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Abstract

Background: The change in two measurements of a continuous outcome can be modelled directly with a linear
regression model, or indirectly with a random effects model (REM) of the individual measurements. These methods
are susceptible to model misspecifications, which are commonly addressed by applying monotonic transformations
(e.g., Box-Cox transformation) to the outcomes. However, transforming the outcomes complicates the data analysis,
especially when variable selection is involved. We propose a robust alternative through a novel application of the
conditional probit (cprobit) model.

Methods: The cprobit model analyzes the ordered outcomes within each subject, making the estimate invariant to
monotonic transformation on the outcome. By scaling the estimate from the cprobit model, we obtain the
exposure effect on the change in the observed or Box-Cox transformed outcome, pending the adequacy of the
normality assumption on the raw or transformed scale.

Results: Using simulated data, we demonstrated a similar good performance of the cprobit model and REM with
and without transformation, except for some bias from both methods when the Box-Cox transformation was
applied to scenarios with small sample size and strong effects. Only the cprobit model was robust to skewed
subject-specific intercept terms when a Box-Cox transformation was used. Using two real datasets from the breast
cancer and inpatient glycemic variability studies which utilize electronic medical records, we illustrated the
application of our proposed robust approach as a seamless three-step workflow that facilitates the use of Box-Cox
transformation to address non-normality with a common underlying model.

Conclusions: The cprobit model provides a seamless and robust inference on the change in continuous outcomes,
and its three-step workflow is implemented in an R package for easy accessibility.
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Background
In studies with repeated measurements of a continuous
outcome, it may be of interest to quantify the change in
the outcome over time. For example, the effect of a
treatment can be assessed by comparing the outcome
measured for each subject before and after receiving the
treatment in a pre-post study [1, 2]. In experimental
studies under well-controlled settings, the simple paired
t-test may be sufficient for assessing the change in a
continuous outcome at two time points in each subject.
To control for confounding when assessing these
changes in observational studies, we could generalize the
paired t-test to a linear regression model. However, the
validity of the inference from the regression model relies
on the adequacy of model assumptions, i.e., normality or
linearity.
Transformation is commonly used when residual diag-

nostics reveal that the model assumptions are inadequate.
The commonly considered Box-Cox power family [3] is
defined for positive values, and so cannot be applied to
the change in continuous measurements with negative dif-
ferences. In these situations, the shifted power family [3]
can be considered, but the likelihood function of the
transformation parameter may behave poorly, resulting in
the standard asymptotic properties of the maximum likeli-
hood estimator being invalid [4, 5]. Although the Yeo-
Johnson method of transformation [6] is well-defined for
both positive and negative values, it produces estimates
that are difficult to interpret, due to the different powers
for the transformation of positive and negative values [7].
Given these difficulties, it may be preferable to apply the
Box-Cox transformation on the individual measurements.
An alternative approach is to analyze the repeated

measurements by using the random effects model
(REM) with a random intercept for each subject [8], and
address the inadequacy of the normality assumption
using the Box-Cox transformation [9]. However, differ-
ent transformations selected for the same outcome vari-
able in different studies may result in conflicting
findings [10] and could complicate the selection of vari-
ables in the final model: the independent variable(s) se-
lected at each step of the model-building procedure may
differ from those that would have been selected from
modelling the untransformed data, due to the additional
(re)estimation of the transformation parameter at each
step [11]. Hence, it is appealing to devise a robust ana-
lytical approach that allows inference on the effect of the
predictor that is indifferent to any monotonic transform-
ation on the outcome.
To address the issues faced with transformation in

studies of independent samples, Liu and team [10] and
Tan and team [12] proposed to analyze the ordering of
outcomes where the resulting exposure effect is invariant
to monotonic transformations. In particular, Tan and

team introduced a stratified analysis of continuous out-
comes for confounder adjustment, where the strata con-
sisted of subjects with the same or similar confounding
profile. This approach can be adapted in the context of
two repeated outcome measurements by considering
each subject as a stratum: assuming normally distributed
error terms, the two ordered outcome measurements
can be analyzed using the conditional probit (cprobit)
model, allowing robust inference on the presence and
direction of an exposure effect.
In this paper, we propose a robust approach to analyze

two repeated measurements of a continuous outcome,
by first applying the cprobit model to detect an exposure
effect and subsequently quantifying the exposure effect
on the observed outcome. We compare the performance
of our proposed approach to the REM using simulated
data, and provide a seamless three-step workflow for
assessing exposure effect that facilitates the use of Box-
Cox transformation to address non-normality with a
common underlying model. We illustrate the application
of our proposed approach with two real datasets which
utilize electronic medical records (EMRs): a study of the
association between the changes in white blood cell
count and neutrophil percentage in female breast cancer
patients after initiating chemotherapy; a study of gly-
cemic variability over a three-day period among hospi-
talized patients, to determine the association between
the baseline values and the change in the subsequent
two days.

Methods
Underlying random effects model
We consider two repeated measurements of a continu-
ous exposure (xij) and a continuous outcome (yij) from
the i-th subject, i = 1, …, n and j = 1, 2, and assume the
observed outcome is generated from the following REM:

yij ¼ αi þ βxij þ εij; ð1Þ

where εij~N(0, σ
2) denotes the independent measure-

ment error within each subject, and the random inter-
cept αi � Nðμα; σ2αÞ represents the subject-specific time-
invariant effects that is assumed to be independent from
εij and xij [8]. Departure from the normality assumptions
could be assessed using the simple residuals [8], and if
the normality assumption is inadequate, the Box-Cox
transformation can be applied to the outcome to achieve
a normal distribution for the ‘total’ error term [9].

Difference model
The parametric assumption on the intercept terms
makes the REM susceptible to model misspecification.
An alternative approach to make inference on β is to
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apply the linear regression model to the change in the
outcome within each subject from equation (1):

Δyi: ¼ βΔxi: þ Δεi:; ð2Þ
where Δyi. = yi2 − yi1, Δxi. = xi2 − xi1, and Δεi: ¼ εi2−εi1
� Nð0; σ2Δ ¼ 2σ2Þ are scalar quantities. This differencing
approach eliminates the subject-specific intercept and
thereby avoids the assumptions of normality on it [8].

Conditional probit model for continuous outcomes
Similar to non-parametric statistical tests, the cprobit
model uses the ordering of the outcomes within each
subject to perform hypothesis testing on β. It is derived
from the scaled difference from equation (2) where the
new error term has unit variance [13]:

Δyi:=σΔ ¼ βcΔxi: þ Δεi:=σΔ; ð3Þ
where βc = β/σΔ. Hence the probability of observing yi2 >
yi1 (or equivalently Δyi./σΔ > 0) for the i-th subject is:

Pr Ii ¼ 1ð Þ ¼ Pr Δyi:=σΔ > 0ð Þ ¼ Φ βcΔxi:
� �

; ð4Þ

where Ii = I{yi2 > yi1} and Φ(·) is the cumulative density
function of a standard normal distribution. The estimate
for βc (β̂c) can be used to assess the presence and direc-
tion of an association between the exposure and the
outcome.

Estimation of linear effect and residuals for conditional
probit model
As the parameter of interest is the linear exposure effect
on the continuous outcome (β) and βc = β/σΔ from
equation (3), we adapt the approach proposed by Tan

and team [12] to estimate β given β̂c by rewriting
equation (2) as:

Δyi: ¼ σΔβcΔxi: þ Δεi:; ð5Þ
and we estimate σΔ by maximizing the estimated likeli-
hood [14] based on equation (5), where βc is replaced by

β̂c . With estimates available for both β̂c and σ̂Δ , the re-

siduals in equation (5) correspond to cΔεi: ¼ Δyi:−σ̂Δβ̂cΔ
xi: and are subsequently used to assess the adequacy of
the model assumptions. If the normality assumption is
adequate, β can be estimated using the plug-in estima-

tor: β̂ ¼ σ̂Δβ̂c, with standard error: SEðβ̂Þ ¼ σ̂ΔSEðβ̂cÞ.

Addressing model inadequacy with Box-Cox
transformation
Modelling the transformed outcome
When the normality assumption on Δεi. is inadequate,
we consider a Box-Cox transformation (indexed with a
parameter λ) of the observed outcome yij:

y λð Þ
ij ¼

yλij−1
� �

=λ if λ≠0

log yij
� �

if λ ¼ 0:

8
<

:

We assume yðλÞij can be described by the following

REM:

y λð Þ
ij ¼ αλi þ βλxij þ ελij; ð6Þ

where ελij � Nð0; σ2λÞ and αλi � Nðμλα; σ2λαÞ, and the sub-
script λ indicates the dependency of the parameters on
λ. When λ = 1, equation (6) is simply the linear model
on the untransformed outcome yij (i.e., equation (1)
where αλi = αi − 1, βλ = β and ελij = εij). Similar to the ana-
lysis on the untransformed outcome, we eliminate the
subject-specific intercept by working on the difference in
the transformed outcomes within each subject:

Δy λð Þ
i: ¼ βλΔxi: þ Δελi:; ð7Þ

where ΔyðλÞi: ¼ yðλÞi2 −yðλÞi1 , Δxi. = xi2 − xi1, and Δελi: ¼ ελi2−
ελi1 � Nð0; σ2λΔ ¼ 2σ2λÞ are scalar quantities.

Conditional probit model for transformed outcome
The cprobit model for the transformed outcome can be
derived from the scaled difference of the transformed
outcome in equation (7):

Δy λð Þ
i: =σλΔ ¼ βcλΔxi: þ Δελi:=σλΔ; ð8Þ

where βcλ = βλ/σλΔ and Δελi./σλΔ~N(0, 1). Since the Box-
Cox transformation does not change the ordering of the
outcome, equation (4) can be rewritten as:

Pr Ii ¼ 1ð Þ ¼ Pr Δyi:=σΔ > 0ð Þ
¼ Pr Δy λð Þ

i: =σλΔ > 0
� �

¼ Φ βcλΔxi:
� �

; ð9Þ

where the estimate of βcλ is again β̂c and Φ(·) is the cu-
mulative density function of a standard normal distribu-

tion. To estimate βλ given β̂c requires the estimation of λ
and σλΔ. Following from equation (5), we use the rela-
tionship βλ = σλΔβcλ to rewrite equation (7) as:

Δy λð Þ
i: ¼ σλΔβcλΔxi: þ Δελi:: ð10Þ

We follow the common practice [3, 5] to estimate λ
and σλΔ by maximizing the profile likelihood. If residual

diagnostics using cΔελi: ¼ Δy
ðλ̂Þ
i: −σ̂λΔβ̂cΔxi: support the

normality assumption, we estimate βλ using the plug-in

estimator: β̂λ ¼ σ̂λΔβ̂c , with standard error: SEðβ̂λÞ ¼ σ̂λΔ

SEðβ̂cÞ.
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Three-step workflow
Our proposed approach seamlessly integrates the use of
Box-Cox transformation to alleviate non-normality,
which we summarize as a three-step workflow (see
Fig. 1). Assuming the (transformed) outcome is gener-
ated from a REM, our approach estimates the exposure
effect by working on the differences in the (transformed)
outcomes from each subject. In Step 1 of the workflow,
the presence and direction of this effect is assessed by
applying the cprobit model to model the indicator Ii in
equation (4) of the positive difference in the observed
outcomes within each subject (see Supplementary Figure
S1 in Additional file 1 for a detailed summary of the
three-step workflow). The estimated effect from the

cprobit model, β̂c , is unchanged when a Box-Cox trans-

formation is applied to the outcome (see equation (9)),
and it is scaled in the subsequent steps to quantify the
linear exposure effect on the (transformed) outcome.
In Step 2, we first consider a simple scenario where

the observed outcome is generated from a REM (see
equation (1)). Although our approach works on the dif-
ferences in the observed outcomes within each subject

(see equation (2)), β̂c provides an estimate for the scaled
exposure effect on the observed outcome, where the
scaling factor is the reciprocal of the standard deviation
of the error distribution of the differences (see equation
(3)). Thus, if the residual diagnostics suggest the error
terms Δεi. in equation (2) are normal, the estimated ex-

posure effect on the observed outcome is: β̂ ¼ σ̂Δβ̂c.
When the normality assumption on the error term is

inadequate for the observed outcome in Scenario 1, scal-

ing β̂c from Step 1 may not be appropriate. We address
this issue with the Box-Cox transformed outcome where
a REM is assumed for the transformed outcome (see
equation (6)), and our approach estimates the exposure
effect using the difference in the transformed outcomes
(see equation (7)). The transformation parameter (λ) is

estimated and the β̂c from Step 1 is now the estimate of
the scaled effect on the transformed outcome (see equa-
tion (8)). The estimated effect on the transformed out-

come is: β̂λ ¼ σ̂λΔβ̂c . When the Box-Cox transformation
in Step 3 is insufficient to alleviate non-normality, it may
be useful to consider extensions of the functional rela-
tionship between the exposure and the outcome, e.g., by
including interaction terms or splines.

Simulation study
Simulation study 1
This study assessed and compared the performance of
the REM and the cprobit model when assessing the as-
sociation between a predictor at baseline and the change
in the outcome without transformation (see Add-
itional file 2 for detailed simulation setup). To investi-
gate the performance of the two methods under
different conditions, we simulated data with different ef-
fect sizes of the predictor (β = 0 and −0.06), sample sizes
(n = 300 and 1200) and random intercept distributions
(normal and skewed). We assessed the performance of
the two methods from 2000 simulation cycles using the
type I error, power, bias, empirical standard error (em-
pirical SE), average of the model-based standard error
(mean SE) and the coverage of the 95% confidence inter-

vals (CIs) extracted for the estimated linear effect (β̂).

Simulation study 2
This study assessed and compared the performance of
the two methods when the Box-Cox transformation on

Fig. 1 Illustration of the three-step workflow of the cprobit model
for the analysis of continuous outcomes
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the outcome provides a linear model with normal errors.
To generate such an observed continuous outcome, we
used the outcome generated in Simulation study 1, and
applied the inverse Box-Cox transformation with λ = 1,
1/3, 0 to obtain the observed continuous outcome prior
to the (supposedly unknown) transformation. Thus the
created data required no transformation, a cubic root
transformation and a log transformation respectively to
satisfy the normality assumption. We assessed the per-
formance of the estimated effect on the transformed

outcome ( β̂λ ) and the estimated transformation param-

eter ( λ̂ ) from the two methods, and assessed the ad-
equacy of the normality assumption after the Box-Cox
transformation with the Lilliefors test [15] on the
residuals.

Data illustrations
We used two real datasets which utilize EMRs to illus-
trate our proposed workflow and compared it with: (i)
the conventional linear regression model when the nor-
mality assumption is adequate without Box-Cox trans-
formation, and (ii) the REM with or without
transformation as appropriate.

Neutrophil study
We investigated the association between the change in
white blood cell (WBC) counts and the change in the
neutrophil percentage before and during chemotherapy
among breast cancer patients, where a low neutrophil
level is a risk indicator for developing severe side effects
of chemotherapy [16]. This study used retrospective data
from breast cancer patients diagnosed between 2005 and
2014, who underwent chemotherapy at the National
University of Singapore (NUH). The two periods consid-
ered in this study were the 60 days before (period 1) and
after (period 2) the start date of chemotherapy. We fo-
cused our investigation on 384 patients who did not re-
quire medical intervention to increase neutrophil counts
during these periods [17], with diagnostic information
retrieved from the NUH breast cancer registry and la-
boratory test results from the NUH EMRs. For each pa-
tient, we extracted the minimum WBC count and
minimum neutrophil percentage for each period, and
subsequently dichotomized the minimum WBC count in
each period using the sample median in period 1 (6.94 ×
109/L).
We assumed the following REM:

yij ¼ αi þ β1xij þ β2tij þ β3Agei þ β4Stagei
þ β5Ethnicityi þ εij; ð11Þ

where yij represents the minimum neutrophil percentage
for the i-th subject in the j-th period, xij indicates
whether the minimum WBC count for the i-th subject

in the j-th period is higher than the cut-off defined earl-
ier, tij is the indicator for period 2, Agei represents age
at diagnosis, Stagei indicates stage 3 or above and Ethni-
cityi indicates Chinese, for i = 1, …, 384, and j = 1, 2. As
the linear regression and the cprobit models are applied
to the difference in outcomes, these time-invariant co-
variates are implicitly controlled for.

Blood glucose study
High glycemic variability is a known risk factor for dia-
betes complications [18, 19]. We examined whether the
baseline glycemic variability was associated with the
change in subsequent daily glycemic variability by using
the point-of-care capillary blood glucose (BG) readings
collected from the first BG monitoring episode among
hospitalized non-critical care adult patients in NUH,
using data retrieved from the NUH EMRs. We defined a
BG monitoring episode as a contiguous sequence of BG
readings where consecutive readings were no more than
two days apart. For each patient, the daily glycemic vari-
ability was quantified by the standard deviation (SD) of
the BG readings. The baseline variability is represented
by the SD on the first day of the monitoring episode,
and the change in the SD between the second and third
day of the same episode (referred to as the first and sec-
ond follow-up) is the outcome of primary interest. We
included patients warded in the medical wards between
September and December in 2012 if their first BG moni-
toring episode was at least three days in duration and at
least three BG readings were collected per day during
the first three days of the episode. The final dataset in-
cluded 1200 patients.
We assumed the following REM:

yij ¼ αi þ β1tij þ β2SD0i þ β3tijSD0i þ β4Agei þ β5Femalei þ εij;

ð12Þ

where yij represents the SD of BG for the i-th subject in
the j-th follow-up, tij is an indicator for the second
follow-up, SD0i represents the baseline SD of BG, Agei
represents age at baseline and Femalei indicates female
for i = 1, …, 1200, and j = 1, 2. By taking the difference
between yi1 and yi2 in equation (12), we obtain the fol-
lowing linear model:

Δyi: ¼ β1 þ β3SD0i þ Δεi:: ð13Þ

Equation (13) suggests that β3 can be interpreted as
the linear effect of the baseline variability of BG on the
change in variability of BG between the first and second
follow-up of the monitoring episode, and the time-
invariant covariates are implicitly controlled for when
the linear regression and the cprobit models are applied
to the difference in outcomes.
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Implementation
The analyses were performed using R version 3.2.3 [20].
The lmer function in the lme4 package [21] was used to
implement the REM, and the powerTransform function
in the car package [22] was used to estimate λ when the
Box-Cox transformation was used. The cprobit model in
Step 1 of our workflow was implemented using the glm
function by specifying the binomial family for Ii with

probit link. To obtain λ̂ in Step 3, the profile likelihood
was maximized using the optimize function. Since it is
common practice to restrict λ to take values from a
closed interval [7, 23], we follow Hawkins and Weisberg
[23] by considering the interval [−3, 3]. We implemented
the proposed three-step workflow as an R package
named cprobit [24] (see Additional file 3 for a reprodu-
cible example). Residual diagnostics was performed in
Step 2 and 3 of our workflow using the lillie.test func-
tion in the nortest package [25].

Results
Simulation study
Simulation study 1: without Box-Cox transformation

Both models provided unbiased estimates (β̂) with com-
parable mean SE and empirical SE, type I error close to
5% and coverage close to 95% for the various settings
considered (see the panels labelled “None” in Fig. 2 and

Supplementary Table S1 in Additional file 1). The β̂
from the cprobit model had larger SE and lower power
than that from the REM.

Simulation study 2: with Box-Cox transformation
We first summarize the performance of both methods
when the intercepts were normally distributed. Simula-

tion results of the estimate (β̂λ) are summarized in Sup-
plementary Table S2 in Additional file 1 and illustrated
in the panels labelled λ = 0, 1/3 and 1 in Fig. 2. For zero
effect with both sample sizes, both the cprobit model
and the REM with Box-Cox transformation produced

unbiased β̂λ with comparable mean SE and empirical SE,
coverage close to 95% and therefore type I error close to
5%. For non-zero effect (βλ = − 0.06), the estimates from
both methods were unbiased when sample size was large
(n = 1200) but became somewhat biased with small sam-
ple size (n = 300), especially for larger λ values. Although
the bias was slightly larger from the cprobit model than
the REM, it was generally within 10% of the true value
of βλ. The coverage was slightly lower than 95% for non-
zero effect when λ = 0 in both sample sizes and methods
due to some underestimation of the standard error,
which was more pronounced for larger λ. As observed in
Simulation study 1, the REM had higher power than the
cprobit model. The estimated transformation parameter

( λ̂ ) from both methods had good inferential properties
except for the slightly conservative type I error and
coverage from the cprobit model (see Fig. 3 and Supple-
mentary Table S3 in Additional file 1). The rate of
rejecting the normality assumption after the Box-Cox
transformation was close to the expected level of 5% for
both methods (see Supplementary Table S4 in Add-
itional file 1).
The performance of the cprobit model with Box-Cox

transformation was not affected by the skewed distribu-
tion of the intercept terms, but the REM with Box-Cox
transformation was adversely affected: it failed to address
non-normality in many simulation cycles especially
when n = 1200 (see the high rejection rate in Supple-
mentary Table S4 in Additional file 1), resulting in
biased estimate and low coverage when βλ = − 0.06, and
conservative type I error when n = 300 and lower power
than for normal intercepts.

Real data analyses
Neutrophil study
The residual qq-plot and the Lilliefors test suggested the
adequacy of the normality assumption for the linear re-
gression model applied to the changes in the outcome
(see Supplementary Figure S2(A) in Additional file 1),
and hence we analyzed the observed outcome without
transformation. When the WBC status changed from
low in period 1 to high in period 2, the linear regression
model estimated a significant increase in the minimum
neutrophil percentage (i.e., expected increase is 10.20,
95% CI: 8.44, 11.95; see Table 1). Residual diagnostics
for the REM and the cprobit model also supported the
reporting of estimated effect for the untransformed data
(see Supplementary Figure S2(B) and S2(C) in Add-
itional file 1). Estimates of linear effect from both
methods were consistent with the linear regression
model: 9.51 (95% CI: 8.15, 10.88) from the REM, and
11.29 (95% CI: 8.66, 13.92) from the cprobit model.

Blood glucose study
Both the residual qq-plot and the Lilliefors test sug-
gested the inadequacy of the normality assumption when
applying the linear regression model to the changes in
the untransformed outcome (see Supplementary Figure
S3 in Additional file 1), and a similar conclusion was
drawn from residual diagnostics of the REM and the
cprobit model (see Supplementary Figure S4(A) and
S4(B) in Additional file 1). Therefore, the Box-Cox
transformation was used in the REM and the cprobit
model in the subsequent analysis to address non-

normality. Both models identified a need to transform (λ̂

¼ 0:33 for the REM and λ̂ ¼ 0:34 for the cprobit, see
Table 2), and the residual qq-plots and the Lilliefors test
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suggested the adequacy of the normality assumption
after transformation (see Supplementary Figure S4(C)
and S4(D) in Additional file 1). Residual diagnostics sug-
gested that the REM had a better fit than the cprobit
model for analyzing the transformed data, although both
models generated similar estimates for the linear effect
of the baseline measurement on the subsequent change
in the transformed outcome: − 0.054 (95% CI: − 0.083, −
0.025) from the REM and − 0.042 (95% CI: − 0.079, −
0.005) from the cprobit model. A simulated dataset

based on this study is provided in the cprobit package.
The R commands to analyze this simulated dataset using
the three-step workflow and their output are docu-
mented in Additional file 3.

Discussion
In this paper, we have proposed a robust alternative to
simple linear regression or REM for the analysis of
change in two repeated measurements of a continuous
outcome. Our method involves a novel application of

Fig. 2 Performance of the REM and cprobit model in estimating the linear effect in simulation studies. Mean and standard error (panel a),
coverage (panel b) and type I error and power (panel c) of the estimated linear effect under null and strong effects from the random effects
model (REM) and the conditional probit (cprobit) model when applied to the scenarios where no transformation was required (“None”) and Box-
Cox transformation was considered (λ ¼ 0; 13 ; 1), with normal and skewed intercept terms, small and large sample sizes (n = 300, 1200). Solid
vertical grey lines indicate the true effect sizes in panel a, and the nominal value of the coverage and type I error in panel b and c. Dashed
vertical grey lines indicate a 10% bias in the estimate under the strong effect in panel A, and ±1% deviation from the nominal values in panel B
and C. (Note: Under strong effect, the coverage of the REM with skewed intercepts was 34.2% or lower for λ ¼ 0; 13 ; 1 and beyond the plot range
for panel b)
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the cprobit model that incorporates the Box-Cox trans-
formation. By modeling the change, the cprobit model
eliminates the subject-specific intercept after taking the
difference, and is therefore less susceptible to model
misspecification than the REM. Simulation studies
highlighted the advantage of the cprobit over the REM
when the Box-Cox transformation was required. Based
on the framework of our proposed approach, we de-
scribed a three-step workflow, and applied it to two real
datasets that utilize EMRs to illustrate the different situ-
ations that can arise in practical data analysis.
Findings from our simulation study demonstrated a

good performance for both the REM and the cprobit

model when no transformation was required, although
the estimates from the cprobit model had higher vari-
ability (and hence lower power) than REM. With the
Box-Cox transformation and normally distributed inter-
cept terms, both methods provided good estimates of
the linear exposure effect on the transformed outcome (

β̂λ ) for zero effect, and the power of both methods was
not affected by the need to estimate the transformation
parameter (λ) for both effect sizes. However, for non-

zero effects, an underestimation of the SE of β̂λ from
both methods resulted in reduced coverage, and for
small sample size (n = 300) a bias, that was generally
smaller for REM, despite the estimated transformation

parameter ( λ̂ ) being unbiased. The bias and underesti-

mated variability of β̂λ are attributable to the uncertainty

in λ̂ that is not accounted for in estimating βλ [9, 26].
Consistent with the literature [27] the REM without
transformation was robust against a skewed distribution
of the intercept terms. However, the REM with Box-Cox
transformation may fail to overcome the non-normality
in the ‘total’ error term [9] when the intercept term was

skewed, resulting in a biased β̂λ with low type I error
and poor coverage. Since the cprobit model eliminates
the intercept terms from the likelihood, it is robust when

Fig. 3 Performance of the REM and cprobit model in estimating the transformation parameter in simulation studies. Mean and standard error

(panel a), coverage (panel b) and type I error (panel c) of the estimated transformation parameter (̂λ) from the random effects model (REM) and
the conditional probit (cprobit) model with the Box-Cox transformation for strong effect (βλ = − 0.06), with λ ¼ 0; 13 ; 1, normal and skewed
intercept terms, n = 300, 1200. Solid vertical grey lines indicate the true λ values in panel a, and the nominal value of the coverage and type I
error in panel b and c. Dashed vertical grey lines indicate ±1% deviation from the nominal values in panel b and c. (Note: Results for the REM
with skewed intercepts are beyond the plot range:

(a) λ̂ < 0:1 when λ = 1, λ̂ < −0:1 when λ = 1/3, and λ̂ < −0:19 when λ = 0 for panel A; (b) coverage at 5.5% or below for panel b; and (c) type I
error at 94.5% or above for panel c)

Table 1 Results from the neutrophil study

Method Linear effect on untransformed outcome

Estimate 95% Confidence interval

Linear regressiona,b 10.20 8.44, 11.95

REMc 9.51 8.15, 10.88

cprobitb 11.29 8.66, 13.92
aLinear regression model on the change in outcomes
bImplicitly adjusted for all time-invariant confounders
cAdjusted for age, stage and ethnicity by including these variables into the
linear predictor
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used with the Box-Cox transformation because it avoids
making any distributional assumption on the intercepts.
We summarized the application of our method as a

three-step workflow, where Step 1 models the ordered
outcomes within each subject to estimate a measure of

association between an exposure and a outcome (β̂c) that
is invariant to a Box-Cox transformation on the out-
come. Leveraging on this invariance property in the sub-

sequent two steps, we scale β̂c to provide an appropriate
estimate for the exposure effect on the change in the ob-
served (or Box-Cox transformed) outcomes pending the

adequacy of the normality assumption. Since β̂c is the
scaled exposure effect estimate of the linear model that
satisfies the normality assumption, different scaling fac-
tors are used for the observed and transformed out-
comes. The two real datasets that utilize EMRs
illustrated the step-by-step application of the method,
where the data was first analyzed without transformation
in Step 2 after completing Step 1. When the normality
assumption is adequate (e.g., the neutrophil study), the
estimated exposure effect from Step 2 is reported, other-
wise the Box-Cox transformation is used to address the
non-normality in Step 3 (e.g., the blood glucose study).
Since the cprobit model makes inference by modelling
the change within each subject, it estimates the same ex-
posure effect (but with higher variability) as the linear
regression model applied to the change in outcomes
when no transformation is required. This is illustrated in
the neutrophil study, where our proposed approach had
similar estimate to the linear regression model but had a
wider 95% CI.
In common with the linear regression model for the

change in outcomes, our proposed approach has advan-
tages over the REM in handling time-invariant con-
founding effects. Although the subject-specific intercept
in the REM may implicitly account for time-invariant
covariates, a correlation between the intercept and the
exposure may result in biased estimates when some of
the covariates are also confounders. By modeling the dif-
ference, our proposed approach can be viewed as a fixed
effects approach for analyzing longitudinal data that dif-
fers from the REM by allowing for correlation between
the subject-specific intercept and exposure [8, 28], hence
implicitly controlling for time-invariant confounding ef-
fects too. Hence, our proposed approach estimates the

within-subject effect of a time-varying exposure, while
the between-subject effect can be estimated from a REM
that explicitly models these two effects of the time-
varying exposure [8]. By modeling the ordered outcomes
within each subject with the cprobit model, our pro-
posed approach is robust to misspecified model assump-
tions but have lower power and higher variability than
REM. A similar observation is made by Liu and team
[10] when they compared their approach that models or-
dered outcomes of independent samples with ap-
proaches that model the observed outcomes.
Since the outcome of the cprobit model is a binary

variable indicating an increase in the outcome for each
subject, it is susceptible to common issues faced when
analyzing binary responses, e.g., biased estimate due to
small sample size, rare events or (quasi-)complete separ-
ation [29–31]. The bias resulting from these issues could
be alleviated using the Firth’s method [30–32], which is
recently implemented for the probit regression model in
the R package brglm [33]. Another limitation shared by
the cprobit model and the REM is the high level of un-
certainty in estimating λ when the sample size is small
(n = 300), which could result in biased estimates with
underestimated SE. However, Box and Cox [3] argued
that one can still obtain a reasonable estimate of the ef-
fect in these situations by identifying a transformation
that overcomes non-normality (e.g., using prior know-
ledge) and reporting the estimated effect on the trans-
formed outcome, and this is also commonly practiced in
real data analyses.
In this paper we considered a common transformation

for the two repeated measurements, which may not be
applicable for a study where, for example, there is a sus-
pected profound batch effect between the two measure-
ments suggesting the transformation applied to each
measurement is different. Wu and Tian [34] proposed a
non-parametric transformation that allows each meas-
urement to have a different transformation function
from the others. We have considered the use of the Box-
Cox transformation in Step 3, and recently, Hothorn
and team [35] have proposed a flexible family of non-
parametric transformation functions for studies of inde-
pendent samples of continuous outcomes that is applic-
able to both positive and negative values. Future work
may explore extending their approach for Step 3 of our

Table 2 Results from the blood glucose study

Method Linear effect on transformed outcome Transformation parameter (λ)

Estimate 95% Confidence interval Estimate 95% Confidence interval

REMa –0.054 −0.083, −0.025 0.33 0.28, 0.37

cprobitb −0.042 −0.079, −0.005 0.34 0.28, 0.40
aAdjusted for age and gender by including these variables into the linear predictor
bImplicitly adjusted for all time-invariant confounders
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workflow. Nevertheless, the inference based on β̂c from
Step 1 of our proposed workflow is valid as long as there
exists some (unknown) monotonic transformation where
the normality assumption is adequate, hence providing a
useful tool for biomarker discovery by making less re-
strictive assumptions for hypothesis testing [12, 36].
Moreover, our proposed approach alleviates the compli-
cations of model building procedures involving the use
of transformation on the outcomes to correct model
misspecification, which are prevalent in both the trad-
itional Box-Cox transformation [11, 37] and the recent
non-parametric approaches [34, 35].
Although we have presented our method as an ap-

proach to analyze change in two repeated measurements
of a continuous outcome, it also applies to stratified ana-
lysis of continuous outcomes for confounder adjustment,
with each stratum consisting of a pair of subjects with
the same confounding profile. In scenarios with more
than two repeated measurements from each subject, or
more than two subjects in each stratum, the rank-
ordered probit model [38] that generalizes the cprobit
model can be considered in the same vein as the strati-
fied analysis of continuous outcomes [12]. Furthermore,
our proposed workflow can be extended to other error
distributions (e.g., the skewed error distribution consid-
ered by Tan and team [12]), where the conventional nor-
mality assumption is not expected in some real-life
applications [39, 40].

Conclusions
In this paper, we present a novel application of the cpro-
bit model that provides a robust method for the study of
change in a continuous outcome. The method is invari-
ant to any monotonic transformation on the outcome
when testing for the presence and direction of the asso-
ciation between the exposure and the outcome, and gen-
erally has estimates with good inferential properties for
the exposure effect on the (transformed) outcome.
Hence, a statistical analysis plan that pre-empts the use
of Box-Cox transformation to alleviate non-normality
can be easily integrated into the data analysis steps with
the method, resulting in a practical and seamless work-
flow for data analysts.
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