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Abstract
Immune checkpoint blockade (ICB) has become one of the most promising ap-
proaches to activating antitumor immunity. However, only a small subset of patients 
with breast cancer benefit from ICB treatment. To improve the therapeutic effect in 
the clinic, precision immunotherapy is proposed to accurately eliminate cancer stem 
cells that contribute to local recurrence or metastasis, but currently little is known 
about their immunological properties. In this study, breast cancer–specific datasets 
in The Cancer Genome Atlas were collected and analyzed by using multiple open-
access web servers. We found that the immunophenotype of breast cancer was char-
acterized by a hypoactive immune microenvironment and a low response to immune 
checkpoint blockade. The innate immune checkpoint CD200 and the adaptive im-
mune checkpoint CD276, respectively, exhibited a strong correlation with basal/stem 
gene signature and invasiveness gene signature, both of which represent breast cancer 
stem cells. Wnt, TGF-β, and Hedgehog signaling, which are recognized as stemness-
related pathways, showed a significant association with the expression of CD200 and 
CD276, suggesting cancer stem cell–specific immune checkpoints could be downreg-
ulated by inhibiting these pathways. Of note, levels of CD200 and CD276 expression 
were higher in TGF-β dominant breast cancer than in other immune types of breast 
cancer. We also identified gene signatures that represent Wnt, TGF-β, and Hedgehog 
signaling-related CD200 and CD276 expression in breast cancer stem cells. For the 
luminal A subtype, the patient group with a high level of these gene signatures plus 
a low infiltration of CD8+ T cells, or dendritic cells, or M1 macrophages had poor 
overall survival. Our study suggested that CD200 and CD276 are candidate inhibi-
tory immune checkpoints in breast cancer stem cells, which are potentially regulated 
by Wnt, TGF-β, and Hedgehog signaling. Synergistic inhibition of these stemness-
related pathways may improve the efficacy of ICB treatment targeting breast cancer 
stem cells in precision immunotherapy.
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1  |   INTRODUCTION

The concept and practice of modern immunotherapy have 
brought a new era for cancer treatment modalities previously 
limited to surgery, radiotherapy, chemotherapy, and hormone 
or targeted therapy. Immune checkpoint blockade (ICB) as a 
first-line or second-line therapy has been shown to provide 
a survival advantage in the clinical management of mela-
noma,1,2 Hodgkin's lymphoma,3,4 lung cancer,5,6 and colon 
cancer.7 In the setting of breast cancer, the first breakthrough 
for clinically applied ICB was reported in the IMpassion130 
trial where atezolizumab plus nab-paclitaxel prolonged 
progression-free survival among patients with metastatic 
triple-negative breast cancer.8 Unfortunately, the benefit of 
anti-PD-L1 antibody is restricted to patients whose tumors 
have ≥1% PD-L1-positive tumor-infiltrating lymphocytes.8 
Despite progress in a subtype of breast cancer with limited 
therapeutic options, the current limitations of immunotherapy 
in the treatment of breast cancer are inevitably highlighted.

A comprehensive comparison of the immune microenvi-
ronment among common types of cancer shows that lower 
responsiveness to ICB in breast cancer is partially explained 
by its immunological quiescence characterized by a low 
mutational burden and a paucity of tumor-infiltrating lym-
phocytes.9,10 On the other hand, the precise elimination of 
cancer's source—cancer stem cells—by immunotherapy has 
not been implemented to improve the therapeutic effect in the 
clinic. Cancer stem cells constitute a rare population of ma-
lignant cells endowed with self-renewal and tumor-initiating 
capabilities,11,12 and, more importantly, may function as an 
indispensable reservoir for tumor relapse following radical 
surgery and adjuvant therapy.13,14 Since stem cells are im-
mune privileged in specialized niches,15 long-living cancer 
stem cells may escape from immunosurveillance while more 
differentiated cancer cells are constantly eliminated. The 
recent report that adaptive immune privilege emerges from 
melanoma-initiating cells16 has demonstrated the immuno-
logical properties of cancer stem cells. It is also possible that 
breast cancer stem cells may drive local recurrence or dis-
tant metastasis as deadly seeds through immune checkpoint-
mediated immune evasion. However, currently little is known 
about cancer stem cell immunology.

Here, we used the datasets of breast invasive carcinoma 
from The Cancer Genome Atlas (TCGA) to identify cancer 
stem cell–specific inhibitory immune checkpoints in breast 
cancer. Since attenuation of the stemness of breast can-
cer cells may downregulate the expression of their immune 
checkpoints, we also determined the regulatory pathways 
associated with stemness and immune checkpoints, and con-
structed gene signatures, which represent Wnt, TGF-β, and 
Hedgehog signaling-related CD200 and CD276 expression in 
breast cancer stem cells, to predict the prognosis of patients 
with breast cancer. In-depth knowledge of cancer stem cell 

immunology in breast cancer will be helpful for the design of 
efficient immunotherapies targeting breast cancer stem cells 
to prevent and treat cancer recurrence and metastasis.

2  |   METHODS

2.1  |  Study cohorts

The datasets of patients were from TCGA, which were col-
lected by multiple open-access web servers for bioinformatic 
analysis, including The Cancer Immunome Atlas (TCIA), 
Gene Expression Profiling Interactive Analysis 2 (GEPIA2), 
The cBio Cancer Genomics Portal (cBioPortal), Tumour 
Immune Estimation Resource 2 (TIMER2), and TISIDB. 
TCIA includes bladder urothelial carcinoma (BCLA, 
n  =  412), breast invasive carcinoma (BRCA, n  =  1098), 
squamous cell carcinoma and endocervical adenocarcinoma 
(CESC, n = 307), colon adenocarcinoma (COAD, n = 462), 
glioblastoma multiforme (GBM, n  =  604), head and neck 
squamous cell carcinoma (HNSC, n = 528), kidney chromo-
phobe (KICH, n = 113), kidney renal clear cell carcinoma 
(KIRC, n  =  537), liver hepatocellular carcinoma (LIHC, 
n  =  377), lung adenocarcinoma (LUAD, n  =  574), lung 
squamous cell carcinoma (LUSC, n = 504), ovarian serous 
cystadenocarcinoma (OV, n = 591), pancreatic adenocarci-
noma (PAAD, n  =  185), rectum adenocarcinoma (READ, 
n = 171), skin cutaneous melanoma (SKCM, n = 471), stom-
ach adenocarcinoma (STAD, n  =  443), thyroid carcinoma 
(THCA, n = 507), and uterine corpus endometrial carcinoma 
(UCEC, n = 560). GEPIA2 includes 1085 cases of BRCA. 
cBioPortal (Firehouse legacy) includes 1108 cases of BRCA. 
TIMER2 includes 1100 cases of BRCA. TIMER2 includes 
1100 cases of BRCA. TISIDB includes 1082 cases of BRCA. 
Although the number of BRCA cases from TCGA was up-
dated in some open-access web servers, it did not affect the 
analysis results. Because all data that this study used were 
from publicly available datasets TCGA and CTRP, no ethical 
approval was required to seek.

2.2  |  TICA analysis

The Cancer Immunome Atlas (TCIA) is a database describing 
the intratumoral landscapes and the cancer antigenomes from 
20 solid cancers on the basis of the TCGA datasets 8243 sam-
ples.17 A deconvolution approach CIBERSORT was used to 
identify fractions of immune subpopulations in the different 
types of tumor tissues.18 A comprehensive view of total im-
mune infiltration across multiple cancer types was provided, 
and cell fraction of 22 subpopulations of tumor-infiltrating 
lymphocytes was estimated. In addition, single-sample gene set 
enrichment analysis (ssGSEA) was performed to decompose 
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cellular profiles from bulk RNA sequencing data for individual 
samples.19,20 The association was represented by Z-score nor-
malized NES (Z(NES)) with a threshold of 1, and an immune 
cell type was considered enriched in a patient if the false dis-
covery rate (q-value) was <0.25. Moreover, neo-antigens were 
predicted by mutations that reside within exons and do not span 
exon borders. The tumors were classified into three groups ac-
cording to the median mutation number.

2.3  |  GEPIA2 analysis

Gene Expression Profiling Interactive Analysis 2 (GEPIA2) 
is an enhanced online tool for 9736 tumor samples across 33 
cancer types and 726 adjacent normal tissues from TCGA 
and Genotype-Tissue Expression (GTEx).21,22 The raw data 
in the web server were beforehand recomputed by the UCSC 
Xena project based on a uniform pipeline to avoid incompat-
ibility. In our study, only TCGA datasets were used to ensure 
no bias caused by sampling. When performing comparison of 
the selected immune checkpoint genes across multiple cancer 
types, we choose log2(TPM+1)-transformed expression data 
for plotting. The density of color in each block represents the 
median expression value of a gene in a given tissue, normalized 
by the maximum median expression value across all blocks. 
Meanwhile, a survival map across cancer types and multiple 
Kaplan–Meier plots were obtained to show the results based on 
gene expression levels. Overall and disease-free survival analy-
ses of multiple genes were performed with a significant level of 
0.05 and a cut-off threshold of 50% for both low and high ex-
pression groups. Moreover, Spearman's correlation coefficient 
between given genes or signatures was obtained by using pair-
wise gene expression correlation analysis. The signatures of 
stemness-related pathways were obtained from the Molecular 
Signatures Database (MSigDB) v7.2.

2.4  |  CellMinerCDB analysis

CellMinerCDB is an open-access tool for integrating genom-
ics and pharmacogenomics analyses of cancer cell lines.23 
In our study, the datasets from the Cancer Therapeutics 
Response Portal (CTRP) 24 were chosen to analyze the mu-
tual correlation of the selected immune checkpoint genes 
in 37 breast cancer cell lines. A heat map was generated to 
exhibit the correlation coefficient between those immune 
checkpoint genes.

2.5  |  cBioPortal analysis

The cBio Cancer Genomics Portal (cBioPortal) is a web-
based resource to explore multidimensional cancer genomics 

data including somatic mutations, copy number alterations 
(CNAs), DNA methylation, mRNA expression, protein 
abundance, and phosphoprotein abundance.25,26 In our study, 
mutations and CNAs of breast cancer from TCGA (Firehose 
Legacy) were used to display a graphical summary of genomic 
alterations and identify mutually exclusive or co-occurrent 
events in the selected immune checkpoint genes. An odds 
ratio was calculated to indicate the likelihood, and a value 
over 2 means a tendency toward co-occurrence. The results 
with q-value <0.05 were considered statistically significant.

2.6  |  TIMER2 analysis

Tumour Immune Estimation Resource 2 (TIMER2) pro-
vides a robust estimation of the immune infiltrate population 
for TCGA.27 With the function of tumor purity adjustment, 
TIMER2.0 can minimize the influence of immune cells in the 
microenvironment when the expression of a certain gene in 
cancer cells is analyzed. In our study, purity-corrected partial 
Spearman's correlation analysis was used to recognize the co-
expression pattern of the selected immune checkpoint genes 
in breast cancer. We then examined how immunocytes and 
immune checkpoint-related signatures are associated with 
patient survival on Kaplan–Meier curves.

2.7  |  TISIDB analysis

TISIDB is an integrated repository portal of the TCGA data-
sets to investigate the interaction between tumor and immune 
system.28 Spearman's correlation between the abundance of 
tumor-infiltration lymphocytes and expression of a given 
gene was explored to examine which kinds of cells may be 
regulated by the select gene in our study. For each cancer 
type, the relative abundance of tumor-infiltration lympho-
cytes was deduced by gene set variation analysis (GSVA) 
based on 28 immunocyte signatures.17 Additionally, the dis-
tribution of the select immune checkpoint genes across im-
mune subtypes of breast cancer was checked and displayed 
in violin plots.29

2.8  |  Statistical analysis

Comparison between two groups was performed by Student's 
t-test. Association between two groups was analyzed by 
Spearman's correlation analysis. Survival analysis was per-
formed based on the Kaplan–Meier analysis and log-rank 
test. Overall and disease-free survival was defined as the time 
between the date of surgery and date of death or the date of 
the last follow-up. A p-value <0.05 was considered statisti-
cally significant.
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3  |   RESULTS

3.1  |  Profiling of immune infiltrates and 
inhibitory immune checkpoints across multiple 
cancer types

Immune microenvironment in tumor tissues can be stratified 
on the basis of immune infiltrates and mutational burden.9 To 
have a comprehensive understanding of immune heterogene-
ity across multiple cancer types, we used TCIA to mine the 
TCGA data from 20 solid tumors.17 COAD and READ were 
combined as a single entity, CRC. All cancer types were ana-
lyzed by CIBERSORT, a deconvolution approach, to charac-
terize cell composition of immune microenvironment from 
their gene expression profiles.18 LUAD, KIRC, SKCM, and 
THCA were the top four types enriched with various immu-
nocyte gene signatures (Figure 1A). Their estimated infiltra-
tion rate of immunocytes all exceeded 20%, and even one of 
them reached 30%. On the contrary, only KICH had less than 
10% of tumor-infiltrating immunocytes.

Analysis of cell type fractions across multiple cancer types 
by a leukocyte gene signature matrix which distinguishes 22 
immunocyte phenotypes showed that CD8+ T cells did not 
account for more than 5% in each cancer type and that mac-
rophages constituted about one third of tumor-infiltrating im-
munocytes (Figure 1B). In fact, innate immunity including 
dendritic cells, natural killer cells, monocytes, macrophages, 
and neutrophils took up more than half of the immune mi-
croenvironment in each cancer type, especially GBM. 
Meanwhile, we performed single-sample gene set enrichment 
analysis (ssGSEA) to estimate heterogeneity of immune in-
filtrates within individual cancer entities.19,20 Macrophages 
and neutrophils were enriched in almost half of the patients 
with various cancer types while memory B cells, NK-T cells, 
eosinophils, and mast cells generally had a small proportion, 
less than 20% (Figure S1). Since immunogenic neoantigens 
expressed by cancer cells can induce immune responses,30,31 
we observed the variance of mutational burden to estimate 
their immunogenicity. The 19 solid tumors were classified by 
quartiles into three groups: high mutational burden (HNSC, 
BCLA, LUAD, LUSC, and SKCM), intermediate mutational 
burden (STAD, LIHC, CRC, CESC, KIRP, PAAD, KICH, 
UCEC, and GBM), and low mutational burden (KIRC, OV, 
PRAD, BRCA, and THCA) (Figure 1C). Thus, a high level 
of heterogeneity in immune microenvironment spans across 
multiple cancer types.

Considering ICB is among the most promising approaches 
to activating therapeutic antitumor immunity, we selected 31 
inhibitory immune checkpoints that were previously reported 
to play a role in tumorigenesis or tumor progression and ob-
served their expression across multiple cancer types by using 
GEPIA2.21,22 SKCM, HNSC, CESC, LUSC, STAD, LUAD, 
and PAAD expressed a higher level of the immune check-
point gene signature while LIHC and KICH are in the cluster 
with the lowest level (Figure  1D). Besides, a few immune 
checkpoints, such as TDO2, PVR, IDO1, CD276, and CD24, 
were found negatively correlated with both overall and 
disease-free survival of the patients while most of the check-
points did not predict the prognosis of patients as expected 
(Figure 1E and Figure S2A). One of the explanations is that 
some checkpoints may be specific to certain subpopulations 
such as cancer stem cells, of which the information is covered 
up by the whole in bulk RNA sequencing data.

To estimate the responsiveness of the 19 solid tumors to 
ICB, we then classified their immunophenotypes on the basis 
of immune infiltrates, mutational burden, and immune check-
point gene signature. SKCM, LUSC, BCLA, LUAD, and 
KIRC were clustered independently due to active immune 
response and/or a high level of immune checkpoint gene sig-
nature (Figure S2B), suggesting those tumors may be optimal 
for ICB treatment as reported.32 On the contrary, the cluster 
containing PRAD, KICH, LIHC, and UCEC was character-
ized by a hypoactive immune microenvironment and/or a low 
level of immune checkpoint gene signature, which implies 
a relatively low antitumor response rate after routine ICB 
treatment.

3.2  |  Identification of inhibitory immune 
checkpoints in breast cancer stem cells

Stratification of intertumor heterogeneity in breast cancer 
is routine during the course of diagnosis and treatment to 
achieve better clinical outcomes.33 However, insights from 
studies on cellular heterogeneity and plasticity raise the 
possibility that multiple tumor subclones with distinct mo-
lecular characterization may coexist within a tumor.34–36 
That also means the bulk data might not provide an ac-
curate reflection of the phenotype and genotype of specific 
subclones. To test whether the unrefined information of 
the 31 selected inhibitory immune checkpoints can reveal 
the clinical outcome of heterogeneous breast cancer, we 

F I G U R E  1   Profiling of immunophenotypes across multiple cancer types. (A) Infiltration of total immunocytes in solid tumors. (B) Proportion 
of various immune subpopulations in solid cancers. (C) Variance of mutations and neoantigens in solid tumors. Tumors are sorted into high, 
medium, and low burden group according to the mutation number. (D) Expression profiles of the selected immune checkpoints in solid tumors. 
(E) Contribution of the selected immune checkpoints to overall survival in solid tumors. The red blocks indicate that a high level of a given gene is 
unfavorable to survival while the blue blocks indicate that a high level of a given gene is favorable to survival. The Cox proportional hazard ratio is 
included in the survival plots
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compared the expression of these immune checkpoints 
in tumor tissues and normal tissues and evaluated the re-
lationship among their expression, immune infiltration, 
and prognosis. The adaptive immune checkpoints BTNL9 
and VTCN1 and the innate immune checkpoints CD200 
and SIRPA were downregulated in breast tumor tissues 
while the metabolic immune checkpoints ADORA2A and 
TDO2 were upregulated in breast tumor tissues (Table S1). 
Survival analysis showed that despite no difference be-
tween expressions in normal and tumor tissues (Figure 
S3A and D) and no association with the infiltration of vari-
ous immunocytes (Figure S3G and H), high expression of 
CD24 or PVR was significantly unfavorable for overall and 
disease-free survival of patients with breast cancer (Figure 
S3B, C, E, and F). However, some immune checkpoints, 
such as BTLA, CD40LG, CD96, and IDO1, were unex-
pectedly associated with a good prognosis (Table S1). It is 
plausible that the contradiction between these results and 

the reported protumor functions of immune checkpoints 
may be caused by the fact that some immune checkpoints 
are only expressed in certain tumor subclones and the mis-
taken perception that unique expression of an immune 
checkpoint in a certain tumor subclone necessarily affects 
the immune responses to the whole tumor. These results 
also suggested that studies on immune checkpoints should 
take into consideration the tumor subclones to which they 
belong.

Cancer stem cells at the apex of cell hierarchy are able 
to differentiate aberrantly into heterogeneous subclones of 
cancer cells.37 To identify inhibitory immune checkpoints 
in breast cancer stem cells, we evaluated the correlation be-
tween the selected immune checkpoints and two individual 
sets of gene signature representative of cancer stem cells. The 
basal/stem gene signature (BGS) is enriched in metastasis-
initiating cells of human breast cancer.38 The invasiveness 
gene signature (IGS) was generated through comparison of 

F I G U R E  2   Potential relevance between the inhibitory immune checkpoints and breast cancer stem cells. (A) Correlation of the selected 
immune checkpoints with basal/stem gene signature (BGS) in breast cancer. The threshold of Spearman's correlation coefficient was set at 0.4. 
*, p-value ≥0.05. (B) Correlation of the selected immune checkpoints with invasiveness gene signature (IGS) in breast cancer. The threshold of 
Spearman's correlation coefficient was set at 0.3. *, p-value ≥0.05. (C) Scatter plot for correlation between BGS and IGS in breast cancer. (D) 
Scatter plot for correlation between CD200 expression and BGS in breast cancer. (E) Scatter plot for correlation between CD276 expression and 
BGS in breast cancer
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the gene expression profiles of CD44+ CD24−/low tumor-
initiating cells and normal breast epithelium.39 As expected, 
BGS and IGS were correlated closely in breast cancer 
(Figure 2C), which indicates that high correlation with each 
of these two gene signatures can represent a strong correlation 
with breast cancer stem cells. Correlation analysis showed 
that the expression of CD200, SIPRA, CD276, PDCD1LG2, 
and TNFSF15 was found significantly correlated with IGS, 
respectively (Figure  2A, Figure S4A), while the expres-
sion of BTN2A2, BTN3A1, CD160, CD200, CD276, and 

CEACAM1 was found significantly correlated with BGS, re-
spectively (Figure 2B, Figure S4B). Taken together, we con-
sidered CD200 and CD276, respectively, as potential innate 
and adaptive immune checkpoints in breast cancer stem cells 
(Figure 2D and E).

Next, we wondered whether a subpopulation of cancer 
cell stems have the dual capabilities of resistance to the innate 
and adaptive immune system through synchronous expres-
sion of CD200 and CD276. We adopted the “Tumour Purity 
Adjustment” function in TIMER2.0 when performing the 

F I G U R E  3   Mutual relevance of the inhibitory immune checkpoints in breast cancer. (A) Profile of correlation between the immune 
checkpoints in breast cancer based on the TCGA data. The value in the circle is Spearman's correlation coefficient. (B) Profile of correlation 
between the immune checkpoints in breast cancer cell lines based on the CTRP data. The value in the circle is Pearson's correlation coefficient. 
(C) Landscape of genetic alterations of the immune checkpoints in breast cancer
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correlation analysis,27 which reduces the bias caused by mix-
ture with immunocytes during TCGA data processing. CD200 
expression was found to have no strong correlation with the 
other immune checkpoints expressed by breast cancer cells, 
and neither was CD276 expression (Figure 3A, Figure S4C). 
In addition, we used CellMinerCDB to further prove this 
in 37 breast cancer cell lines.23 Consistently, no significant 
correlation was detected between CD200, or CD276 expres-
sion, and the other immune checkpoints (Figure 3B, Figure 
S4D), which suggested that expression of CD200 and CD276 
may be independently regulated, and that heterogeneity may 
still exist in cancer stem cell population, particularly in the 
aspect of immune checkpoint. Of note, mutual exclusivity 
analysis on the basis of mutation and copy number data in 
the cBioPortal25,26 revealed that CD200 exhibited significant 
co-occurrence with CD47 (Figure  3C and Table  1), which 
implies that CD47 may disrupt phagocytic clearance of non-
cancer stem cells while CD200 is responsible for protecting 
cancer stem cells from phagocytes.

3.3  |  Identification of regulatory pathways 
for cancer stem cell–specific immune 
checkpoints

Inhibition of stemness-related pathways has been reported 
not only to reduce the tumorigenic activity of cancer stem 
cells but also to impair expression of multiple immune check-
points on cancer stem cells, including PD-L1, TIM3, and 
CD24.40 It is also possible that blockade of stemness-related 
pathways in breast cancer may impede immune checkpoint-
mediated immune evasion of cancer stem cells. To determine 
which pathways regulate breast cancer stem cells, we sorted 
the reported signalings according to their respective corre-
lation with BGS and IGS. Correlation analysis showed that 

the pathway signatures, of which the correlation coefficient 
with BGS was over 0.7, were Wnt, TGF-β, Hedgehog, ErbB, 
and Hippo signaling (Figure 4A). They were also among the 
signatures of which the correlation coefficient with IGS was 
over 0.7 (Figure  4B), indicating that these five signalings 
could be strongly associated with the regulation of breast 
cancer stem cells.

We then determined the exact pathway which controls the 
cancer stem cell–specific immune checkpoints CD200 and 
CD276. TGF-β, Hedgehog, and Wnt signaling signatures 
were strongly associated with CD200 and CD276 expression, 
while Hippo and ErbB signatures had a relatively weak asso-
ciation with them (Figure 4C). That also means that cancer 
stem cells with high TGF-β, Hedgehog, and Wnt signal-
ing activation are able to display high levels of CD200 and 
CD276 expression, thus escaping from immunosurveillance. 
Correspondingly, noncancer stem cell–specific immune 
checkpoints had a poor association with the five stemness-
related pathways (Figure 4C). Of note, CD200 and CD276 
expression had their respective higher correlation coefficient 
with TGF-β signaling signature than with other signaling sig-
natures (Figure 4C, D, and F). Using TISIBD, we also noticed 
that the levels of CD200 and CD276 expression were higher 
in the TGF-β dominant subtype of breast cancer (Figure 4E 
and G) which was enriched with TGF-β signature and lym-
phocytic infiltrate but suffered the worst overall survival29 
than in other immune subtypes.

As breast cancers can be classified into basal/stem cell–
enriched and luminal/differentiated cell-enriched clusters,38 
we used logistic regression to screen out gene signatures 
(Table  S2) which indicate Wnt, TGF-β, and Hedgehog 
signaling-related CD200 and CD276 in breast cancer stem 
cells. We evaluated the predictive power of these gene sig-
natures in a fivefold cross-validation procedure. After 
100 repetitions, the average accuracy of Wnt, TGF-β, and 

T A B L E  1   Mutual exclusivity analysis of inhibitory immune checkpoints in breast cancer

A B Neither A Not B B Not A Both Log2 Odds Ratio p-Value q-Value Tendency

PDCD1LG2 CD274 932 0 2 29 >3 <0.001 <0.001 Co-occurrence

BTN3A1 BTN2A2 944 2 3 14 >3 <0.001 <0.001 Co-occurrence

CEACAM1 PVR 942 3 7 11 >3 <0.001 <0.001 Co-occurrence

CD200 CD47 946 4 4 9 >3 <0.001 <0.001 Co-occurrence

TNFSF15 CD274 923 9 27 4 >3 <0.001 0.016 Co-occurrence

TNFSF15 TNFRSF14 936 10 14 3 >3 0.001 0.026 Co-occurrence

PDCD1LG2 BTN2A2 921 25 13 4 >3 0.001 0.026 Co-occurrence

TNFSF15 PVR 935 10 15 3 >3 0.001 0.027 Co-occurrence

BTN2A2 CD274 919 13 27 4 >3 0.002 0.027 Co-occurrence

BTNL9 TDO2 933 12 15 3 >3 0.002 0.033 Co-occurrence

BTN3A1 VTCN1 932 13 15 3 >3 0.003 0.034 Co-occurrence

BTN3A1 PVR 932 13 15 3 >3 0.003 0.034 Co-occurrence

VTCN1 PVR 930 15 15 3 >3 0.004 0.044 Co-occurrence
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Hedgehog signaling-related CD200/CD276 signatures was 
91.42%, 92.68%, and 86.73%, respectively. To further clarify 
the clinical significance and the interaction of cancer stem 

cell–specific immune checkpoints with the immune microen-
vironment, we estimated their prognostic value in breast can-
cer. For the luminal A subtype, any patient group with either 

F I G U R E  4   Potential relevance between the inhibitory immune checkpoints and stemness-related pathways in breast cancer. (A) Correlation 
of BGS with stemness-related pathways in breast cancer. The threshold of Spearman's correlation coefficient was set at 0.7. All p-values were 
<0.001. (B) Correlation of IGS with stemness-related pathways in breast cancer. The threshold of Spearman's correlation coefficient was set at 0.7. 
All p-values were <0.001. (C) Profile of correlation between the immune checkpoints in breast cancer. The red font represents stemness related. 
The value in the circle is Spearman's correlation coefficient. (D) Scatter plot for correlation between CD200 expression and TGF-β signaling in 
breast cancer. (E) Violin plots for CD200 expression in multiple immune types of breast cancer. C1, wound healing; C2, IFN-γ dominant; C3, 
inflammatory; C4, lymphocyte depleted; C5, TGF-β dominant. (F) Scatter plot for correlation between CD276 expression and TGF-β signaling in 
breast cancer. (G) Violin plots for CD276 expression in multiple immune types of breast cancer
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a high level of these gene signatures or a low infiltration of 
CD8+ T cells, or dendritic cells, or M1 macrophages had a 
high risk of poor overall survival (Figure 5A–L). However, 
such observations appeared inconsistent in basal, HER2-
enriched, and luminal B subtypes (Figure S5–S8). That sug-
gested the infiltration of CD8+ T cells, dendritic cells, or 
M1 macrophages in breast cancer can signify prolonged pa-
tient survival, and that the expression of CD200 and CD276 
in cancer stem cells could impair the tumoricidal function 
of CD8+ T cells, dendritic cells, and M1 macrophages. 
Therefore, Wnt, TGF-β, and Hedgehog signaling are poten-
tially the main pathways regulating the inhibitory immune 
checkpoints CD200 and CD276 in breast cancer stem cells.

4  |   DISCUSSION

Precision immunotherapy has been proposed to ensure 
that the potency of the immune system is oriented toward 
the source of tumorigenesis, recurrence, and metastasis, 
namely cancer stem cells. Successful delivery of precision 
immunotherapy to patients with breast cancer requires a 
comprehensive understanding of heterogeneous immune 
microenvironment and cancer stem cell immunology. In this 
study, we identified CD200 and CD276, respectively, as can-
didate innate and adaptive immune checkpoints in breast can-
cer stem cells. Wnt, TGF-β, and Hedgehog signaling were 
found strongly associated with cancer stem cell–specific im-
mune checkpoints. Moreover, we identified gene signatures 
that represent Wnt, TGF-β, and Hedgehog signaling-related 
CD200 and CD276 expression in breast cancer stem cells. 
The patient group with a high level of these gene signatures 
plus a low infiltration of CD8+ T cells, or dendritic cells, or 
M1 macrophages had poor overall survival.

The functional characteristics of a cancer stem cell have 
been defined as the capacities to self-renew and to differ-
entiate into heterogeneous lineages of cancer cells which 
constitute a tumor.41 Unfortunately, little is known about the 
immunological properties of cancer stem cells. The question 
whether or not the tumor-initiating capacity of cancer stem 
cells depends on their immune privilege rose from the in-
consistency between the frequencies of melanoma-initiating 

cells in mouse models with distinct immune responses. One 
melanoma-initiating cell of 46,700 melanoma cells was es-
timated to form a tumor in NOD/SCID mice lacking T and 
B cells while the frequency of tumor-initiating cell was one 
of nine melanoma cells in NSG mice lacking T, B, and NK 
cells.42 It can be partially explained by the assumption that 
cancer stem cells may be much less vulnerable to immu-
nosurveillance than more differentiated cancer cells. NK 
cell–deficient NSG mice appear to neither eliminate can-
cer stem cells nor more differentiated cancer cells which 
also become capable of initiating tumors. Mechanistically, 
ABCB5+ melanoma-initiating cells preferentially blunted 
IL-2-dependent T-cell activation and induced infiltration 
of regulatory T cell through low levels of MHC class I and 
tumor-associated antigens and high levels of the costimula-
tory molecules B7.2 and PD-1.43 Meanwhile, squamous cell 
carcinoma stem cells were reported to selectively express 
CD80 to suppress cytotoxic T cell–mediated tumoricidal ac-
tivity, resulting in refractoriness to adoptive T-cell transfer 
therapy.16 In the context of breast cancer, CD44high CD24low 
HER2low cancer stem cells exhibited resistance to antibody-
dependent cell-mediated cytotoxicity induced by trastuzumab 
and NK cells.44 Following the principle, our study revealed 
CD200 and CD276 as candidate immune checkpoints in 
breast cancer stem cells. Consistently, CD200 was found to 
be expressed in breast cancer cell line MDA-MB-231, along 
with cancer stem cell marker CD44+ CD24−.45 Enrichment 
of CD276 expression increased stemness of breast cancer cell 
lines by activation of the MAPK kinase pathway.46 However, 
more convincing evidence of CD200 and CD276 expressed 
in human breast cancer stem cells has not been provided. 
Our study showed a strong association of CD200 and CD276 
expression with cancer stem cells, which implies unique 
immune features of cancer stem cells and increases the possi-
bility of utilizing immunotherapy to eliminate them.

Because cancer stem cells have been defined as a rare 
population that are able to seed secondary tumors, it has also 
been proposed that cancer stem cells could be responsible for 
distant metastasis. Multicolor lineage tracing in mouse mod-
els demonstrated that polyclonal lung metastases arise from 
collective dissemination of cell clusters containing keratin 
14-expressing tumor-initiating cells.47,48 Yet, the molecular 

F I G U R E  5   Prognostic value of cancer stem cell–specific immune checkpoint signature plus immune infiltration level in patients with luminal 
A subtype of breast cancer. (A–C) Kaplan–Meier curves for overall survival split by level of Wnt signaling-related CD200 and CD276 signature 
and infiltration level of CD8+ T cells, dendritic cells, or M1 macrophages in breast cancer. (D–F) Kaplan–Meier curves for overall survival split by 
level of TGF-β signaling-related CD200 and CD276 signature and infiltration level of CD8+ T cells, dendritic cells, or M1 macrophages in breast 
cancer. (G–I) Kaplan–Meier curves for overall survival split by level of Hedgehog signaling-related CD200 and CD276 signature and infiltration 
level of CD8+ T cells, dendritic cells, or M1 macrophages in breast cancer. (J–L) Kaplan–Meier curves for overall survival split by level of Wnt, 
TGF-β, and Hedgehog signaling-related CD200 and CD276 signature and infiltration level of CD8+ T cells, or dendritic cells, or M1 macrophages 
in breast cancer. (M) A hypothetical model of cancer stem cell–specific immune checkpoints. Activation of Wnt, TGF-β, and Hedgehog signaling 
upregulates CD200 and CD276 expression in breast cancer stem cells and thus impedes the tumoricidal function of CD8+ T cells, dendritic cells, 
and M1 macrophages. Immune evasion mediated by cancer stem cell–specific immune checkpoints leads to poor survival in patients with breast 
cancer
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mechanism has not been clarified, which keeps metastasis-
initiating cells alive when they travel along blood vessels, 
invade distant organs, keep quiescent in niches, and finally 
overtake host tissue. The finding that metastatic cancer cells 
downregulated their cell surface innate immune sensors during 
latency periods 49 suggested the possibility of resistance to 
immune surveillance in metastatic stem cells and the feasibil-
ity of immune checkpoints as biomarkers of metastatic stem 
cells. Coincidentally, cell surface proteome profiling revealed 
CD200 as one of the markers specifically upregulated on met-
astatic breast cancer primary explants.50 Expression of CD200 
was also significantly upregulated in bone, lung, and liver met-
astatic lesions of breast cancer.51 Meanwhile, the positive cor-
relation between CD276 mRNA expression and the number 
of circulating tumor cells was observed in blood specimens 
of gastric cancer patients.52 It is reasonable to suppose that 
CD200 and CD276 could also be surface markers of metastatic 
stem cells in circulation. If the hypothesis that immune evasion 
is one of the fundamental properties in metastatic stem cells is 
confirmed, cancer stem cell–specific immune checkpoints will 
have its advantages to be used to measure metastatic burden 
or capture circulating tumor cells in a blood-based liquid bi-
opsy53 because circulating tumor cells in patients with epithe-
lial cancers might express mesenchymal rather than epithelial 
markers due to epithelial-to-mesenchymal transition.54

Long-term clinical observations found that estrogen recep-
tor (ER)-positive breast cancer maintains a significant risk of 
relapse even after more than 10 years of follow-up,55 which 
suggests that ER-positive breast cancer has a propensity for 
metastatic latency. Our results suggested that cancer stem 
cell–specific CD200 and CD276 might inhibit the surveillance 
of innate and adaptive immune system in luminal A breast 
cancer, thus contributing to poor survival. Consequently, it 
can be inferred that CD200-positive or CD276-positive can-
cer stem cells may orchestrate metastatic latency through 
immune evasion. ICB targeting these metastatic stem cells 
which stay in a quiescent state before micrometastasis for-
mation appears a sound strategy to prevent and treat cancer 
metastasis. Furthermore, since stemness and immune evasion 
are closely intertwined with each other in cancer, disruption 
of stemness-related pathways may also overcome immune 
evasion of cancer stem cells by suppressing the expression of 
inhibitory immune checkpoints. In breast cancer, β-catenin 
transcriptionally upregulates N-glycosyltransferase STT3, 
which consequently mediates glycosylation of PD-L1 and 
prevents PD-L1 from ubiquitin/proteasome-mediated deg-
radation.56 Meanwhile, low doses of doxorubicin reduced 
Akt-activated β-catenin levels, thus downregulating diverse 
immune checkpoints in leukemia stem cells, such as PD-L1, 
TIM3, and CD24.40 Pharmacological inhibition of an RNA 
N6-methyladenosine demethylase dramatically impaired self-
renewal of leukemia stem cells and, simultaneously, atten-
uated immune response by suppressing immune checkpoint 

genes including LILRB4.57 Anti-TGF-β antibodies rendered 
TGF-β-responsive cancer stem cells sensitive to adoptive T-
cell transfer treatment, of which the efficacy could be hin-
dered by CD80/CTLA4-mediated immunosuppression.16 
Therefore, synergistic blockade of cancer stem cell–specific 
immune checkpoints and relevant stemness-related pathways 
is hypothesized to enhance the efficacy of immunotherapy 
targeting metastatic stem cells.

Pan-cancer analysis of immune characteristics identified 
the TGF-β dominant subtype that had a high lymphocytic in-
filtrate but the least favorable outcome.29 The contradiction 
implies the existence of immunosuppression in the TGF-β 
dominant subtype, consistent with our finding that two can-
cer stem cell–specific immune checkpoints were higher in 
the TGF-β dominant subtype than in other immune subtypes. 
In preclinical studies, TGF-β signaling has displayed its ef-
fects on the immune microenvironment in multiple ways. 
For example, increased TGF-β enhances antigen-induced 
PD-1 expression on T cells in a SMAD3-dependent man-
ner,58 drives exclusion of cytotoxic T cells, and impairs ac-
quisition of a Th1 effector phenotype in a cancer metastasis 
model which has a limited response to anti-PD-L1 therapy.59 
Moreover, TGF-β-mediated stromal remodeling attenuates 
tumor response to PD-L1 blockade by restriction of CD8+ 
T-cell infiltration.60 Given the potential synergistic effect of 
TGF-β signaling blockade and ICB, a phase I trial of anti-
PD-L1/TGFβRII fusion protein M7824 (NCT03579472) is 
being performed in patients with metastatic triple-negative 
breast cancer. In this study, the strong association of TGF-β 
signaling with the cancer stem cell–specific immune check-
points implies that inhibition of TGF-β signaling may impede 
CD200- or CD276-mediated immune evasion of breast can-
cer stem cells, which has rarely been described before. The 
recognition of this mechanism will expand the application 
scenarios of TGF-β signaling blockade in immunotherapy.

The current study still has some limitations which need to 
be addressed in the future. First, a single-cell transcriptomic 
map of human breast cancer based on a large number of sam-
ples will help to more accurately and efficiently figure out in-
hibitory immune checkpoints and their regulatory pathways 
in breast cancer stem cells. Second, our results were derived 
from bioinformatic analysis, which needs further experi-
ments in patient-derived xenograft or mouse models to con-
firm them. Finally, the therapeutic effect of a combination of 
ICB and relevant signaling blockade on local recurrence and 
metastasis requires clinical trials to verify. Despite these lim-
itations, identification of cancer stem cell–specific immune 
checkpoints and relevant regulatory pathways is anticipated 
to promote the development of cancer stem cell immunology.

In summary, our study revealed that CD200 and CD276 
may act as cancer stem cell–specific immune checkpoints to 
mediate immune resistance in breast cancer. Synergistic inhi-
bition of stemness-related pathways including Wnt, TGF-β, 
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and Hedgehog signaling may improve the efficacy of ICB 
treatment targeting CD200 or CD276 in breast cancer stem 
cells. This combination treatment will provide a novel and 
efficient strategy for precision immunotherapy.
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