of all software used to find out harmful missense SNPs and their impact on CD-209 model.

Software Category Input method Algorithm Score

PhD-SNP function prediction Protein sequence and

substituted amino acid

along with position

SVM-based method using protein sequence and profile

information

No define category

SIFT function prediction Protein sequence, db

SNP id, protein Id

uses sequence homology, predicts whether an amino acid

substitution affects protein function based on sequence

homology and the physical properties of amino acids

Score ranges from 0 to 1, where< = 0.05

is damaging and >0.05 is tolerated

PolyPhen-2 function prediction Protein sequence, db

SNP id, protein Id

Uses sequence conservation and structure to model

location of amino acid substitution, Swiss-Prot and

TrEMBL annotation

Score ranges from 0 to 1, where< = 0.05

is benign, and >0.05 is damaging

MutPred function prediction Protein id, PS, or

multiple sequence

alignment

Protein sequence-based model using SIFT and a gain/loss

of 14 different structural and functional properties

Score ranges from 0 to 1, where 0 is

polymorphism and high scores are

predicted to be deleterious/disease-

associated

PROVEAN function prediction protein sequence Uses an alignment-based score approach to generate

predictions not only for single amino acid substitutions,

but also for multiple amino acid substitutions, and in-

frame insertions and deletions

the default score threshold is currently

set at -2.5, in which >-2.5 is neutral, and

<-2.5 is deleterious

PMUT function prediction PS and AAS, dbSNP,

Uniprot or PDB ID of

protein

Based on the application of neural networks which uses

internal databases, secondary structure prediction, and

sequence conservation

Score ranges from 0 to 1, where <0.50 is

neutral and >0.50 is disease associated

I-TASSER Structure prediction protein sequence identifies structural templates from the PDB by multiple

threading approach LOMETS, with full-length atomic

models constructed by iterative template-based fragment

assembly simulations

C-score ranges from -5 to 2, greater the

score means higher the global topology

ModRefiner 3D model refinement pdb model of protein uses an algorithm for atomic-level, where conformational

search is guided by a composite of physics- and

knowledge-based force field

I-Mutant protein stability protein pdb model,

protein sequence

SVM based predictor for protein stability changes upon

single point protein mutation starting from structural

informations

ConSurf estimating the

evolutionary

conservation of amino

protein sequence Carries out a search for close homologous sequences. A

multiple sequence alignment (MSA) of the homologous

sequences is constructed, Position-specific conservation

scores are computed using the empirical Bayesian

First six servers are SNPs evaluating software used to check the deleteriousness of missense SNPs. These softwares used different algorithm at backend and predict one

SNPs as damaging or benign by giving one score to each SNPs. CD-209 model generated by I-TASSER is further refined by ModRefiner server, and amino acid

conservation at a specific place is determined by conservation score predicted by Consurf server.

https://doi.org/10.1371/journal.pone.0247249.t001
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3D structure prediction of CD209 protein

The 3D structure of wild type and mutated proteins was simulated by using I-TASSER based

on iterative-threading approach [32]. Since the crystal structure of C-lectin domain of CD209,

involved in recognition and binding to sugar moiety present on the surface of pathogens is

available in PDB database, however, yet its complete structure in not resolved. So, a complete

3D model is designed by I-TASSER server.

Energy minimization and validation of wild-type and mutant models

Wild-type and all mutated models were refined by ModRefiner which refine the structure to

atomic levels and remove worse psi and phi angles [33]. These minimized models were evalu-

ated by RAMPAGE used to form the Ramachandran plot, important to check protein quality.

Predicting the stability change of mutated models

I-MUTANT 3.0 is used to predict protein stability during point mutation. This tool retrieves

data from ProTherm, a database providing experimental proved free energy change of protein

stability upon point mutation. The input file is comprised of protein sequence along with new

residue and position number for obtaining the free energy change [34].

Conservation analysis

Evolutionary conservation of residues features the historical importance in a specific place and

any alternation can disturb the normal function of proteins. To calculated the evolutionary

conservation of amino acids, the ConSurf server was used which estimate the preservation

sequence homology [35]. It shows the conservation score from 1 to 9, where residue with max-

imum score i.e., 9 is highly conserved. It only requires the FASTA sequence of the gene.

Results and discussion

Missense SNPs retrieval and annotation

Canonical transcript of CD209 encompassed total 693 SNPs, including 27 stop gained, 17

frameshift, 137 synonymous SNPs and 227 missense SNPs. We selected the missense SNPs

which were further evaluated by SNPs evaluating online servers. These servers are used to

identify and differentiate the deleterious missense SNPs from benign. The Polyphen-2 catego-

rized 135 missense SNPs out of 227 as possibly or probably damaging which counted 60% of

total number of SNPs while remaining 40% were represented as benign. According to neural

network based PMut, 167 SNPs were neutral, i.e., they will not damage the protein structure

and function, and only 60 SNPs met the criteria of being deleterious. Similarly, according to

SIFT prediction, 127 damaging missense SNPs weighed 56% of total number of SNPs and 100

candidates were identified as normal. PROVEAN server that uses the alignment-based predic-

tion of substitution represented 68 SNPs (28%) under damaging category whereas 78% (159

SNPs) were shown as neutral. Likewise, 82 and 28 missense SNPs were concluded as deleteri-

ous by using algorithm of the PhD-SNP and MutPred respectively. As all these online server

uses different models at backend to predict the pathogenicity of SNPs, so varying number of

damaging SNPs were predicted by each server S1 Table. At end, there were a total 27 SNPs

which were predicted pathogenic by all the servers Table 2.

Because SNPs servers used different scale to generate scores value of SNPs along with pre-

diction, to better utilize the predicted scores, we adopted a way to build a composite quantita-

tive score that objectively combines the scores value into single value that can further be used

to rank the various nsSNPs. Two methods were employed for getting composite score, which
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included; 1) performing a principal component (PC) analysis (PCA) method developed by

Wijndaele and colleagues [36]; 2) zero-phase components analysis” (ZCA), developed by Bell

and Sejnowski [37]. PCA analysis of Wijndaele and colleagues includes two-step process A)

identifying the PCs with eigenvalues greater than 1; and B) summing the varimax rotated PC

scores, and the analysis of PCA followed by varimax rotation is known as PC factor analysis

(PCFA). We slightly modified the PCs selection stage not only to explain the PCs

explaining > 80% the total variance but also on eigenvalues greater than 1. The first, second

and third PCs were showing percent variance of 52.1, 20.7 and 11.4, respectively, so under

PCFA1, the first two PCs were weighted by their percent variance, while under PCFA2, the

first three PCs were selected. ZCA was also used to obtain a composite quantitative score, aim-

ing to whitening the data i.e., decorrelating, and more recently, the ZCA approach has been

used quite heavily in bioinformatics and omics analyses, especially in the work of Strimmer

Table 2. List of 27 most deleterious missense SNPs along with their software scores.

Mutations PhD-SNP PhD-SNP

score

PolyPhen-2 PolyPhen-2

score

PMut PMut

score

PROVEAN PROVEAN

score

SIFT SIFT

score

MutPred MutPred

score

D320Y Dis 7 Dam 1 Patho 0.6189 Dele -8.03 Dam 0.006 Patho 0.838

D331H Dis 5 Dam 1 Patho 0.7431 Dele -6.36 Dam 0 Patho 0.828

D366A Dis 7 Dam 1 Patho 0.7026 Dele -7.18 Dam 0.001 Patho 0.853

D366N Dis 5 Dam 1 Patho 0.6864 Dele -4.49 Dam 0.001 Patho 0.78

E299K Dis 7 Pro. Dam 0.999 Patho 0.62 Dele -3.78 Dam 0 Patho 0.885

E347K Dis 7 Dam 0.998 Patho 0.6935 Dele -3.39 Dam 0.011 Patho 0.787

E358A Dis 2 Dam 1 Patho 0.5675 Dele -5.27 Dam 0.009 Patho 0.759

E358K Dis 2 Pro. Dam 1 Patho 0.67 Dele -3.51 Dam 0.01 Patho 0.681

F302V Dis 3 Dam 0.995 Patho 0.6833 Dele -6.28 Dam 0.001 Patho 0.723

G265R Dis 6 Poss. Dam 0.953 Patho 0.63 Dele -6.24 Dam 0.01 Patho 0.614

G317E Dis 8 Dam 1 Patho 0.7982 Dele -7.23 Dam 0 Patho 0.861

G332S Dis 7 Dam 1 Patho 0.6919 Dele -4.91 Dam 0.008 Patho 0.767

G346E Dis 5 Dam 1 Patho 0.7274 Dele -6.92 Dam 0.001 Patho 0.679

G346R Dis 6 Dam 1 Patho 0.7092 Dele -6.92 Dam 0.004 Patho 0.678

L291F Dis 7 Dam 1 Patho 0.8101 Dele -3.64 Dam 0 Patho 0.63

L318F Dis 7 Dam 1 Patho 0.6951 Dele -3.64 Dam 0 Patho 0.586

L318P Dis 8 Dam 1 Patho 0.7982 Dele -6.37 Dam 0 Patho 0.899

M316T Dis 5 Dam 1 Patho 0.5071 Dele -5.04 Dam 0.001 Patho 0.532

P348L Dis 6 Pro. Dam 1 Patho 0.7 Dele -8.98 Dam 0 Patho 0.877

R251C Dis 7 Dam 0.999 Patho 0.51 Dele -5.61 Dam 0.015 Patho 0.509

S280F Dis 9 Pro. Dam 1 Patho 0.8 Dele -4.98 Dam 0 Patho 0.841

S296I Dis 5 Dam 0.971 Patho 0.7546 Dele -5.1 Dam 0 Patho 0.734

S308F Dis 5 Poss. Dam 0.886 Patho 0.52 Dele -4.62 Dam 0.03 Patho 0.636

S333L Dis 5 Pro. Dam 1 Patho 0.75 Dele -5.31 Dam 0 Patho 0.808

W260C Dis 6 Dam 1 Patho 0.829 Dele -11.77 Dam 0 Patho 0.922

W315R Dis 8 Dam 1 Patho 0.7982 Dele -12.71 Dam 0 Patho 0.859

W343G Dis 8 Dam 1 Patho 0.829 Dele -11.61 Dam 0.002 Patho 0.896

These 27 missense SNPs were called most deleterious by all the servers, which assign a special score to each SNPs depending on the algorithm used to predict functional

impact. We used short form of words, such as Dis = Disease, Dam = Damaging, Pro. Dam = Probably damaging, Poss. Dam = Possibly damaging, Patho = Pathogenic,

Dele = Deleterious. As all these servers have different specificity and sensitivity to detect damaging SNPs, we have assigned 25% weightage sore to PMut, MutPred and

PROVEAN result, where 12.5% weightage is given to PolyPhen-2 and SIFT. In criteria we did not include the PhD-SNP server because it does not have any define cut-

off value to differentiate benign from damaging missense SNPs.

https://doi.org/10.1371/journal.pone.0247249.t002
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and colleagues [38–40]. Out of 5 best known whitening approaches, Kessy et al. (2018) [41]

suggested that the ZCA-cor whitening matrix (where “-cor” refers to a ZCA derived from a

correlation matrix) had the best properties of decorrelating the data while being maximally

similar to the original variables.

From these new composite scores, p-values based on a two-sided hypothesis test using the

standard normal distribution (i.e., a two-tailed z-test) was obtained followed by rubric in Ben-

jamini et al. (2001) [42] for controlling the Benjamini-Hochberg (BH) false discovery rate

(FDR) at 0.05, which is a current way to account for multiple hypothesis testing but is not

nearly as conservative as the Bonferroni procedure of dividing the p-values by the number of

tests [43].

Results for the top 20 ranked p-values, where the lowest p-value receives the highest rank of

1, were reported in Table 3. Following the rubric of Benjamini et al. (2001) of starting from the

bottom of the list and proceeding upward while comparing the FDR-interval value to the cor-

responding p-value, we declared significance starting at the first instance where the FDR-inter-

val value is greater than the corresponding p-value. For the PCFA1 and PCFA2 scores, the top

4 SNPs gave rise to significant results on controlling for multiple testing by the BH FDR. Con-

versely, no SNP for the ZCA-cor scores remained significant. Further, there was very little

overlap between the top 20 SNPs for PCFA1 and PCFA2 on the one hand in comparison to

those for ZCA-cor on the other.

Lastly, a dichotomous variable called “Consensus”, scored 1 if the SNP was one of the 27

(predicted deleterious), 0 otherwise, was created which followed by logistic regression analysis

as the outcome and the PCFA1, PCFA2, and ZCA-cor scores as the predictors. Using the

“drop 1” sequential variable selection method [44], a best model with just PCFA2 and ZCA-

cor as predictors was finalized. Using this model, a receiver operator characteristic (ROC)

Table 3. Results for PCFA1, PCFA2, and ZCA-cor composite scores.

Mutation PCFA1 p-value� Mutation PCFA2 p-value Mutation ZCA-cor p-value rank FDR_int

W315R 4.63 1.86E-06 W315R 4.47 3.99E-06 W258R -2.5 0.0063 1 0.00011

W343G 4.19 1.38E-05 W343G 4.06 2.42E-05 E299K 2.48 0.0065 2 0.00022

W260C 3.98 3.52E-05 W260C 3.86 5.63E-05 E347K 2.41 0.008 3 0.00033

C256Y 3.56 0.0002 C256Y 3.48 0.0003 S280F 2.29 0.011 4 0.00044

P348L 2.87 0.002 P348L 2.84 0.0023 R198Q 2.19 0.0142 5 0.00055

D320Y 2.64 0.0042 D320Y 2.62 0.0044 D279V -2.19 0.0143 6 0.00066

G317E 2.46 0.0069 G317E 2.46 0.007 R221Q 2.18 0.0145 7 0.00077

W258R 2.38 0.0088 D366A 2.31 0.0104 H40R -2.16 0.0155 8 0.00088

D366A 2.3 0.0106 L318P 2.14 0.016 M166L 2.09 0.0185 9 0.00099

L318P 2.12 0.0168 W258R 2.13 0.0165 K285Q 2.07 0.019 10 0.0011

G346R 2.06 0.0196 G346R 2.09 0.0185 G55E -2.06 0.0196 11 0.00121

G346E 1.92 0.0273 S307T -2.04 0.0207 N276D -2.06 0.0198 12 0.00132

S307T -1.92 0.0277 G346E 1.96 0.0252 I281V 2.04 0.0208 13 0.00143

G265R 1.79 0.0365 G265R 1.82 0.0347 I67L 1.99 0.0233 14 0.00154

S280F 1.72 0.0431 S280F 1.76 0.0388 P42L -1.97 0.0243 15 0.00165

D331H 1.7 0.0445 D331H 1.75 0.04 E191K 1.95 0.0255 16 0.00176

R275W 1.7 0.0445 R275W 1.75 0.04 V293I 1.94 0.0264 17 0.00187

R251C 1.68 0.0461 R251C 1.74 0.0413 W152R 1.91 0.0279 18 0.00198

I146T -1.5 0.0672 I146T -1.59 0.0555 R73K 1.88 0.03 19 0.00209

G332S 1.41 0.0795 D367N -1.54 0.0613 L291F 1.84 0.0326 20 0.0022

�p-values remaining significant while controlling for the FDR at 0.05 are bolded.

https://doi.org/10.1371/journal.pone.0247249.t003
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curve analysis was performed to compare the relative performance of PCFA2 and ZCA-cor at

predicting the Consensus variable (Fig 1; Table 4). The ROC curve analysis merely shows that

these composite quantitative scores are good predictors of the dichotomous Consensus vari-

able, so we can use these models to predict the deleterious missense SNPs. The real test, how-

ever, regarding their efficacy and utility would be in regard to predicting a dichotomous

disease susceptibility or resistance variable. For instance, C256Y mutation is ranked 4th in

PCFA1 and PCFA2 but MutPred server predicted it neutral and similarly W258R is ranked

8th in PCFA1 but it was called damaging only by PROVEAN. This statistical analysis helps us

to rank the nsSNPs according to their significance scores, but we judged this ranking accord-

ing to prediction of servers also. Interestingly, out of top 20 ranked nsSNPs by PCFA2, 14

mutations were exactly those present in Table 2. i.e., unanimously selected. We decided to pro-

ceed for further biological analysis by selecting those top 10 mutations that secured high rank

Fig 1. Receiver Operator Characteristic (ROC) curves for 3 logistical regression models. Full model (blue curve): PCFA2 and ZCA-cor composite scores are

predictors. PCFA2 Model (red curve). ZCA-cor Model (green curve).

https://doi.org/10.1371/journal.pone.0247249.g001

Table 4. Area under the curve per model with their 95% confidence intervals.

Model AUC 95% Lower Bound 95% Upper Bound

Full Model 0.9974 0.9974 1

PCFA2 Model 0.9735 0.9735 0.9922

ZCA-cor Model 0.76 0.76 0.8579

https://doi.org/10.1371/journal.pone.0247249.t004
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in PCFA2 (best model in ROC) and also predicted pathogenic by all servers. These mutations

were W315R, W343G, W260C, P348L, D320Y, G317E, D366A, L318P, G346R and G346E.

I-TASSER generated five structures having a C-score (confidence score). C-score is based

on the significance of threading template alignments and the convergence parameters of the

structure assembly simulations. C-score typically ranges from -5 to 2 and 3D models with low

C-score were considered as the best model. Out of five predicted models, a model having C-

score -2.51 was selected, and its quality was assessed by ERRAT server. Moreover, I-TASSER

Fig 2. Complete 3D structure simulated by I-TASSER. Complete CD209 structure is colored according to secondary protein structures. In this structure, red color

shows the location of alpha-helixes and turquoise of beta-sheets. The one part with yellows color represents the C-Lectin domain involved in ligand binding.

https://doi.org/10.1371/journal.pone.0247249.g002
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output also included the ligand binding site, which constituted residues 311, 347, 349, 350,

358, 365, 366, 367 and 373, by using the GQ2 (6-O-alpha-D-glucopyranosyl-4-O-sulfo-alpha-

D-glucopyranose) as a ligand. Interestingly, Cys256 and Cys284 formed a disulfide bridge with

Cys267 and Cys377, respectively, in 3D structure and considered important to maintain the

3D globular structure. After the refinement, a total of 350 residues (87.1%) resided in the

favored region whereas 48 (11.9%) and only 4 (1%) were in allowed and outlier regions,

respectively. 3D structure of CD209 protein is shown in Fig 2 along with the results of Rama-

chandran plot Fig 3.

Effects of SNPs on protein stability

Protein stability is a net balance of forces which determine whether a protein will be in native

folded form or denatured. A ΔΔG prediction by I-Mutant showed that 8 nsSNPs decreased

protein stability (ΔΔG< 0), whereas remaining 2 variants can increase protein stability

(ΔΔG> 0). In addition, the solubility, charge, and polarity analysis were also carried to check

the chemical properties of substituted residues. Out of all, 9 substituted residues had changed

the solubility factor by having hydrophilic, hydrophobic and neutral character, showing

reverse characteristics of native residue. In case of charge analysis, 6 residues highlighted

where replacement to other residue can alter charged-on protein by having positively, nega-

tively or uncharged feature, and 5 residues were mutated to entities having polar or non-polar

behavior i.e., inverse of native residue Table 5.

Phylogenetic conservation

Conservation analysis is performed to monitor the conservation of residue at the position than

non-conservative site. Amino acids found conserved in proteins are considered essential for

protein activity and their mutation can abolish the protein activity completely. Top 10 ranked

missense SNPs were highly conserved with a score between 7 and 9 Table 6. Evolutionary con-

served residues play an important role either in formation of ligand domain, maintenance of

core region or involved in 3D structure formation. Together with it, we also screened the effect

of missense SNPs on protein structure by Ramachandran plot analysis. Normally, good quality

proteins adjust their psi and phi angles in order to get a compact 3D form and their most resi-

dues lie in favourable or allowed regions, having small number of outliers. For all 10 missense

SNP, we designed the mutated models and run through the RAMPAGE software which had

shown that different number of residues lie in favourable, allowed and outlier regions Table 6.

The C-lectin domain of CD209 is the core site for recognition and binding of carbohydrate

moieties of pathogens and our results suggested that mostly deleterious nsSNPs were anno-

tated in C-lectin domain only, where wild type residues can develop interactions with ligands

as well as may involve maintaining the conformation. we also assessed the interactions devel-

oped by substituted residues with neighbouring amino acids.

D320Y, D366A. Wild-type aspartic acid is a negatively charged and polar amino acid, so

it prefers to be present on protein surface but can also be present in buried area of protein

where it involves forming salt-bridges by interacting with positively charged amino acids and

creates stabilized hydrogen bonds that can be important for protein stability. Importantly,

aspartic acid residues at 320 and 366 position were highly conserved with Consurf score of 9,

which indicates that substitution at these positions will results in harmful effect on proteins

structure and function. Asp320 was contributing to CD-209 structure stability by forming

hydrogen bonds with Asp355, Asn322, Gln323 and Gly325, and its replacement to hydropho-

bic tyrosine at 320 position results in breakage of hydrogen bond with Gly325 and formation

of an electrostatic interaction with Asp366. Missense SNPs that result in change of Asp366
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with alanine was also predicted deleterious by our study. Asp366 forms a hydrogen bond with

Pro348, and when we replaced Asp366 with alanine, it caused breakage in hydrogen bonds

with Pro348 Fig 4.

Fig 3. Ramachandran plot of complete model. This model shows the number of residues in the favored, allowed and outlier region. As mostly glycine has two

hydrogen atoms attached to its side chain so if it lies in outlier region, it does not affect the overall 3D structure.

https://doi.org/10.1371/journal.pone.0247249.g003

PLOS ONE Role of missense SNPs in progressing the CD209 disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0247249 February 26, 2021 10 / 16

https://doi.org/10.1371/journal.pone.0247249.g003
https://doi.org/10.1371/journal.pone.0247249


G265R, G317E, G346E. Hydrophobicity and small size of Glycine make it unique residue

in protein because torsion angles formed by glycine are unusual and can only be formed by

glycine. It contains only hydrogen atom on its side chain, thus providing conformational flexi-

bility to CD-209 protein. It mostly resides in loops and tight turns of proteins where other

amino acids are forbidden; therefore, wild-type glycine residues showed conservation in CD-

209 structure with Consurf score 8 (highly conserved). Gly265 formed two hydrogen bonds

with CD-209 residues Phe263 and Ala381. Glycine changing with amino acid larger in size dis-

rupts conformation of protein. Both hydrogen bonds were also established by replaced

Arg265, which also developed two extra hydrogen bonds with each Glu260 and Asn266. Two

hydrogen bonds constituted by Gly317 with Val292 and Val330 were not only retained by

substituted glutamic acid but also it constituted one extra hydrogen bond with Leu291;

thereby, glycine replacement to positive charged hydrophilic glutamic acid would disturb the

torsion angles. In addition, no hydrogen bond was observed formed by Gly346 Fig 5.

L318P, P348L. Leucine is hydrophobic residue and found in buried cores of proteins,

where it rarely directly involves in protein function because of non-reactive side chain and

Table 5. Effect of deleterious SNPs on protein stability along with their solubility, charge and polarity properties.

Rank Mutations I-mutant Solubility Charge Polarity

1 W315R Decrease Hydrophobic Hydrophilic uncharged positively charged Non-Polar Polar

2 W343G Decrease Hydrophobic Neutral uncharged uncharged Non-Polar Non-Polar

3 W260C Decrease Hydrophobic Hydrophobic uncharged uncharged Non-Polar Non-Polar

4 P348L Decrease Neutral Hydrophobic uncharged uncharged Non-Polar Non-Polar

5 D320Y Increase Hydrophilic Neutral negatively charged uncharged Polar Polar

6 G317E Increase Neutral Hydrophilic uncharged negatively charge Non-Polar Polar

7 D366A Decrease Hydrophilic Hydrophobic negatively charged uncharged Polar Non-Polar

8 L318P Decrease Hydrophobic Neutral uncharged uncharged Non-Polar Non-Polar

9 G346E Decrease Neutral Hydrophilic uncharged negatively charged Non-Polar Polar

10 G265R Decrease Neutral Hydrophilic uncharged positively charged Non-Polar Polar

https://doi.org/10.1371/journal.pone.0247249.t005

Table 6. Ramachandran analysis of all the mutated models in addition to evolutionary conservation score predicted by ConSurf.

Missense

SNPs

Ramachandran Plot Analysis ConSurf Conservation Score

Number of residues in favoured

region

Number of residues in allowed

region

Number of residues in outlier

region

W315R 336 (83.37%) 38 (9.43%) 29 (7.20%) 7

W343G 336 (83.37%) 38 (9.43%) 29 (7.20%) 7

W260C 336 (83.37%) 38 (9.43%) 29 (7.20%) 7

P348L 335 (83.33%) 39 (9.70%) 28 (6.97%) 8

D320Y 336 (83.58%) 37 (9.20%) 29 (7.21%) 9

G317E 335 (83.33%) 38 (9.45%) 29 (7.21%) 8

D366A 336 (83.37%) 38 (9.43%) 29 (7.20%) 9

L318P 333 (83.08%) 37 (9.20%) 31 (7.71%) 8

G346E 336 (83.37%) 38 (9.43%) 29 (7.20%) 8

G265R 336 (83.58%) 37 (9.20%) 29 (7.21%) 8

Plot software to assess the impact of each SNP on overall protein structure. Many deleterious SNPs changes the number of amino acids in outlier region, which mean

that when substituted they change conformation in CD-209 model, results in psi- and phi angle disruption. Moreover, high Consurf conservation score means that the

respective residue is highly conserved at that position, and interestingly, majority of these damaging SNPs are conserved in CD-209.

https://doi.org/10.1371/journal.pone.0247249.t006
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helps in recognizing substrates molecules. Leucine residue at 318 showed Consurf score of 8,

proposing its conservation at these positions. Leu318 was involved in making two hydrogens

bonds with Met316 and Ala357 and seven hydrophobic interactions with Trp329, Met316,

Leu335, Ala357, Trp327 and Trp364. Although hydrophobic in nature, proline318 substitution

resulted in breakage of one hydrogen bond with Met316 and other hydrophobic interactions

with Leu335, Trp327 and Trp364 Fig 6.

The proline is the only secondary amine, whose side chain is connected to protein back-

bone twice. In protein structures, proline introduces Kinks into alpha helix because it is unable

to adopt normal helical shape and mostly reside in tight turns in protein structures. Although

predicted conserved, Pro348 did not develop any type of interaction in CD-209 model, but

three hydrophobic interactions come up with Trp343 and Trp327 by substituted Leu348 Fig 6.

W260C, W315R, W343G. Tryptone is an aromatic and hydrophobic residue that prefers

to be buried in protein hydrophobic core. It generally involves in stacking interactions with

other aromatic side chain in protein structure. Total three hydrogen bonds with Pro257 and

Trp258 and two hydrophobic interactions with Pro257 and Cys377 are produced by side chain

of Trp260. Out of all interactions, only interactions with Pro257 were survived by replaced cys-

teine that also constituted an additional hydrophobic interaction with Cys256. Trp315 is an

Fig 4. Hydrogen bonds and other interaction created by substituted amino acid at 320 and 366 positions in CD-209. The substituted amino acids are represented in

green color, which form interaction with other surrounding residues colored differently. Moreover, green color is also selected to indicate hydrogen bond, whereas other

bond colors represents other hydrophobic or electrostatic interactions.

https://doi.org/10.1371/journal.pone.0247249.g004

Fig 5. Replacement of Glycine at 265, 317 and 346 positions with respective residues and their hydrophobic and hydrogen bonds interactions.

https://doi.org/10.1371/journal.pone.0247249.g005
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important residue at this position because it participated to create seven hydrogens bonds,

four hydrophobic and one electrostatic interaction. Out of these hydrogen bonds of Trp315

with Phe374, Arg275, Ile376, Ser280 and Lys373, only four hydrogen bonds with Phe374,

Ile376 and Ser280 and one extra bond with Leu371 were originated by side chain of substituted

arginine residue. In addition, two hydrophobic interactions of substituted Arg315 with Leu291

and Trp277 also existed, which did not match with interactions formed by Trp315 with

Lys373, Cys356 and Glu358. Lastly, Trp343 could only make one hydrogen bond with Lys340

along with five hydrophobic interactions with Trp327, Lys340 and Pro348. Unfortunately,

when substituted Trp343, Gly343 only developed one hydrogen bond with Lys340 and broken

all other hydrophobic interactions Fig 7.

Conclusion

The role of missense SNPs leading to development of several diseases has always been under

discussion demanding their rapid identification to understand the origin of pathologies. In lit-

erature, numerous missense SNPs in DC-SIGN receptor involved to capture the external

intruders by interacting with their glycan moieties have reported that lead into causing HIV,

dengue haemorrhage fever, etc. This research highlights the new missense SNPs snubbed in lit-

erature by their identification by using bioinformatics approach. Furthermore, it also exposes

Fig 6. Hydrogen bonds, hydrophobic and electrostatic interaction of substituted amino acids at 318 and 348 positions.

https://doi.org/10.1371/journal.pone.0247249.g006

Fig 7. Hydrogen bond and other hydrophobic and electrostatic interactions created by substituted residues at 260, 315 and 343 positions in CD-209 model.

https://doi.org/10.1371/journal.pone.0247249.g007
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the structural position of substituted residues and damage by their replacement in term of

energy stabilization and interaction to other residues. The paper can be a great interest for

immune diseases specially caused by impairment of DC-SIGN receptor.
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