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a b s t r a c t

The spread of Lassa fever infection is increasing in West Africa over the last decade. The
impact of this can better be understood when considering the various possible trans-
mission routes. We designed a mathematical model for the epidemiology of Lassa Fever
using a system of nonlinear ordinary differential equations to determine the effect of
transmission pathways toward the infection progression in humans and rodents including
those usually neglected such as the environmental surface and aerosol routes. We
analyzed the model and carried out numerical simulations to determine the impact of each
transmission routes. Our results showed that the burden of Lassa fever infection is
increased when all the transmission routes are incorporated and most single transmission
routes are less harmful, but when in combination with other transmission routes, they
increase the Lassa fever burden. It is therefore important to consider multiple transmission
routes to better estimate the Lassa fever burden optimally and in turn determine control
strategies targeted at the transmission pathways.

© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Lassa fever (LF) is an acute viral zoonotic illness responsible for a severe hemorrhagic fever. It is an illness caused by Lassa
virus which is a single-stranded RNAvirus from the arenavirus family. It was first discovered in 1969 in a Nigerian town called
Lassa in Borno State when twomissionary nurses died from the illness (Richmond & Baglole, 2003). The animal vector of this
virus is the multimammate rat (Mastomys natalensis) which is one of the most common rodents in West Africa (CDC, 2014;
Gonzalez, 2020; NICD, 2020). The Mastomys rodents reproduce often and excrete the virus in urine for a very long period of
time, and because they occupy human homes, especially where food is stored, they help spread the virus to humans. The
transmission of this virus to humans can be through direct or indirect contact. Direct transmissions result from contact
between humans and humans, rodents and humans, and rodents and rodents. The evidence available shows that human to
human transmission occurs through contact with the body fluids, secretions, excretions, blood of the infectious individual,
and sexual transmission (Newman, 2018; NICD, 2020). The infectedMastomys rodents are caught (as bush meat) and eaten as
food in certain places which directly infects the individuals with the virus. Reports have also shown that there is both
unications Co., Ltd.
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horizontal and vertical transmission in multimammate rats especially in seasons when these rodents are actively breeding
(Fichet-Calvet et al., 2014; Tewogbola & Aung, ; Gibb et al., 2017). In this paper, however, vertical transmission from rodent to
rodent is not covered. Rodents can deposit the virus through their urine and faeces on surfaces in the households such as
walls and places where food is stored or even on surfaces where medical equipment is kept. Humans can indirectly acquire
the virus when they come in contact with the virus on these contaminated surfaces. Rodents can also become infected
because rats share garbage, food on surfaces contaminated with the excretions of infectious rodents yet do not die due to
disease but carry the infection and continue to shed it throughout their lifetime (NICD, 2020; Obabiyi & Onifade, 2017).
Another form of indirect transmission is through airborne (aerosol) transmission which occurs especially in health centres
when people inhale air particles contaminated with the droppings of infected rodents especially during activities like
sweeping and other wind activities (CDC, 2014; Gonzalez, 2020; NICD, 2020). The natural history of Lassa fever reveals that its
transmission pattern is driven by the frequency of exposure to infected individuals or through contact with infected rodents
and contaminated environments (Akhmetzhanov et al., 2019; Sabeti, 2015). It has been shown that Lassa virus is stable as an
aerosol, particularly at low relative humidity (30% RH) and the biological half-life at both 24 �C and 32 �C ranges from 10.1 to
54.6 min (CDC, 2014; Stephenson et al., 1984).

Frequent cases of Lassa virus infection have been seen in endemic regions such as Nigeria, Benin, Ghana, Guinea, Liberia,
Mali, Sierra Leone and Togo. Surrounding regions like Central African Republic, Burkina Faso, Côte d’Ivoire, Mali, Senegal,
Ghana among others are also at risk, because the rodents that transmit the virus are very common throughout West and East
Africa. Hospital staff are also at risk for infection especially in areas with inadequate protective measures and improper
sterilization methods (Gibb et al., 2017; NICD, 2020; WHO, 2017). After contracting the virus, humans show symptoms be-
tween 1 and 3 weeks. The presence of virus in the blood is known to peak four to nine days after the onset of symptoms. In
most cases, 80% of people infected show no observable or mild symptoms. For these individuals, they show mild signs like
slight fever, general malaise and weakness, and headache but do not die due to the infection. Recovery can take place eight to
ten days after inception. The remaining 20% of infected individuals can show more severe symptoms like bleeding in the
gums, eyes, or nose, respiratory distress, repeated vomiting, facial swelling, pain in the chest, back, and abdomen, shock, and
failure in body organs such as liver, spleen and kidneys. The virus in this group of people may also lead to complications such
as hearing loss, tremors, encephalitis or even death within 2 weeks after the onset of symptoms due to multiple organ failure
(CDC, 2014; WHO, 2017; Yun & Walker, 2012). The number of Lassa virus infections per year in West Africa is estimated at
100,000 to 300,000, with approximately 5000 deaths. In some places in Liberia and Sierra Leone, the virus led to 10%e16% of
people admitted to hospitals every year (ACDC, 2018; Gonzalez, 2020; Newman, 2018; NICD, 2020; Richmond & Baglole,
2003). In 26 out of 36 Nigerian states, a case fatality ratio of 14.8% was recorded between January 1 to February 9, 2020
(WHO, 2020).

Several studies have laid a basis to understand the dynamics of Lassa fever. Some of the studies on Lassa Fever (Ojo et al.,
2021; Onah et al., 2020; Onuorah et al., 2016) only considered the basic transmission pathways namely, the human-to-human
and the rodent-to-human. Because a great percentage of people show little or no symptoms of Lassa fever, Peter, et al. (Peter
et al., 2020) described Lassa fever transmission dynamics using a deterministic model integrating the exposed human and rat
compartment instead of the usual SIR compartmental structure. Some other studies have tried to establish the time-
dependent nature of the transmission dynamics of Lassa fever. For example, Ibrahim and D�enes (Ibrahim & D�enes, 2021)
used a compartmental model with time-dependent parameters where the infectious class was partitioned into symptom-
atically infected, mildly infected and treated individuals alongside with the carrying capacity of the rodent because of the
periodic change of weather. Factors like quarantine, hospitalization of infected individuals were also used in (Ibrahim &
D�enes, 2021; Musa et al., 2020) to comprehend the transmission variability of Lassa fever. The association between the
reproduction number and local rainfall was used to investigate the epidemiological features of Lassa fever on a large scale
(Zhao et al., 2020). Abdulhamid et al. (Abdulhamid et al., 2022) incorporated the effect of quarantine and the environment to
show that in poor resource countries, Lassa fever transmission is driven by environmental contribution. Differential infec-
tivity has also been deployed as a technique to analyze the complex nature of Lassa fever dynamics (Musa et al., 2022). In
order to understand the epidemiology of the disease, it is important to look at a number of possible transmission pathways
through which the virus can be contracted. In this work, we focus on the effects of multiple transmission pathways of Lassa
Fever towards the progression of the infection in the human and rodent population. The use of multiple transmission routes
gives us a better understanding of the epidemiological structure of Lassa fever. Our study extends the work of Peter et al.
(Peter et al., 2020) and Ibrahim and D�enes (Ibrahim & D�enes, 2021) by:

, Introducing the environment to human transmission pathway. We define the environment as the surfaces, walls and any
other equipment where the virus is deposited.

, Introducing the aerosol to human route of transmission. By aerosol, we refer to air particles where the virus is concen-
trated through human and wind activities.

These two pathways are not usually considered as major drivers of infection on a large scale. In endemic areas like Nigeria,
a major route of infection is the contact with infected rodents through harvesting, however, recent reports (Abdulhamid et al.,
2022) have also shown that the environmental pathway contribute to the burden of Lassa fever and should not be neglected.
Thus, our study captures (i) human to human transmission (ii) rodent to human transmission (iii) rodent to rodent
28
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transmission (iv) environment to human transmission (v) aerosol to human transmission (vi) environment to rodent
transmission. The aforementioned studies form the basic fabric for our work and the understanding gained from them will
help us build and analyze a more comprehensive study with more transmission pathways. The remaining part of this work
will be arranged thus: Section 2 will be the formulation of the basic model with basic analysis; In Section 3, we will perform
our numerical simulations, and discussion and recommendations will be presented in Section 4.

2. Model formulation

The total human population, given as NH(t), is subdivided into five classes which consists of humans susceptible to the
virus, SH(t), humans that have Lassa virus but are not infectious, EH(t), infectious humans that are asymptomatic, IHA(t), in-
fectious humans that are symptomatic, IHS(t), and humans who have recovered from Lassa fever, RH(t) so that

NHðtÞ ¼ SHðtÞ þ EHðtÞ þ IHAðtÞ þ IHSðtÞ þ RHðtÞ: (1)
The total rodent population, given as NR(t), is subdivided into three classes consisting of rodents susceptible to the virus,
SR(t), rodents that have Lassa virus but are not infectious, ER(t), and infected rodents that can transmit the virus, IR(t) with

NRðtÞ ¼ SRðtÞ þ ERðtÞ þ IRðtÞ: (2)
We consider the following direct transmission pathways: the human-to-human contact, the rodent-to-human contact, the
rodent-to-rodent contact and the indirect transmission pathway such as the environment-to-human contact and the aerosol-
to-human contact and the environment-to-rodent contact. To incorporate the indirect transmission pathways, we use VS to
describe the concentration of Lassa fever virus on the environmental surfaces and VA, the concentration of Lassa virus in the
air. The maximum carrying capacity of virus on environmental surfaces and in the air is given by KV, where VS, VA � KV.

We assume that p1 is the constant recruitment rate of susceptible humans. The susceptible humans move to the exposed
class, EH, through a force of infection

lH ¼ bH

�
IR
NR

þ h1IHS
NH

þ h2IHA
NH

þ h3VS

KV
þ h4VA

KV

�
: (3)
Here, bH is the effective contact rate between susceptible humans and infected rodents, susceptible humans and infectious
humans, susceptible humans, the virus in the environment and the virus in the air, h1 is the modification parameter which
indicates that contact with IHS is less infectious than with IR. Similarly, h2, h3, h4 are also modification parameters which
account for level of infectiousness of contact with IHA, VS and VA respectively. Evidence from (Bausch et al., 2010; Davies et al.,
2019; Lehmann et al., 2017; Lo Iacono et al., 2015) ensures that the following inequality holds:

h4 <h3 < h1 <h2 <1:
The exposed humans progress to the infectious compartment at the rate j1, where the proportion of exposed individuals
that become asymptomatic is nj1 and the proportion of exposed persons that become symptomatic is (1 � n)j1. Humans die
naturally in all classes at the rate m1. Infectious symptomatic humans can die due to the disease at the rate d but there are no
cases of death due to infection for the infectious asymptomatic individuals. Infectious asymptomatic and infectious symp-
tomatic humans recover at the rates z1 and z2, respectively.

The susceptible rodents are recruited at a constant rate p2 and move to the exposed class ER through a force of infection

lR ¼ bR

�
IR
NR

þ x1VS

KV

�
; (4)

where bR is the effective contact rate between susceptible rodents and infected rodents and between susceptible rodents and
contaminated environment surfaces. x1 is the modification parameter which shows that contact with VS is less infectious than
with IR. The exposed rodents move to the infectious class at the rate j2 and all rodents die naturally at a rate of m2. Rodents can
also die at a rate r due to consumption by humans as food. Rodents do not die due to disease since infected rodents can
continue to shed the virus throughout their lifetime. The Lassa fever virus is deposited into the environment at rates of 41, 42
and 43 by infectious asymptomatic humans, infectious symptomatic humans, and infected rodents respectively through
activities such as urination, excretion of faeces, bleeding and fluid secretions. We further assume that the virus concentration
on the environmental surfaces and in the air decays at the rate q2 while a proportion of the virus concentrationmoves into the
air at the rate q3 through wind and human activities.

The Lassa fever model in Fig. 1 is expressed as a system of first order nonlinear ordinary differential equations as follows:
29
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dSH
dt

¼ p1 � lHSH � m1SH ;

dEH
dt

¼ lHSH � ðj1 þ m1ÞEH;

dIHA
dt

¼ nj1EH � ðz1 þ m1ÞIHA;

dIHS
dt

¼ ð1� nÞj1EH � ðdþ z2 þ m1ÞIHS;

dRH
dt

¼ z1IHA þ z2IHS � m1RH ;

dSR
dt

¼ p2 � lRSR � ðrþ m2ÞSR;

dER
dt

¼ lRSR � ðj2 þ rþ m2ÞER;

dIR
dt

¼ j2ER � ðrþ m2ÞIR;

dVS

dt
¼ 41IHA þ 42IHS þ 43IR � ðq2 þ q3ÞVS;

dVA

dt
¼ q3VS � q2VA;

(5)
which is subject to the following initial conditions:

SHð0Þ ¼ SH0
>0; EHð0Þ ¼ EH0

� 0; IHAð0Þ ¼ IHA0
� 0;

IHSð0Þ ¼ IHS0 � 0; RHð0Þ ¼ RH0
� 0; SRð0Þ ¼ SR0

>0;
ERð0Þ ¼ ER0

� 0; IRð0Þ ¼ IR0
� 0; VSð0Þ ¼ VS0 � 0;

VAð0Þ ¼ VA0
� 0; c t � 0:

(6)
Fig. 1. The Lassa fever schematic diagram for human, virus and rodent population.

30



P.-G.U. Madueme, F. Chirove Infectious Disease Modelling 8 (2023) 27e57
The variables and parameter descriptions and units are presented in Table 1.

2.1. Model analysis

Here, we show that our model is mathematically and biologically meaningful. We shall also compute the basic repro-
duction number and carry out the stability analysis of the steady states.

2.1.1. Feasible region
We assume that all parameters are non-negative for time t and prove that in the proposed region, U, the solutions remain

non-negative and bounded. We will analyze the Lassa fever transmission model in the region given as:

U ¼
��

SH; EH ; IHA; IHS;RH; SR; ER; IR;VS;VAÞ2R10
þ : NH � p1

m1
;NR � p2

rþ m2
;VS � MS; VA � MA

�
;

where

MS ¼
ð41 þ 42Þp1

m1ðq2 þ q3Þ
þ 43p2

m2ðq2 þ q3Þ
; MA ¼ q3p1ð41 þ 42Þ

m1q2ðq2 þ q3Þ
þ q343p2

m2q2ðq2 þ q3Þ
:

To show that the region U is positively invariant, we consider the first equation of (5)

dSH
dt

¼ p1 � ðlH þm1ÞSH;
which is solved to obtain
Table 1
Description of parameters and variables for model (5).

Variables Description Unit

SH Susceptible human population people
EH Exposed human population people
IHA Infectious asymptomatic human population people
IHS Infectious symptomatic human population people
RH Recovered human population people
SR Susceptible rodent population rodents
ER Exposed rodent population rodents
IR Infected rodent population rodents
VS Concentration of Lassa virus in the environmental surfaces virus
VA Concentration of Lassa virus in the air virus

Parameters Description Unit

bH Contact rate between SH and IR, IHA, IHS, VS, VA day�1

h1 Modification parameter nil
h2 Modification parameter nil
h3 Modification parameter nil
h4 Modification parameter nil
bR Contact rate between SR and IR, VS day�1

x1 Modification parameter nil
j1 Rate of progression of humans from EH to IHA and IHS day�1

j2 Rate of progression of rodents from ER to IR day�1

q2 Rate of decay of virus in VS day�1

q3 Rate of progression of virus from VS to VA day�1

41 Rate at which virus is shed in VS by IHA virus/people � day
42 Rate at which virus is shed in VS by IHS virus/people � day
43 Rate at which virus is shed in VS by IR virus/rodents � day
m1 Natural death rate of humans day�1

m2 Natural death rate of rodents day�1

r Death rate of rodents due to consumption by humans day�1

z1 Recovery rate of IHA day�1

z2 Recovery rate of IHS day�1

p1 Recruitment rate of humans people/day
p2 Recruitment rate of rodents rodents/day
KV Maximum carrying capacity of virus virus
d Disease-induced death rate of humans day�1

n Proportion of humans progressing to IHA nil
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SHðtÞ ¼ SH0
e

�
Zt
0

ðm1 þ lHðsÞÞds
þ
�
p1

m1
e

�
Zt
0

ðm1 þ lHðsÞÞds
�
Zt
0

e

Zs
0

ðm1 þ lHðrÞÞdr
ds
�
>0:
Also, for the solution component of EH(t), we suppose that there exist a first time t1 such that EHðt1Þ ¼ 0; E0Hðt1Þ<0 and the
rest of the variables are non-negative for 0 < t1 < t. The second equation of system (5) gives

dEH
dt

jt¼t1 ¼ lHðt1ÞSHðt1Þ>0;
which is a contradiction, so EH(t) � 0, c t � 0.
Using a similar approach, it is easy to show that IHA, IHS, RH, SR, ER, IR, VS, VA are non-negative. Hence, all solutions of (5) are

non-negative in U.
Now, we show that all solutions with non-negative initial conditions are bounded in the set U. It is easy to see that

dNH

dt
� p1 � m1NH;

dNR

dt
¼ p2 � ðrþm2ÞNR: (6)
Solving the differential inequality and equation in (6), we use the standard comparison theorem (Lakshmikantham et al.,
1989) and the integrating factor to show that as t / ∞, we have that 0 � NHðtÞ � p1

m1
and 0 � NRðtÞ ¼ p2

rþm2
. Similarly the

differential inequalities

dVS

dt
� ð41 þ42Þ

p1

m1
þ 43

p2

m2
� ðq2 þ q3ÞVS;

dVA

dt
� q3p1ð41 þ 42Þ

m1q2
þ q343p2

m2q2
� q2VA;
yield VS � ð41þ42Þp1

m1ðq2þq3Þ þ
43p2

m2ðq2þq3Þ ¼ MS; VA � q3p1ð41þ42Þ
m1q2ðq2þq3Þ þ

q343p2
m2q2ðq2þq3Þ ¼ MA.

Thus, all possible solutions of (5) enter the region U and stay inside it. Hence, the region U is positively invariant and
attracting and therefore a feasible region.

2.1.2. Reproduction number and equilibria stability analysis
We explore the existence of the equilibrium points of model (5). To obtain the disease free equilibrium (DFE), we equate

the right hand side of model (5) to zero and solve when EH ¼ IHA ¼ IHS ¼ ER ¼ IR ¼ VS ¼ VA ¼ 0 to get:

E0 ¼
�
p1

m1
; 0;0;0;0;

p2

rþ m2
;0;0;0;0

�
:

The basic reproduction number R0 of model (5) is the dominant eigenvalue of the matrix FV�1 using the next generation
matrix approach (Van den Driessche & Watmough, 2002). Here,

F ¼

0BBBBBBBB@

lHSH
0
0

lRSR
0
0
0

1CCCCCCCCA
; V ¼

0BBBBBBBB@

ðj1 þ m1ÞEH
�nj1EH þ ðz1 þ m1ÞIHA

�ð1� nÞj1EH þ ðdþ z2 þ m1ÞIHS
ðj2 þ rþ m2ÞER

�j2ER þ ðrþ m2ÞIR
�41IHA � 42IHS � 43IR þ ðq2 þ q3ÞVS

�q3VS þ q2VA

1CCCCCCCCA
:

Computing the Jacobian of F and V evaluated at E0 we get
32
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F ¼

0BBBBBBBBBBBBBBBBBB@

0 bHh2 bHh1 0
bHm2p1

m1p2

bHh3p1

m1KV

bHh4p1

m1KV

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 bR
bRx1p2

m2KV
0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1CCCCCCCCCCCCCCCCCCA

;

0
j1 þ m1 0 0 0 0 0 0

1

V ¼

BBBBBBBB@
�nj1 z1 þ m1 0 0 0 0 0

�ð1� nÞj1 0 dþ z2 þ m1 0 0 0 0
0 0 0 j2 þ rþ m2 0 0 0
0 0 0 �j2 rþ m2 0 0
0 �41 �42 0 �43 ðq2 þ q3Þ 0
0 0 0 0 0 �q3 q2

CCCCCCCCA
:

The inverse of V is given as

V�1¼

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
m1þj1

0 0 0 0 0 0

nj1
ðz1þm1Þðm1þj1Þ

1
z1þm1

0 0 0 0 0

� ð�1þnÞj1
ðdþz2þm1Þðm1þj1Þ

0
1

dþz2þm1
0 0 0 0

0 0 0
1

m2þrþj2
0 0 0

0 0 0
j2

ðrþj2Þðm2þrþj2Þ
1

rþj2
0 0

v61
41

ðq2þq3Þðz1þm1Þ
v63 v64

43
ðq2þq3Þðrþj2Þ

1
ðq2þq3Þ

0

v71
q341

q2ðq2þq3Þðz1þm1Þ
v73 v74

q343
q2ðq2þq3Þðrþj2Þ

q3
q2ðq2þq3Þ

1
q2

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
where
v61 ¼ ��ððdþ z2 þ m1Þnj141 Þ þ ð�1þ nÞðz1 þ m1Þ42j1
ðq2 þ q3Þðz1 þ m1Þðdþ z2 þ m1Þðm1 þ j1Þ

;

v63 ¼ 42
ðq2 þ q3Þðdþ z2 þ m1Þ

;

v64 ¼ 43j2
ðq2 þ q3Þðrþ j2Þðm2 þ rþ j2Þ

;

v71 ¼ �q3ð � ððdþ z2 þ m1Þnj141 Þ þ ð�1þ nÞðz1 þ m1Þ42j1 Þ
q2ðq2 þ q3Þðz1 þ m1Þðdþ z2 þ m1Þðm1 þ j1Þ

;

v73 ¼ q342
q2ðq2 þ q3Þðdþ z2 þ m1Þ

;

v74 ¼ q343j2
q2ðq2 þ q3Þðrþ j2Þðm2 þ rþ j2Þ

:

(7a)
The next generation matrix evaluated at DFE is
33
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FV�1 ¼

0BBBBBBBB@

b11 b12 b13 b14 b15 b16 b17
0 0 0 0 0 0 0
0 0 0 0 0 0 0
b41 b42 b43 b44 b45 b46 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

1CCCCCCCCA
;

where
b11 ¼ bHðKVq2ðq2 þ q3Þm1ðh2ðdþ z2 þ m1Þnj1 þ ð1� nÞh1ðz1 þ m1Þj1Þ
KVq2ðq2 þ q3Þm1ðz1 þ m1Þðdþ z2 þ m1Þðm1 þ j1Þ

þ bHðp1ðh3q2 þ h4q3Þððdþ z2 þ m1Þnj141 þ ð1� nÞðz1 þ m1Þ42j1ÞÞÞ
KVq2ðq2 þ q3Þm1ðz1 þ m1Þðdþ z2 þ m1Þðm1 þ j1Þ

;

b12 ¼ bHh2
ðz1 þ m1Þ

þ p1bHh341
KV ðq2 þ q3Þm1ðz1 þ m1Þ

þ p1bHh4q341
KVq2ðq2 þ q3Þm1ðz1 þ m1Þ

;

b13 ¼ bHh1
ðdþ z2 þ m1Þ

þ p1bHh342
KV ðq2 þ q3Þm1ðdþ z2 þ m1Þ

þ p1bHh4q342
KVq2ðq2 þ q3Þm1ðdþ z2 þ m1Þ

;

b14 ¼ p1bHðKVq2ðq2 þ q3Þm2 þ p2ðh3q2 þ h4q3Þ43 Þj2
KVp2q2ðq2 þ q3Þm1ðrþ j2Þðm2 þ rþ j2Þ

;

b15 ¼ p1bHm2
p2m1ðrþ j2Þ

þ p1bHh343
KV ðq2 þ q3Þm1ðrþ j2Þ

þ p1bHh4q343
KVq2ðq2 þ q3Þm1ðrþ j2Þ

;

b16 ¼ p1bHh3
KV ðq2 þ q3Þm1

þ p1bHh4q3
KVq2ðq2 þ q3Þm1

; b17 ¼ p1bHh4
KVq2m1

;

b41 ¼ p2bRx1ððdþ z2 þ m1Þnj141 þ ð1� nÞðz1 þ m1Þ42j1 Þ
KV ðq2 þ q3Þðz1 þ m1Þðdþ z2 þ m1Þm2ðm1 þ j1Þ

;

b42 ¼ p2bRx141
KV ðq2 þ q3Þðz1 þ m1Þm2

; b43 ¼ p2bRx142
KV ðq2 þ q3Þðdþ z2 þ m1Þm2

;

b44 ¼ bRðKV ðq2 þ q3Þm2 þ p2x143Þj2
KV ðq2 þ q3Þm2ðrþ j2Þðm2 þ rþ j2Þ

;

b45 ¼ bR
ðrþ j2Þ

þ p2bRx143
KV ðq2 þ q3Þm2ðrþ j2Þ

; b46 ¼ p2bRx1
KV ðq2 þ q3Þm2

:

(7b)
The basic reproduction number is given by

R0 ¼ b11 þ b44
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb11 � b44Þ2 þ 4b14b41

q
2

: (7c)
Remark 2.1.1. (i) The terms contained in R0 represent the direct and indirect transmission pathways. They are described
thus: b11 is the local reproduction number of infectious asymptomatic humans, infectious symptomatic
humans, contaminated environmental surfaces and contaminated air particles in the progression of
Lassa Fever virus in the human population only; b44 is the local reproduction number of infected ro-
dents and contaminated environmental surfaces in the progression of Lassa Fever virus in the rodent
population only; b14 is the local reproduction number of contaminated environmental surfaces and
contaminated air particles in the progression of Lassa Fever virus in the human population only; and b41
is the local reproduction number of contaminated environmental surfaces in the progression of Lassa
Fever virus in the rodent population only.
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(ii) It is easy to see that

ðb11 � b44Þ2 þ 4b14b41 ¼ ðb11 þ b44Þ2 þ 4ðb14b41 � b11b44Þ:
Thus, b14b41 > b11b44 implies that R0 > 0. This condition ensures that infection will be sustained across from rodents to
humans and from humans to rodents via all the transmission pathways.

(iii) The local stability of the disease free equilibrium point when R0 < 1 is ensured by the hypothesis used in the
computation of R0 (Van den Driessche & Watmough, 2002).
Theorem 2.1.1. The disease free equilibrium point is globally asymptotically stable if R0 < 1.

Proof. It suffices to show that our model (5) satisfy conditionsH1 andH2 of the global stability theorem by (Castillo-Chavez
et al., 2002) when R0 < 1.

Model (5) can be rewritten in the form

dX
dt

¼ FðX;YÞ;

dY
dt

¼ GðX;YÞ; GðX;0Þ ¼ 0:

Here, X ¼ ðSH; SRÞT , Y ¼ ðEH; IHA; IHS; ER; IR;VS;VAÞT , X2R2
þ represents the number of susceptible humans and rodents and Y2

R7
þ represents the number of exposed humans, asymptomatic infectious humans, symptomatic infectious humans, exposed

rodents, infected rodents, contaminated environment and contaminated air.
Our DFE is now written as E0 ¼ (X, 0) where X0 ¼ ðp1

m1
; p2
rþm2

Þ and we show that the following conditions are satisfied:

, H1: For dX
dt ¼ FðX0;0Þ;X0 is globally asymptotically stable.

, H2: GðX;YÞ ¼ AY � ĜðX;YÞ, ĜðX;YÞ � 0 for (X, Y)2 Uwhere A ¼ DY(G(X0, 0)) is an M-matrix and U is the regionwhere the
model makes biological sense.

For the first condition H1, we have

dSH
dt

¼ p1 � m1SH;
dSR
dt

¼ p2 � ðrþm2ÞSR; (8)
which can be solved to get

SHðtÞ ¼
p1

m1
þ
�
p1

m1
� SH0

�
e�m1t ; SRðtÞ ¼

p2

rþ m2
þ
�

p2

rþ m2
� SR0

�
e�ðrþm2Þt :
We take limits as t / ∞ to get,

limt/∞SHðtÞ ¼
p1

m1
; limt/∞SRðtÞ ¼

p2

rþ m2
:

Hence, the solutions of equation (8) converge to X0 regardless of the initial conditions. Therefore, X0 is a globally
asymptotically equilibrium point of (8).

For condition H2, we consider FðX;0Þ ¼ ðp1 � m1SH ; p2 � ðr þ m2ÞSRÞ; GðX;YÞ ¼ AY � ĜðX;YÞ
where
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GðX;YÞ ¼

0BBBBBBBB@

lHSH � ðj1 þ m1ÞEH
nj1EH � ðz1 þ m1ÞIHA

ð1� nÞj1EH � ðdþ z2 þ m1ÞIHS
lRSR � ðj2 þ rþ m2ÞER

j2ER � ðrþ m2ÞIR
41IHA þ 42IHS þ 43IR � ðq2 þ q3ÞVS

q3VS � q2VA

1CCCCCCCCA
;

and

A ¼

0BBBBBBBBBBBBBBBBBBB@

�ðj1 þ m1Þ bHh2 bHh1 0
bHm2p1

m1p2

bHh3p1

m1KV

bHh4p1

m1KV

nj1 �ðz1 þ m1Þ 0 0 0 0 0

ð1� nÞj1 0 �ðdþ z2 þ m1Þ 0 0 0 0

0 0 0 �ðj2 þ rþ m2Þ bR
bRx1p2

m2KV
0

0 0 0 j2 �ðrþ m2Þ 0 0

0 41 42 0 43 �ðq2 þ q3Þ 0

0 0 0 0 0 q3 �q2

1CCCCCCCCCCCCCCCCCCCA

;

which is an M-matrix and

ĜðX;YÞ ¼

0BBBBBBBBBBBBBBBBBB@

bHh2ðS0H � SHÞ þ bHh1ðS0H � SHÞ þ
bHm2
p2

ðS0H � SHÞ þ
bHh3
KV

ðS0H � SHÞ þ
bHh4
KV

ðS0H � SHÞ

0

0

bRðS0R � SRÞ þ
bRx1
KV

ðS0R � SRÞ

0

0

0

1CCCCCCCCCCCCCCCCCCA

:

Clearly, ĜðX;YÞ � 0 since 0 � SH � S0H and 0 � SR � S0R. ,
The global stability of E0 thus follows and the Lassa fever virus can be eliminated from the human and rodent population

over a period of time provided R0 < 1.
The endemic equilibrium point of the model (5) is given by

E* ¼ ðS*H; E*H ; I*HA; I*HS;R*H; S*R; E*R; I*R;V*
S;V

*
AÞ;
where
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S*H ¼ p1

l*H þ m1
; E*H ¼ p1l

*
H

ðj1 þ m1Þðl*H þ m1Þ
; I*HA ¼ nj1p1l

*
H

ðz1 þ m1Þðj1 þ m1Þðl*H þ m1Þ
;

I*HS ¼ ð1� nÞj1p1l
*
H

ðdþ z2 þ m1Þðj1 þ m1Þðl*H þ m1Þ
;

R*H ¼ z1nj1p1l
*
H

m1ðz1 þ m1Þðj1 þ m1Þðl*H þ m1Þ
þ z2ð1� nÞj1p1l

*
H

m1ðdþ z2 þ m1Þðj1 þ m1Þðl*H þ m1Þ
;

S*R ¼ p2

l*R þ rþ m2
; E*R ¼ p2l

*
R

ðj2 þ rþ m2Þðl*R þ rþ m2Þ
; I*R ¼ j2p2l

*
R

ðrþ m2Þðj2 þ rþ m2Þðl*R þ rþ m2Þ
;

V*
S ¼ 41nj1p1l

*
H

ðq2 þ q3Þðz1 þ m1Þðj1 þ m1Þðl*H þ m1Þ
þ 42ð1� nÞj1p1l

*
H

ðq2 þ q3Þðdþ z2 þ m1Þðj1 þ m1Þðl*H þ m1Þ

þ 43j2p2l
*
R

ðq2 þ q3Þðrþ m2Þðj2 þ rþ m2Þðl*R þ rþ m2Þ
;

V*
A ¼ q341nj1p1l

*
H

q2ðq2 þ q3Þðz1 þ m1Þðj1 þ m1Þðl*H þ m1Þ
þ q342ð1� nÞj1p1l

*
H

q2ðq2 þ q3Þðdþ z2 þ m1Þðj1 þ m1Þðl*H þ m1Þ

þ q343j2p2l
*
R

q2ðq2 þ q3Þðrþ m2Þðj2 þ rþ m2Þðl*R þ rþ m2Þ
;

(9)
and

l*H ¼ bH

�
I*R
N*
R
þ h1I

*
HS

N*
H

þ h2I
*
HA

N*
H

þ h3V
*
S

K*
V

þ h4V
*
A

K*
V

�
; (9)

*
�
I*R x1V

*
S
�

lR ¼ bR
N*
R
þ

K*
V

: (10)
Equations (9) and (10) can be written explicitly as

l*H ¼ m1b11l
*
H

ðl*H þ m1Þ
þ m1p2b14l

*
R

p1ðl*R þ rþ m2Þ
; (11)

* m p1b41l
* m b44l

*

lR ¼ 2 H

p2ðl*H þ m1Þ
þ 2 R

ðl*R þ rþ m2Þ
: (12)

* *
We see that the state variables are expressed in terms of lH and lR. From here, we proceed by using the approach in
(Moghadas et al., 2003; Velasco-Hernandez & Hsieh, 1994). Hence, we can obtain positive equilibrium points of the model by
finding the fixed points of equations (11) and (12) as

cðlH ; lRÞ ¼
�
c1ðlH; lRÞ
c2ðlH; lRÞ

�
;

where�
c1ðlH; lRÞ
c2ðlH; lRÞ

�

corresponds to the right hand sides of equations (11) and (12).

Theorem 2.1.2. There exists a unique fixed point ðl*H; l*RÞ; l*H >0; l*R >0 which satisfies

cðl*H ; l*RÞ ¼
 
c1ðl*H; l*RÞ
c2ðl*H; l*RÞ

!

37



P.-G.U. Madueme, F. Chirove Infectious Disease Modelling 8 (2023) 27e57
and corresponds to the endemic equilibrium point E* (Moghadas et al., 2003; Velasco-Hernandez & Hsieh, 1994).

Proof. From the first equation, we fix lR > 0 and look at the real-valued function depending on lH:

clR1 ðlHÞ ¼
m1b11lH
ðlH þ m1Þ

þ m1p2b14lR
p1ðlR þ rþ m2Þ

:

We have that

limlH/0c
lR
1 ðlHÞ ¼

m1p2b14lR
p1ðlR þ rþ m2Þ

<∞;
and

limlH/∞clR1 ðlHÞ ¼ m1b11 þ
m1p2b14lR

p1ðlR þ rþ m2Þ
<∞:

lR lR
It follows that 0< c1 ðlHÞ<∞ which implies that c1 ðlHÞ is bounded for every fixed lR > 0.
Next,

vclR1 ðlHÞ
vlH

¼ m21b11
ðlH þ m1Þ2

;

and

v2clR1 ðlHÞ
v2lH

¼ � 2m21b11
ðlH þ m1Þ3

:

lR vclR1 ðlHÞ v2clR1 ðlHÞ
c1 ðlHÞ is an increasing concave down function since
vlH

>0 and
v2lH

<0. Hence, there is no change in concavity of c1
in the bounded domain. It follows that there exists a unique l*H >0 which satisfies clR1 ðl*HÞ ¼ l*H .

For this l*H >0, we look at the real-valued function depending on lR:

cl
*
H
2 ðlRÞ ¼

m2p1b41l
*
H

p2ðl*H þ m1Þ
þ m2b44lR
ðlR þ rþ m2Þ

:

Then,

limlR/0c
l
*
H
2 ðlRÞ ¼

m2p1b41l
*
H

p2ðl*H þ m1Þ
<∞;
and

limlR/∞cl
*
H
2 ðlRÞ ¼ m2b44 þ

m2p1b41l
*
H

p2ðl*H þ m1Þ
<∞:

l
*
H l

*
H *
It follows that 0< c2 ðlRÞ<∞ which implies that c2 ðlRÞ is bounded for every fixed lH >0.

Next,

vcl
*
H
2 ðlRÞ
vlR

¼ m2b44ðrþ m2Þ
ðlR þ rþ m2Þ2

;

and

v2cl
*
H
2 ðlRÞ
v2lR

¼ �2m2b44ðrþ m2Þ
ðlR þ rþ m2Þ3

:
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cl
*
H
2 ðlRÞ is an increasing concave down function since vc

l*
H
2 ðlRÞ
vlR

>0 and v2c
l*
H
2 ðlRÞ
v2lR

<0. Hence, there is no change in the concavity of

c2 in the positive domain. It follows that there exists a unique l*R >0 which satisfies cl
*
H
2 ðl*RÞ ¼ l*R.

Therefore, there is a fixed point ðl*H ; l*RÞ which corresponds to the endemic equilibrium point E*. ,
We now investigate the stability of the equilibrium points using the stability of the fixed point system ðl*H ; l*RÞ corre-

sponding to E*. The Jacobian of the system is given by:

Jðl*H ; l*RÞ ¼

0BBB@
vc1
vl*H

vc1
vl*R

vc2
vl*H

vc2
vl*R

1CCCA; (13)

where
vc1
vl*H

¼ m21b11
ðlH þ m1Þ2

;
vc1
vl*R

¼ m1p2b14ðrþ m2Þ2
p1m2ðlR þ rþ m2Þ2

;
vc2
vl*H

¼ m1m2p1b41
p2ðlH þ m1Þ2

;
vc2
vl*R

¼ b44ðrþ m2Þ2
ðlR þ rþ m2Þ2

:

* * * *
We note that JðlH ; lRÞ evaluated at the fixed point, ðlH ;lRÞ ¼ ð0;0Þ, is given by

Jð0;0Þ ¼

0BBB@
b11

m1p2b14
p1m2

m2p1b41
p2m1

b44

1CCCA;
and for stability, we require that |li| < 1, where li are the eigenvalues of J(0, 0), which corresponds to

R0 ¼ b11 þ b44
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb11 � b44Þ2 þ 4b14b41

q
2

<1: (14)

* *
Hence, the stability of ðlH ; lRÞ ¼ ð0;0Þ is achieved when R0 < 1. The point is unstable provided R0 > 1. Thus, the stability of
ðl*H; l*RÞ ¼ ð0;0Þ corresponds to the stability of E0 when R0 < 1. Now, for ðl*H;l*RÞsð0;0Þ, we have

Jðl*H ; l*RÞ ¼
�
d11 d12
d21 d22

�
;

and for stability, we require that |li| < 1, that is,

jd11 þ d22
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd11 � d22Þ2 þ 4d12d21

q
2

j<1;
where

d11 ¼ m21b11

ðl*H þ m1Þ
2; d12 ¼ m1p2b14ðrþ m2Þ2

p1m2ðl*R þ rþ m2Þ
2; d21 ¼ m1m2p1b41

p2ðl*H þ m1Þ
2; d22 ¼ b44ðrþ m2Þ2

ðl*R þ rþ m2Þ
2:
The stability of the fixed point system is governed by the fact that the absolute value of the eigenvalues of the fixed point
system is less than unity (Moghadas et al., 2003; Velasco-Hernandez & Hsieh, 1994). Hence, |li| < 1 corresponds to

1þ d11d22
d11 þ d22 þ d12d21

>1: (15)

* * * * * *
Defining the left hand side of (15) as RðlH ;lRÞ, the fixed point ðlH ; lRÞsð0;0Þ is stable when RðlH ;lRÞ>1.

2.1.3. Global stability of endemic equilibrium and bifurcation analysis
We first show that E* is globally asymptotically stable using the following theorem:

Theorem 2.1.3. The endemic equilibrium point E* of model (5) is globally asymptotically stable when m2p1b41
p2ðcþm1Þ þ

m2b44
ðcþrþm2Þ> 1.
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Table 2
Parameter values and references.

Parameters Value Reference

p1 0.497 Calculated
p2 2.74 Calculated
m1 0.0000497 Trends (2021)
m2 0.00274 Control (2018)
j1 0.0094 Assumed
j2 0.048 Assumed
bH 0.00017 Assumed
bR 0.004 Assumed
r 0.0006 (Ossai et al., 2020; WHO, 2021)
n 0.8 (CDC, 2014; WHO, 2017; Yun & Walker, 2012)
z1 0.0000476 Estimated
z2 0.0000323 Estimated
d 0.0005 NCDC (2021)
q2 0.01868 Estimated
q3 0.00701 Stephenson et al. (1984)
41 0.0667 Assumed
42 0.0357 Assumed
43 0.02569 Assumed
x1 0.167 Assumed
h1 0.94 Assumed
h2 0.95 Assumed
h3 0.9 Assumed
h4 0.85 Assumed

Table 3
Sensitivity indices of R0.

Parameters Sensitivity indices of R0 Parameters Sensitivity indices of R0

p1 0.444782 d �0.0272335
p2 0.0000581831 q2 �0.439338
m1 �0.946283 q3 �0.00550217
m2 �0.000168322 41 0.43505
j1 0.00524857 42 0.00973221
j2 �0.00190397 43 0.0000581831
bH 0.997936 x1 0.00199971
bR 0.0020637 h1 0.0219675
r �0.0000495958 h2 0.531187
n 0.839438 h3 0.32696
z1 �0.472691 h4 0.115881
z2 �0.00175928

P.-G.U. Madueme, F. Chirove Infectious Disease Modelling 8 (2023) 27e57
Proof. We use the geometric approach in (Li &Muldowney, 1996). Let us consider the fixed point system (11) and (12). We
convert it to a root finding problem to get

f̂1 ¼ m1b11l
*
H

ðl*H þ m1Þ
þ m1p2b14l

*
R

p1ðl*R þ rþ m2Þ
� l*H;

f̂2 ¼ m2p1b41l
*
H

p2ðl*H þ m1Þ
þ m2b44l

*
R

ðl*R þ rþ m2Þ
� l*R:

(16)
The Jacobian matrix corresponding to this system is

J ¼
�
f11 � 1 f12
f21 f22 � 1

�
;

where
f11 ¼ m21b11
ðlH þ m1Þ2

; f12 ¼ m1p2b14ðrþ m2Þ
p1ðlR þ rþ m2Þ2

; f21 ¼ m1m2p1b41
p2ðlH þ m1Þ2

; f22 ¼ m2b44ðrþ m2Þ
ðlR þ rþ m2Þ2

:

The second additive compound matrix (Muldowney, 1990) of J is
40



Fig. 2. Partial Rank Correlation Coefficient for the full range of parameters of model (5) in the cumulative cases of human and rodent population.
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J½2� ¼
"

m21b11
ðlH þ m1Þ2

þ m2b44ðrþ m2Þ
ðlR þ rþ m2Þ2

� 2

#
≡½C�:
We assume the function

Q ¼ QðlH; lRÞ ¼

26664
lH
lR

0

0
lH
lR

37775;
we have
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Fig. 3. Partial Rank Correlation Coefficient for the full range of parameters of model (5) in the cumulative cases of virus population.
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Q�1 ¼

26664
lR
lH

0

0
lR
lH

37775; Qf ¼

2666664
lR

_lH � lH
_lR

l2H
0

0
lR

_lH � lH
_lR

l2H

3777775; Qf Q
�1 ¼

266664
_lH
lH

�
_lR
lR

0

0
_lH
lH

�
_lR
lR

377775; QJ½2�Q�1 ¼
� C 0
0 C

�
:

We define

B ¼ Qf Q
�1 þ QJ½2�Q�1 ¼

�
B11 B12
B21 B22

�
;

where B11 ¼ B22 ¼ _lH
lH
� _lR

lR
þ C; B12 ¼ B21 ¼ 0.

Using

_lR
lR

¼ m2p1b41lH
p2lRðlH þ m1Þ

þ m2b44
ðlR þ rþ m2Þ

� 1;
Then

B11 ¼ B22 ¼
_lH
lH

� m2p1b41lH
p2lRðlH þ m1Þ

� m2b44
ðlR þ rþ m2Þ

þ 1:
We follow the approach in (Li & Muldowney, 1996) to get

nðB Þ � supfg1; g2g≡supfn1ðB11Þþ jB12j; n1ðB22Þþ jB21jg;

1 1
where n1 denotes the Lozinskii measure with respect to the L norm and |B12|, |B21| are matrix norms with respect to the L
vector norm. So,

nðB Þ �
_lH
lH

� m2p1b41lH
p2lRðlH þ m1Þ

� m2b44
ðlR þ rþ m2Þ

þ 1:
Using Lemma 1 in (Srivastava et al., 2022) and the uniform persistence result in (Freedman et al., 1994), this gives us
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Fig. 4. Model simulations for all the state variables in model (5) with R0 greater than unity: R0 ¼ 3.1301.

P.-G.U. Madueme, F. Chirove Infectious Disease Modelling 8 (2023) 27e57
nðB Þ �
_lH
lH

�
�

m2p1b41
p2ðcþ m1Þ

þ m2b44
ðcþ rþ m2Þ

� 1
�
:

m2p1b41 m2b44
We choose D ¼ p2ðcþm1Þ þ ðcþrþm2Þ � 1>0, so

nðB Þ �
_lH
lH

� D:
Integrating both sides, we get

Zt
0

nðB Þds �
Zt
0

_lH
lH

dt �
Zt
0

Ddt;
and it follows that
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Fig. 5. Graphical illustration of model (5) for single transmission routes on the cumulative cases of human, rodent and virus classes.
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1
t

Zt
0

nðB Þds � 1
t
log

lHðtÞ
lHð0Þ

� D;
or

lim supt/∞sup
1
t

Zt
0

nðB Þds � �D � 0; (17)
as lH(t) is bounded and D >0
Hence, cq2 ¼ lim sup t/∞sup 1

t

R t
0 nðB Þds<0, if D > 0 or m2p1b41

p2ðcþm1Þ þ
m2b44

ðcþrþm2Þ>1.

Thus, system (16) is globally asymptotically stable for m2p1b41
p2ðcþm1Þ þ

m2b44
ðcþrþm2Þ>1, that is ðlH ; lRÞ/ðl*H ; l*RÞ as t / ∞. ,

Next, we investigate conditions on the parameter values in model (5) using Center Manifold Theory (Castillo-Chavez &
Song, 2004).

Theorem 2.1.4. (i) If bHm2
p2

w1v2w1 <
bHp1m2

2
p2
2m1

w6v2w8 and b > 0, then the system (5) will undergo a forward bifurcation at R0 ¼ 1.
44



Fig. 6. Graphical illustration of model (5) for possible combination of two transmission routes on the cumulative cases of human, rodent and virus classes.
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(ii) If Bwv <
bHm2
p2

w1v2w1 � bHp1m2
2

p2
2m1

w6v2w8, and b > 0, then the system (5) will undergo a backward bifurcation at R0 ¼ 1.

(Castillo-Chavez & Song, 2004).

Proof. See Appendix A. ,
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Fig. 7. Graphical illustration of model (5) for possible combination of three transmission routes on the cumulative cases of human, rodent and virus classes.
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3. Numerical simulations

3.1. Parameter estimation

It is crucial to estimate the model parameter values in order for us to perform numerical analysis. We consider the
ecological nichewhere Lassa fever is endemic. We focus on three (3) states in Nigeria (Ondo, Edo and Ebonyi) where this virus
has ravaged communities in the past few years based on Nigeria Centre for Disease Control (NCDC) reports (NCDC, 2021).

In the chosen region, we consider a few local sites in the three states of about 10000 persons, p1
m1

¼ 10000. The human
natural death rate is m1 ¼ 1

55:12�365 day�1 using the average human lifespan in Nigeria as 55.12 (Trends, 2021). The daily
recruitment rate of humans is estimated as p1 ¼ 10000 � m1 ¼ 0.497 day�1. The value, n ¼ 0.8 since 80% of individuals are
asymptomatic. The sample study of Lassa fever cases in Nigeria shows a case fatality ratio of 18.9% in the year 2021 (NCDC,
2021), we assume d ¼ 0.189 year�1 which translates to d ¼ 0.0005 day�1. Research conducted in these communities had
reported a yearly rodent consumption rate of 29.9% in Edo State, 11% in Ebonyi State and 20.2% in Ondo State (Ossai et al.,
2020; WHO, 2021). So, we use an average consumption rate of 20.4% per year giving us r ¼ 0.0006 day�1. The biological
half-life of Lassa virus ranges from 10.1 to 54.6 min (Stephenson et al., 1984); so using 10.1 min implies that q3 ¼ 2�10:1

60�24 day�1.
We consider a hypothetical average population of Mastomys rat to be p2

m2
¼ 1000, since there is no known quantified es-

timate of the rodents population. The average lifespan of a rodent is 1 year (Control, 2018), so we obtain m2 ¼ 1
1�365 day

�1. We
estimate the rodent recruitment rate to be p2¼ 1000� m2¼ 2.74 day�1. Some of the parameters cannot be found or estimated
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Fig. 8. Graphical illustration of model (5) for possible combination of four transmission routes on the cumulative cases of human, rodent and virus classes.
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from literature, so we used model calibration to get ideal representation curves for all state variables to get approximate
values. Thus j1 ¼0.0094 day�1, j2 ¼ 0.048 day�1, bH ¼ 0.00017 day�1, bR ¼ 0.004 day�1, x¼ 0.167, 41 ¼ 1

15, 42 ¼ 1
28, 43 ¼ 3:7

60�24
and the values of h1, h2, h3, h4, to lie in the interval (0, 1). For our simulation, we use the following initial conditions:
SH(0) ¼ 10000, EH(0) ¼ 0, IHA(0) ¼ 324, IHS(0) ¼ 81, RH(0) ¼ 10, SR(0) ¼ 1000, ER(0) ¼ 0, IR(0) ¼ 100, VS(0) ¼ 1000, VA(0) ¼ 100.
Table 2 contains the parameter values used in the simulations.
3.2. Sensitivity analysis

Sensitivity analysis is a procedure used to determine the strength of model predictions to parameter values. It is crucial
because there are usually flaws in assumed parameter values and generally in data collection. Sensitivity analysis shows the
parameters that deserve the best numerical attention, reveals insensitive parameters that do not require much effort to
estimate and shows which parameters should be targeted for intervention (Mikucki, 2012). Local sensitivity analysis is based
on calculating the effect on the model output of small perturbations around a nominal parameter value. This perturbation is
done on one parameter at a time using the first-order partial derivative of the model output with respect to the perturbed
parameter. Here, we will investigate parameters that have a high impact on R0, and should be targeted by intervention
strategies. The global sensitivity analysis, on the other hand, seeks to explore the input parameters space across its range of
variation and then quantify the input parameter importance based on a characterization of the resulting output response
surface. It is a sampling-based method that investigates uncertainties for parameter values in the entire parameter range
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Fig. 9. Graphical illustration of model (5) for all possible combination of transmission routes alongside one transmission route on the cumulative cases of human,
rodent and virus classes.
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(Blower & Dowlatabadi, 1994; Marino et al., 2008; Saltelli et al., 2004, 2008; Tur�anyi, 1990). We will perform both the local
and global sensitivity analysis.

3.2.1. Local sensitivity analysis of R0
We calculate the local sensitivity indices of the parameters with respect to R0 using the normalized forward index. These

indices reveal the importance of each parameter to disease transmission and should be taken into consideration while
defining our control strategies. According to (Chitnis et al., 2008), the normalized forward sensitivity index of a variable u that
depends differentiably on a parameter r is defined as:

Yu
r ¼ vu

vr
� r

u
:

For example, the sensitivity index of R0 with respect to bH will be

YR0
bH

¼ vR0
vbH

� bH
R0

:

When YR0
bH

>0, we say that bH increases the value of R0 as its value increases, while if YR0
bH

<0, then bH decreases the value of
R0 as its value increases. The results of the sensitivity indices is shown in Table 3.

We observe from Table 3 that parameters such as bH, n, h2, p1, 41, h3, h4, h1, bR, x1 are positively correlated with R0 thus
increase in these parameters increase the reproduction number. The parameters m1, z1, d, q2 are negatively correlated with R0
thus they decrease the value of R0 as they are increased. There are parameters such as p2, m2, r, 43 that are insensitive with
respect to the reproduction number of Lassa fever in the population. These parameters do not require too much effort to
estimate and will not cause much changes to R0 when they are increased or decreased. All parameters associated with
infection pathways have positive indices and thus, all the infection pathways have a potential to collectively or otherwise
increase the infection. We also observe that bH is the most sensitive parameter followed by n, h2, p1, 41, h3, h4, h1, bR, x1
respectively. Intervention strategies can be targeted at reducing the impact of parameters which increase R0 whilst increasing
those that reduce it.

3.2.2. Global sensitivity analysis
The global sensitivity analysis is carried out using the Latin Hypercube Sampling and Partial Rank Correlation Coefficients

(PRCCs) (Marino et al., 2008). This is a robust sensitivity measure that combines uncertainty analysis with partial correlation
on rank-transformed data to assess the sensitivity of our outcome variable to parameter variation. Figs. 2 and 3 shows that the
parameters bH, bR, 41, 43, q3, j1, n are positively correlated to CH and thus increase the burden of Lassa fever infection in the
human population; the parameters q2, m2, p1 are negatively correlated to CH and decrease the burden of Lassa virus in the
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Fig. 10. Graphical illustration of model (5) for possible combination of the two rodent transmission routes on all the classes.
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human populationwhen they are increased. There are also insensitive parameters j2, m1, j1, z1, z2, 42 with PRCCs very close to
zero. The parameters associated with infection pathways though weakly correlated, remain positively correlated in the
different populations. In the rodent population, the parameters bH, bR, j1, j2, m1, m2, q3 are positively correlated to CR and
increase the infection burden in rodents, parameters p1, p2, m2, 42, r, m2, q3 are negatively correlated to CR while there are
parameters with PRCCs close to zero such as d, q3, z1, z2 and so on. From the PRCCs of the virus population, we see positively
correlated parameters such as bR, j2, p2, m1, x1, negatively correlated parameters m2, r, p1 and other parameters with PRCCs
very close to zero. In all populations, we see that some parameters are positively or negatively correlated at certain time
points but become insensitive at other time points and verse visa. Hence, the interplay and the exchange of sensitivity by
different parameters on different variables alludes to the complexities brought about by the multiple transmission pathways
which in turn suggest the importance of every pathway in the prognosis of Lassa fever.
3.3. Simulation results

Fig. 4 shows the baseline graphs of system (5) without varying the system parameters. The simulations were done over a
time period of 40000 days. The baseline graph is perceived to represent the ideal situation where Lassa fever persists in the
system. We will illustrate the impact of the transmission pathways in the next subsection.

3.3.1. Simulation of the transmission pathways
We now investigate the impact of the various transmission routes on the progression of Lassa fever in both human and

rodent population as well as the growth of virus in the environment. We shall proceed using the following strategies:

1. Transmission pathways for the human population
(a) 5 Single transmission pathways (see Fig. 5).
(b) 10 combinations of two transmission pathways (see Fig. 6).
(c) 10 combinations of three transmission pathways (see Fig. 7).
(d) 5 combinations of four transmission pathways (see Fig. 8).
(e) 1 combination of five transmission pathways (see Fig. 9).

2. Transmission pathways for rodent population
(a) Single transmission pathways (see Fig. 9).
(b) 1 combination of two transmission pathways (see Fig. 10).

By single transmission pathway, we use each of the single contact rates in the human force of infection and test its impact
on the system while the entire rodent force of infection is operational. We do the same for two transmission routes and
continue till we exhaust all other transmission pathways. We also investigate using each of the single contact rates in the
rodent force of infection and the two transmission routes while keeping the entire human force of infection in use. We shall
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test these strategies using the cumulative cases (NCDC, 2021) in the humans, rodents and virus in the environment. To capture
this, we will simulate the cumulative cases using the equations:

dCH
dt

¼ j1EH;

dCR
dt

¼ j2ER;

dCVS
dt

¼ 41IHA þ 42IHS þ 43IR;

(19)
subject to the initial conditions CHð0Þ ¼ 0; CRð0Þ ¼ 0; CVS
ð0Þ ¼ 505, where CH is the cumulative infection cases in the

human population, CR is the cumulative infection cases in the rodent population, and CVS is the cumulative infection cases in
the virus population.

Fig. 5 reveals that the effective contact rate between susceptible humans and infected rodents does the most damage with
regards to the progression of infection. This is followed by the contact rate between susceptible humans and infectious
asymptomatic humans which is less infectious and then by the contact with contaminated environment, contaminated air,
and infectious symptomatic humans. We observe that every single route of transmission plays a role in driving the Lassa fever
infection even though some are less significant than the others. In the rodent population, we also see a notable difference in
the level of infectiousness of the transmission routes likewise in the virus population. This shows that some pathways are
more deadly than others yet every pathway makes their own contribution. We see from Fig. 6 that a combination of two
transmission pathways increases disease burden more than a single pathway. We also see that some combinations are more
deadly than others. Any combination with the effective contact rate between susceptible humans and infected rodents
produces a surge of infections followed by any combination with the effective contact rate between susceptible humans and
infectious asymptomatic humans and then other pathways. Overall, we see that as the number of transmission routes in-
crease, the burden of infection increases also (see Figs. 7e8). Fig. 9 shows a combination of all the transmission routes plotted
alongside the dominant single transmission pathway. The region between the two graphs accounts for the contribution of
other pathways in combinationwith the effective contact rate between susceptible humans and infected rodents. This shows
that even though the effective contact rate between susceptible humans and infected rodents is dominant, other pathways
should not be neglected because when they work in combination, there is an additional increase in the burden of Lassa fever
over a cumulative period of time. It is also important to note that horizontal transmissions between susceptible rodents and
infected rodents also play a huge role in increasing the infection as well as contact rate between susceptible rodent and
contaminated environmental surfaces (see Fig. 10).

3.4. Discussion of results

We investigated the transmission dynamics of Lassa fever infection incorporating multiple transmission routes to capture
their impact on the progression of the infection. Using a deterministic model that accounts for Lassa fever infection, we were
able to show how incorporating several transmission pathways affects the prevalence of the disease. We used some math-
ematical tools to establish the local stability of the endemic equilibrium and the global stability of the disease free equilib-
rium. From our analysis, we got mathematical expressions that shows the conditions for which the disease will persist or be
controlled in the system and illustrated sensitivity of parameters changes as system dynamics progress.

From our model simulations, we see that every transmission pathway has an impact towards the progression of Lassa
fever. However, there are some routes of transmission that contribute significantly more than others. Control measures
should be targeted more on the contact rates between susceptible humans and infected rodents (especially in areas where
rodent consumption is high), and contact rates between susceptible humans and infectious asymptomatic humans. A great
challenge arises when dealing with susceptible and asymptomatic infected humans pathway because they are not easily
identified through symptoms. This calls for control methods that can detect this category of people such as mass testings in
endemic areas, vaccination and so on. It is also important not to neglect the contact rates between susceptible humans and
contaminated air particles especially in health centres with recorded Lassa fever cases and the contact rates between sus-
ceptible humans and contaminated environment (especially in poorly sanitized areas) because they are further drivers of
infection (CDC, 2014).

Most single transmission routes are less harmful, but when they operate in combination with other transmission routes,
they contribute additional damage to the system. Studies (Ibrahim & D�enes, 2021; Ojo et al., 2021; Onah et al., 2020; Peter
et al., 2020) that only concentrated on the human and rodent direct transmission routes have not captured valuable infor-
mation on the environmental impact towards the progression of the infection. This work gives a more comprehensive
breakdown of the transmission dynamics of Lassa fever as it integrates indirect transmission routes which are sometimes
neglected but play a crucial role in increasing the infection statistics. Current reports show that about four medical doctors
died and 38 health workers were infected during a recent Lassa fever outbreak in Nigeria (NCDC, 2022; Punch, 2022). This
increase in the death of health workers tells of the fact that serious measures should be taken to curb the spread of the virus
through the indirect transmission routes like the environmental surfaces and aerosol. This will help to reduce the impact of
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these indirect transmission routes on the infection chain. Public health agencies in Nigeria have done a lot in mitigating Lassa
fever infection through administering Ribavirin, public awareness campaigns amongst others. A lot still needs to be done in
endemic areas by adequate fumigation of the environment and provision of protective gears for health workers. The results
from our work show that interventions on these areas should not be undermined during health policy making. Further
studies can be targeted at.

, combination of multiple routes of transmission incorporating the effect of seasonality of infection,
, proper sanitation, intervention strategies and holistic control measures that integrate these multiple transmission
pathways which can help public health reduce disease prevalence,

, optimizing cost of several control measures using Cost Effective Analysis so that individuals in endemic areas with issues of
poverty can be properly assisted.

Access to real field data can also improve the predictive capacity of the current model. Vertical transmission of Lassa fever
in rodents can also be incorporated in further studies. Alternative techniques like the scaling of the model can be used to help
simplify the analysis where parameters are dimensionless and express ratios of physical effects rather than levels of indi-
vidual effects(Ledder, 2017).
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Appendix A. Sample Appendix Section

Proof. Let xi ¼ ðx1; x2; x3; x4; x5; x6; x7; x8; x9; x10ÞT ¼ ðSH ; EH; IHA; IHS;RH ; SR; ER; IR;VS;VAÞT .
Then, model (5) can be written in the form dxi

dt ¼ gðxÞ as follows:

dx1
dt

¼ g1 ¼ p1 � lHx1 � m1x1;

dx2
dt

¼ g2 ¼ lHx1 � ðj1 þ m1Þx2;

dx3
dt

¼ g3 ¼ nj1x2 � ðz1 þ m1Þx3;

dx4
dt

¼ g4 ¼ ð1� nÞj1x2 � ðdþ z2 þ m1Þx4;

dx5
dt

¼ g5 ¼ z1x3 þ z2x4 � m1x5;

dx6
dt

¼ g6 ¼ p2 � lRx6 � ðrþ m2Þx6;

dx7
dt

¼ g7 ¼ lRx6 � ðj2 þ rþ m2Þx7;

dx8
dt

¼ g8 ¼ j2x7 � ðrþ m2Þx8;

dx9
dt

¼ g9 ¼ 41x3 þ 42x4 þ 43x8 � ðq2 þ q3Þx9;

dx10
dt

¼ g10 ¼ q3x9 � q2x10;

(A.1)

where
lH ¼ bHx8
x6 þ x7 þ x8

þ bHh1x4
x1 þ x2 þ x3 þ x4 þ x5

þ bHh2x3
x1 þ x2 þ x3 þ x4 þ x5

þ bHh3x9
KV

þ bHh4x10
KV

;

lR ¼ bR

�
x8

x6 þ x7 þ x8
þ x1x9

KV

�
:

We choose bH as the bifurcation parameter by setting R0¼ 1. To do this, we let bRf bHwhich implies that bR¼ tbH for some
t > 0. Then from the value of R0 we get
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bH ¼ b*H ¼ 2

b*H1 þ b*H4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb*H1 � b*H4Þ

2 þ 4b*H2b
*
H3

q ; (A.2)
where

b*H1 ¼ KVq2ðq2 þ q3Þm1ðh2ðdþ z2 þ m1Þnj1 � ð�1þ nÞh1ðz1 þ m1Þj1Þ
KVq2ðq2 þ q3Þm1ðz1 þ m1Þðdþ z2 þ m1Þðm1 þ j1Þ

þ p1ðh3q2 þ h4q3Þððdþ z2 þ m1Þnj141 � ð�1þ nÞðz1 þ m1Þ42j1ÞÞ
KVq2ðq2 þ q3Þm1ðz1 þ m1Þðdþ z2 þ m1Þðm1 þ j1Þ

;

b*H2 ¼ p1ðKVq2ðq2 þ q3Þm2 þ p2ðh3q2 þ h4q3Þ43 Þj2
KVp2q2ðq2 þ q3Þm1ðrþ j2Þðm2 þ rþ j2Þ

;

b*H3 ¼ p2tx1ððdþ z2 þ m1Þnj141 � ð�1þ nÞðz1 þ m1Þ42j1 Þ
KV ðq2 þ q3Þðz1 þ m1Þðdþ z2 þ m1Þm2ðm1 þ j1Þ

;

b*H4 ¼ tðKV ðq2 þ q3Þm2 þ p2x143Þj2
KV ðq2 þ q3Þm2ðrþ j2Þðm2 þ rþ j2Þ

:

The Jacobian of system (8) evaluated at the DFE E0 with the bifurcation parameter b*H donated by JE0 is given as0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�m1 0 �b*Hh2 �b*Hh1 0 0 0 �b*Hm2p1

m1p2
�b*Hh3p1

m1KV
�b*Hh4p1

m1KV

0 j22 b*Hh2 b*Hh1 0 0 0
b*Hm2p1

m1p2

b*Hh3p1

m1KV

b*Hh4p1

m1KV

0 nj1 j33 0 0 0 0 0 0 0

0 ð1� nÞj1 0 j44 0 0 0 0 0 0

0 0 z1 z2 �m1 0 0 0 0 0

0 0 0 0 0 �ðrþ m2Þ 0 �tb*H �tb*Hx1p2

m2KV
0

0 0 0 0 0 0 j77 tb*H
tb*Hx1p2

m2KV
0

0 0 0 0 0 0 j2 j88 0 0

0 0 41 42 0 0 0 43 �ðq2 þ q3Þ 0

0 0 0 0 0 0 0 0 q3 �q2

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

where

j22 ¼ �ðj1 þm1Þ; j33 ¼ �ðz1 þm1Þ; j44 ¼ �ðdþ z2 þm1Þ; j77 ¼ �ðj2 þ rþm2Þ; j88 ¼ �ðrþm2Þ:
A right eigenvector associated with the zero eigenvalue is given by

w ¼ ðw1;w2;w3;w4;w5;w6;w7;w8;w9;w10ÞT :
We get it from the following equations:
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�m1w1 � b*Hh2w3 � b*Hh1w4 �
m2p1

m1p2
b*Hw8 �

b*Hh3p1

m1KV
w9 �

b*Hh4p1

m1KV
w10 ¼ 0

�ðj1 þ m1Þw2 þ bHh2w3 þ b*Hh1w4 þ
m2p1

m1p2
b*Hw8 þ

b*Hh3p1

m1KV
w9 þ

b*Hh4p1

m1KV
w10 ¼ 0nj1w2 � ðz1 þ m1Þw3 ¼ 0

ð1� nÞj1w2 � ðdþ z2 þ m1Þw4 ¼ 0

z1w3 þ z2w4 � m1w5 ¼ 0� ðrþ m2Þw6 � tb*Hw8 �
tb*Hx1p2

m2KV
w9 ¼ 0� ðj2 þ rþ m2Þw7 þ tb*Hw8 þ

tb*Hx1p2

m2KV
w9 ¼ 0

j2w7 � ðrþ m2Þw8 ¼ 0

41w3 þ 42w4 þ 43w8 � ðq2 þ q3Þw9 ¼ 0

q3w9 � q2w10 ¼ 0
(A.3)
The solution to (A.3) gives

w1 ¼ �b*Hh2w3

m1
� b*Hh1w4

m1
� b*Hm2p1

m21p2
w8 �

b*Hh3p1

m21KV
w9 �

b*Hh4p1

m21KV
w10;

w2 ¼ w2 >0; w3 ¼ nj1w2

z1 þ m1
; w4 ¼ ð1� nÞj1w2

dþ z2 þ m1
; w5 ¼ z1w3 þ z2w4

m1
;

w6 ¼ �tb*Hw8

rþ m2
� tb*Hx1p2

m2KV ðrþ m2Þ
w9; w7 ¼ tb*Hw8

j2 þ rþ m2
þ tb*Hx1p2

m2KV ðj2 þ rþ m2Þ
w9;

w8 ¼ j2w7

rþ m2
; w9 ¼ 41w3 þ 42w4 þ 43w8

ðq2 þ q3Þ
; w10 ¼ q3w9

q2
:

(A.4)
Similarly, a left eigenvector (associated with the zero eigenvalue) given by

v ¼ ðv1; v2; v3; v4; v5; v6; v7; v8; v9; v10ÞT ;
which satisfies v.w ¼ 1 is obtained by the transpose of the matrix JE0 which is0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�m1 0 0 0 0 0 0 0 0 0

0 jT22 nj1 ð1� nÞj1 0 0 0 0 0 0

�b*Hh2 b*Hh2 jT33 0 z1 0 0 0 41 0

�b*Hh1 b*Hh1 0 jT44 z2 0 0 0 42 0

0 0 0 0 �m1 0 0 0 0 0

0 0 0 0 0 �ðrþ m2Þ 0 0 0 0

0 0 0 0 0 0 jT77 j2 0 0

�b*Hm2p1

m1p2

b*Hm2p1

m1p2
0 0 0 �tb*H tb*H jT88 43 0

�b*Hh3p1

m1KV

b*Hh3p1

m1KV
0 0 0 �tb*Hx1p2

m2KV

tb*Hx1p2

m2KV
0 �ðq2 þ q3Þ q3

�b*Hh4p1

m1KV

b*Hh4p1

m1KV
0 0 0 0 0 0 0 �q2

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

where
jT22 ¼ �ðj1 þm1Þ; jT33 ¼ �ðz1 þm1Þ; jT44 ¼ �ðdþ z2 þm1Þ; jT77 ¼ �ðj2 þ rþm2Þ; jT88 ¼ �ðrþm2Þ:
The system of equations obtained is given by
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�m1v1 ¼ 0� ðj1 þ m1Þv2 þ nj1v3 þ ð1� nÞj1v4

¼ 0� b*Hh2v1 þ b*Hh2v2 � ðz1 þ m1Þv3 þ z1v5 þ 41v9

¼ 0� b*Hh1v1 þ b*Hh1v2 � ðdþ z2 þ m1Þv4 þ z2v5 þ 42v9

¼ 0� m1v5

¼ 0� ðrþ m2Þv6
¼ 0� ðj2 þ rþ m2Þv7 þ j2v8

¼ 0� b*Hm2p1

m1p2
v1 þ

b*Hm2p1

m1p2
v2 � tb*Hv6 þ tb*Hv7 � ðrþ m2Þv8 þ 43v9

¼ 0� b*Hh3p1

m1KV
v1 þ

b*Hh3p1

m1KV
v2 �

tb*Hx1p2

m2KV
v6 þ

tb*Hx1p2

m2KV
v7 � ðq2 þ q3Þv9 þ q3v10

¼ 0� b*Hh4p1

m1KV
v1 þ

b*Hh4p1

m1KV
v2 � q2v10

¼ 0

(A.4)
Solving (A.4) gives

v1 ¼ 0; v2 ¼ v2 >0; v3 ¼ b*Hh2v2 þ 41v9
z1 þ m1

; v4 ¼ b*Hh1v2 þ 42v9
dþ z2 þ m1

; v5 ¼ 0; v6 ¼ 0; v7 ¼ j2v8
j2 þ rþ m2

;

v8 ¼ tb*Hv7
rþ m2

þ b*Hm2p1v2
m1p2ðrþ m2Þ

þ 43v9
rþ m2

; v9 ¼ b*Hh3p1v2
m1KV ðq2 þ q3Þ

þ tb*Hx1p2v7
m2KV ðq2 þ q3Þ

þ q3v10
q2 þ q3

; v10 ¼ b*Hh4p1v2
q2m1KV

:

We use the property v.w ¼ 1 to get

v1w1 þ v2w2 þ v3w3 þ v4w4 þ v5w5 þ v6w6 þ v7w7 þ v8w8 þ v9w9 þ v10w10 ¼ 1:
Choosing w2 ¼ 1 without loss of generality gives us

v2 ¼ 1
1þ ðA3w3 þ A4w4 þ A7w7 þ A8w8 þ A9w9 þ A10w10Þ

>0;

where
A3¼
bH

 
h2þ

p1m241

	
tbHq2x1j2þh3q2

	
r2þm22þðr�tbHÞj2þm2ð2rþj2Þ



þh4q3

	
r2þm22þðr�tbHÞj2þm2ð2rþj2Þ




q2m1

	
�tp2bHx143j2þKV ðq2þq3Þm2

	
r2þm22þðr�tbHÞj2þm2ð2rþj2Þ



 !
z1þm1

;

A4¼
bH

 
h1þ

p1m242

	
tbHq2x1j2þh3q2

	
r2þm22þðr�tbHÞj2þm2ð2rþj2Þ



þh4q3

	
r2þm22þðr�tbHÞj2þm2ð2rþj2Þ




q2m1

	
�tp2bHx143j2þKV ðq2þq3Þm2

	
r2þm22þðr�tbHÞj2þm2ð2rþj2Þ



 !
dþz2þm1

;

A7¼�
p1bHm2ðKVq2ðq2þq3Þm2þp2ðh3q2þh4q3Þ43Þj2

p2q2m1

	
tp2bHx143j2�KV ðq2þq3Þm2

	
r2þm22þðr�tbHÞj2þm2ð2rþj2Þ



;
A8¼�

p1bHm2ðKVq2ðq2þq3Þm2þp2ðh3q2þh4q3Þ43Þðrþm2þj2Þ
p2q2m1

	
tp2bHx143j2�KV ðq2þq3Þm2

	
r2þm22þðr�tbHÞj2þm2ð2rþj2Þ



;A10¼
ðbHh4p1Þ
ðq2m1KV Þ

;

A9¼
p1bHm2

	
tbHq2x1j2þh3q2

	
r2þm22þðr�tbHÞj2þm2ð2rþj2Þ



þh4q3

	
r2þm22þðr�tbHÞj2þm2ð2rþj2Þ




q2m1

	
�tp2bHx143j2þKV ðq2þq3Þm2

	
r2þm22þðr�tbHÞj2þm2ð2rþj2Þ



 :
This value of v2 and w2 satisfies the given property. We now calculate the second order partial derivatives of gi at the
disease free equilibrium E0 to get
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v2g2
vx1vx8

¼ bHm2
p2

;
v2g2
vx1vx9

¼ bHh3
KV

;
v2g2

vx1vx10
¼ bHh4

KV
;

v2g2
vx2vx3

¼ �bHh2m1
p1

;

v2g2
vx2vx4

¼ �bHh1m1
p1

;
v2g2
vx3vx4

¼ �bHm1ðh1 þ h2Þ
p1

;
v2g2
vx3vx5

¼ �bHh2m1
p1

;
v2g2
vx3vx3

¼ �2bHh2m1
p1

;

v2g2
vx4vx4

¼ �2bHh1m1
p1

;
v2g2
vx4vx5

¼ �bHh1m1
p1

;
v2g2
vx6vx8

¼ �bHp1m
2
2

p2
2m1

;
v2g2
vx7vx8

¼ �bHp1m
2
2

p2
2m1

;

v2g2
vx8vx8

¼ �2bHp1m
2
2

p2
2m1

;
v2g7
vx7vx8

¼ �bHm2
p2

;
v2g7
vx8vx8

¼ �2bHm2
p2

;
v2g7
vx6vx9

¼ bHx1
KV

:

We now compute the values of a and b to get

a ¼ P10
k;i;j¼1

vkwiwj
v2gkð0; 0Þ
vxivxj

¼
�
bHh3
KV

w9 þ
bHh4
KV

w10

�
v2w1 þ

�
bHx1
KV

�
v7w6w9;

� bHh2m1
p1

½w2 þw5 þ 2w3 þw4�v2w3 �
bHm2
p2

½w7 þ 2w8�v7w8;

� ½w7 þ 2w8�v2w8 �
bHh1m1

p1
½w2 þw3 þ 2w4 þw5�v2w4;

þ bHm2
p2

w1v2w1 �
bHp1m

2
2

p2
2m1

w6v2w8;

(A.5)
and

b ¼ P10
k;i¼1

vkwi
v2gkð0;0Þ
vxivbH

¼ v2w3h2 þ v2w4h1 þ v2w8
p1m2
p2m1

þ v2w9
p1h3
m1KV

þ v2w10
p1h4
m1KV

þ v7w8 þ v7w9
p2x1
m2KV

>0:

(A.6)
(i) If bHm2
p2

w1v2w1 <
bHp1m2

2
p2
2m1

w6v2w8 and b > 0, then system (5) will undergo a forward bifurcation at R0 ¼ 1.
(ii) If Bwv <

bHm2
p2

w1v2w1 � bHp1m2
2

p2
2m1

w6v2w8, and b > 0, then system (5) will undergo a backward bifurcation at R0 ¼ 1, where

Bwv ¼
�
bHh3
KV

w9 þ
bHh4
KV

w10

�
v2w1 þ

�
bHx1
KV

�
v7w6w9 �

bHh2m1
p1

½w2 þw5 þ 2w3 þw4�v2w3;

� bHm2
p2

½w7 þ 2w8�v7w8 � ½w7 þ 2w8�v2w8 �
bHh1m1

p1
½w2 þw3 þ 2w4 þw5�v2w4:

(A.6)
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