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We propose a method for forecasting global human migration flows. A Bayesian
hierarchical model is used to make probabilistic projections of the 39,800 bilateral
migration flows among the 200 most populous countries. We generate out-of-sample
forecasts for all bilateral flows for the 2015 to 2020 period, using models fitted to
bilateral migration flows for five 5-y periods from 1990 to 1995 through 2010 to
2015. We find that the model produces well-calibrated out-of-sample forecasts of
bilateral flows, as well as total country-level inflows, outflows, and net flows. The mean
absolute error decreased by 61% using our method, compared to a leading model
of international migration. Out-of-sample analysis indicated that simple methods for
forecasting migration flows offered accurate projections of bilateral migration flows in
the near term. Our method matched or improved on the out-of-sample performance
using these simple deterministic alternatives, while also accurately assessing uncertainty.
We integrate the migration flow forecasting model into a fully probabilistic population
projection model to generate bilateral migration flow forecasts by age and sex for all
flows from 2020 to 2025 through 2040 to 2045.

bilateral migration flows | international migration | probabilistic forecasting | Bayesian hierarchical model

Recent methodological advances have made it possible to generate plausible estimates of
international migration flows at a global scale. Abel (1) pioneered a method to estimate
the minimum number of people who must have changed their country of residence to
explain the change in migrant stocks among all countries of the world. Azose and Raftery
(2) extended the minimum migration estimates to produce well-calibrated pseudo-Bayes
estimates of bilateral migration flows. This was found to perform best among six methods
for estimating international migration, in the sense of having the highest correlation with
several common measures of migration (3).

Accurate estimates of historic migration trends and forecasts of future trends are essen-
tial to crafting effective migration policies (4), but flow forecasting method development
has lagged progress in flow estimation (5). Gravity models use push factors to help explain
the magnitude of out-migration from a country along with pull factors to help explain
the magnitude of country-level in-migration. Work with these models has used estimates
of migration flows from most of the world to a few wealthy countries and vice versa to
quantify the influence of push and pull factors on the magnitudes of migration flows (6, 7).
Alternatives to the gravity model approach are concerned with migration flow forecasting
for a subset of countries or regions (8, 9).

We address the problem of probabilistic forecasting of international migration flows
between all pairs of countries. Our approach uses a Bayesian hierarchical model that pools
information across time periods and individual flows (10), helping to compensate for
the small number of periods where migration flow estimates are typically available. The
Bayesian approach also makes it possible to encode outside information in the model,
helping to rein in implausibly large forecast variability.

This paper describes a Bayesian hierarchical model that builds on a key idea from ref. 11:
Once the overall level of migration is controlled for, spatial distribution patterns are
found to be remarkably stable. Rogers et al. (12) and Raymer et al. (13) used this idea to
model regional or subnational migration flows. Our approach models the out-migration
rate by origin country and time period. Multiplying the country-level outflow rate by
the population at risk for out-migrating each period yields the number of people to
allocate to each destination. Our destination model jointly allocates this migrant total
to all destinations, conditional on the origin country. This conditional origin framework
makes it possible to capture the variability in spatial interactions across flows from the same
origin. It also yields forecasts of net migration by country that sum to zero by construction.

Out-of-sample evaluation results indicate that our model generates plausible, well-
calibrated forecasts of bilateral migration flows over a short time horizon. These accom-
modate the possibility of major migration shocks in the future. We use our fitted model to
generate probabilistic forecasts of global bilateral migration flows for quinquennial periods
from the 2020 to 2025 period to 2040 to 2045.
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Table 1. Out-of-sample MAE in thousands of migrants
per period, MAPE, and 95% prediction interval (PI) cov-
erage for models fitted to all 1990 to 1995 through 2010
to 2015 migration flows and tested on all 39,800 2015 to
2020 flows

95% PI
Method MAE MAPE Flow In Out Net
Historic mean flow 1.2 139 — — — —
Persistence 1.0 79 — — — —
Gravity model 3.0 1,565 86 77 80 99
Poisson hurdle model 10.0 25,649 90 66 65 48
Bayesian flow model 1.2 76 93 87 92 94

A bold-face entry indicates the most accurate number for that metric.

Results

Out-of-Sample Validation. We fitted five competing models of
bilateral migration flows for the first five periods for which flow
data were available, i.e., 1990 to 2015, using only data that
would have been available at the start of the 2015 to 2020 period
(2, 14). Fitted models were then used to predict the bilateral flows
observed in the 2015 to 2020 period (3, 15). This approach offers
some indication of how our forecasting approach might perform
one period ahead. We calculated the mean absolute error (MAE)
and the mean absolute percentage of error (MAPE) for all models
and the prediction interval (PI) coverage for the probabilistic
methods (16, 17).

The MAE measures the average absolute difference between
each flow forecast and the observed flow for the 2015 to 2020
period. It summarizes prediction error on the same scale as the data
for all flows. The MAPE normalizes the error by the magnitude
of the observed flow, after adding 1 to both the observed and
predicted flows to avoid infinite values. Normalizing errors by the
magnitude of the observed flow puts the magnitude of errors for
different pairs of countries on the same scale.

We also evaluated competing probabilistic methods by compar-
ing their 95% prediction interval coverages. If a probabilistic flow
model is well calibrated, then the 95% prediction intervals from a
model fitted to the 1990 to 2015 flows should include about 95%
of the 2015 to 2020 flows. Prediction interval coverage estimates
that differ from the nominal value (95% in this case) indicate that
a model may be poorly calibrated, misspecified, or both.

Table 1 summarizes the performance of the Bayesian flow
model (BFM) alongside two simple deterministic approaches, a

standard gravity model and the Poisson hurdle model, which is
a more complex gravity model (6, 7, 18). Let mi,j ,t denote the
number of migrants from origin i to destination j during the
period starting in year t . The historic mean flow model generates
forecasts by projecting each bilateral flow mean over the first five
periods into the 2015 to 2020 period. The historic mean flow
forecast for the 2015 to 2020 period for the flow from origin
i to destination j is defined as m̄i,j =

1
5

∑2010
t=1990 mi,j ,t . The

persistence flow model projects each of the most recently observed
bilateral flows forward to the next period. The persistence flow
forecast for the 2015 to 2020 period for the flow from origin i to
destination j is defined asmi,j ,2010. The gravity and hurdle model
specifications are detailed in Materials and Methods.

Among the probabilistic models, the BFM was the best cali-
brated for bilateral flows, total inflows, total outflows, and net
migration flows. The BFM had the lowest MAPE among the
methods considered and clearly outperformed both gravity mod-
els in terms of both MAE and MAPE. Interestingly, the simple
deterministic models performed similarly to the BFM in terms of
MAE and MAPE, but they fall short in that they do not produce
prediction intervals.

Fig. 1A summarizes the distribution of observed and predicted
flows for the BFM. Points that fall along the dashed line y = x
indicate perfect agreement between the single best forecast and the
observed flow. The estimated R2 values from the Poisson hurdle
model, R2 = 0.93, improve on the gravity model, R2 = 0.83,
and the BFM, with R2 = 0.97, improves on both. The BFM
is a good model for most flows, but there are several examples
where the predicted flow leads to large errors. Examples include
the flows from Venezuela (VEN) to Colombia (COL), from Syria
(SYR) to Turkey (TUR), from Mexico (MEX) to the United
States (USA), and from South Sudan (SSD) to Uganda (UGA).
Large errors for flows originating in Venezuela and in Syria arise
from major political crises in those countries (19, 20). Departures
from historic norms in the Mexico to United States flow could
be partly explained by actual or perceived changes in immigration
policy by the Trump administration between 2017 and 2020 (21).
Large errors associated with South Sudan are reasonable since the
country was founded only in 2011 (22). These cases show that
major migration shocks can generate observations that fall far in
the tail of the forecast distribution.

Fig. 1 B–D shows country-level forecasts of 2015 to 2020
flows compared to the best available estimates of country-level
flows. Median BFM inflow forecasts for Germany (DEU) and
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Fig. 1. (A–D) Observed 2015 to 2020 (A) flow, (B) total country inflows, (C) total country outflows, and (D) total country net flows compared to Bayesian
hierarchical model median forecasts colored by United Nations Area and sized according to the absolute error in millions of people.
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Fig. 2. (A and B) Global migration flows in millions of migrants (A) and in percentage of global population migrating (B) during 5-y periods observed from 1990
through 2020 with median forecast (solid line) and 90% prediction interval for 5-y periods from 2020 through 2045.

Turkey were smaller than the estimated values for the 2015 to
2020 period. The median BFM outflow forecast for Venezuela was
smaller than the observed outflow while the median Syria outflow
forecast was too large. Country-level inflow and outflow fore-
casts implicitly define net flow forecasts. The error in Venezuela’s
outflow forecast was carried over into the net flow forecast as
shown in Fig. 1C : The net flow was smaller than the median
forecast. This is consistent with the very large number of people
that left Venezuela during the period. In summary, out-of-sample
performance of bilateral flow forecasts and aggregate measures of
migration indicates that the BFM was well calibrated to the best
available estimates of global bilateral migration flows in the short
term.

Forecast Evaluation. We produced forecasts for all 39,800
flows from the 2020 to 2025 period through the 2040 to 2045
period using the most updated estimates of bilateral migration
flows from period 1990 to 1995 through period 2015 to 2020
(3). A summary of each bilateral flow forecast is included in
SI Appendix.

One appeal of well-calibrated probabilistic migration flow fore-
casts is that aggregate quantities or functions of flows lead to valid
approximations of the statistical distribution associated with the
function applied to individual flow forecast trajectories. We use
this fact to evaluate the BFM forecasts of country-level inflows,
outflows, and net flows and the percentage of the globe migrating.
Global flow estimates are available for only six periods, making
multiple-period-ahead out-of-sample evaluation infeasible. We
use aggregate measures of migration to assess the plausibility of
longer-term forecasts from the BFM.

Fig. 2 shows the estimated and forecasted number of people
migrating globally in each period. The median forecast is that the
number of people migrating in 2040 to 2045 will be nearly 50%
larger than the number of people migrating in the 2015 to 2020
period. However, much of this increase is due to the projected in-
crease in world population. After accounting for global population
growth, the percentage of world population migrating increases
from about 1.3% in the 2015 to 2020 period to 1.5% in the 2040
to 2045 period—an increase of only about 16%.

Table 2 summarizes the estimated increase in the total number
of people migrating around the world for the last period where
data are available (2015 to 2020) and the last period in the forecast
(2040 to 2045). Growth in global migration will be driven first by
the increasing global population and to a lesser extent by growth
in the out-migration rates in a few large countries.

Case study: Germany. Fig. 3 shows the BFM forecasts for Ger-
many in millions of migrants per 5-y period from 2020 through
2045. Fig. 3A shows the historic net migration rate in Germany
from 1950 through 2020 along with the United Nations (UN)
projection of net migration from the 2019 Revision of World Pop-
ulation Prospects (WPP) (15). The UN net migration projection
falls within the 90% prediction interval constructed from joint
forecasts of bilateral flows into and out of Germany. Even though
the median forecast and prediction interval suggest more positive
net flows into Germany using the BFM, our net migration forecast
interval contains the UN’s net migration projection for all forecast
periods. The BFM forecast of net flows also appears plausible
given the range of past net flows; however, the 90% prediction
intervals from the BFM indicate that net outflows from Germany
are possible over the coming years. This net outflow could occur if
for example many of the migrants who fled humanitarian crises
over the last decade return to their home countries once the
humanitarian situation ends.

Fig. 3B shows the range of uncertainty about the total popu-
lation of Germany generated by the net migration flow forecast
through 2045. The median population forecast using the BFM
is higher than the WPP 2019 projection and shows large uncer-
tainty due to uncertainty about total outflows from Germany and
possible large inflows from a few countries.

Fig. 3 A and B also shows the 90% prediction interval using the
population projection methods in Azose et al. (23) fitted to WPP
2019 data. The 90% BFM prediction intervals for net migration
and population counts are wider than the probabilistic population
projections using the net migration model in ref. 23. Wider
prediction intervals using the BFM are reasonable as quinquennial
bilateral global flow data are available in fewer than half the

Table 2. Total global migration in millions of migrants
per 5-y period and percentage of the population
migrating

2040 to 2045 forecast
2015 to 2020 5% 50% 95%

Sum of global flows, 96 119 142 176
millions

Percentage of 1.3 1.3 1.5 1.9
population migrating

The columns correspond to the 5th, 50th (median), and 95th percentiles of the predictive
distribution.
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Fig. 3. (A–H) Observations and 90% prediction interval forecasts in millions of people per 5-y period for (A) total net flow, (B) population, (C) total inflow, (D)
total outflow, (E) population by age and sex (black denotes 2015 to 2020 period), and (F–H) bilateral flows with Germany as origin in descending order by historic
magnitude.

number of periods where country-level net migration data are
available. Probabilistic net migration model prediction intervals
can be wider than BFM intervals if, for example, variation in
the net migration rate is much larger in periods prior to 1990
to 2020.

Fig. 3 C and D shows the total estimated flows into and
out of Germany every 5 y from 1990 to 2020 and forecasts of
flows from 2020 through 2045 implied by the BFM. The outflow
forecast effectively continues the historic pattern with relatively
wide uncertainty. The median inflow forecast moderates from
the historic peak in the 2015 to 2020 period before growing
again through 2045. Inflow forecast patterns like this reflect a
return to long-term historic destination preferences encoded in
the destination component of the model and/or a fall in the
total outflow from one or more countries from one period to the
next. Inflow forecast counts tend to increase with the increasing
populations in sending country populations.

The cumulative impacts of migration uncertainty on the age
profile of the German population by the end of the forecast
period in 2040 to 2045 are shown in the probabilistic popu-
lation pyramid in Fig. 3E. The wide intervals for the 20- to
50-y age groups reflect uncertainty about migration and the fact
that international migration tends to be largely concentrated in
the 20- to 35-y age group. The median forecast of the Ger-
man age profile is similar to the current profile, but with wide
uncertainty.

Fig. 3 F–H shows estimates of the largest flows into Germany
from 1990 to 2020 and the BFM forecasts for those flows from
2020 to 2045. The median forecasts are approximately equal to
the mean of the historic flows. Flow forecasts from Turkey to
Germany contribute the largest number of migrants to the median
flow forecast along with the largest degree of uncertainty in future
inflows. See SI Appendix for all country-level forecast summary
plots.
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Discussion

Bayesian probabilistic forecasting methods for demographic pro-
cesses have become increasingly widespread in the last 15 y
(8, 23–26), and here we extend this approach to forecasting bi-
lateral international migration flows. Our approach builds on the
multiplicative components model (13), arguments for separating
the outflow rate and spatial interaction process (12), and the
relative stability of the spatial distribution of global flows over the
past three decades (11, 27). The mean departure rate functional
form is inspired by the net migration flow model of ref. 28 and
reflects the fact that the net migration rate can be decomposed
into inflow and outflow components.

We model out-migration and spatial interaction conditionally
on the origin and population at risk for out-migration. This
approach separates the magnitude of a flow from the spatial
interaction as in refs. 11–13; however, conditioning on the origin
and population at risk is a departure from these methods. We also
model spatial interactions jointly, conditional on the origin and
magnitude of outflows. This approach leads to implicit estimates
of country-level inflows and net flows. It also ensures that the
magnitude of global outflows equals that of global inflows.

Spatial interaction is modeled with a centered logratio model
(29). Our spatial interaction model does not use covariates, but
could accommodate covariates in estimating the spatial interac-
tions. Others have suggested the logratio model for the multino-
mial likelihood model of migration flows (30). We evaluated that
formulation as well, but chose the centered logratio formulation
to remove the influence of the choice of a baseline country on
forecasts of destination preferences of all other countries.

In principle, our approach could yield nonzero probabilities of
implausibly dense populations in some countries. In practice, we
did not observe this to any great extent, but if desired it could
be addressed by incorporating country-level inflow limits in the
model; we did not do so here. We did, however, put thresholds
on the fraction of the population leaving in any one period, as
described in Materials and Methods.

It is too early to quantify the impact of the COVID-19
pandemic (31) on global migration flows over the 2020 to 2025
period. Early indications from some parts of the world suggest that
global migration may have fallen during the 2020 to 2021 period
due to strict border controls (32). In other places, flows may be
on track to hit historic highs despite the pandemic (33).

The flow estimates that we used to fit the BFM rely on migrant
stock estimates that are compiled every 5 y (3). Data generated
from social media platforms, search engine inquiries, and other
digital trace data might offer alternative and more timely sources
of migrant stock estimates (34–41). Bias-corrected migrant stock
estimates derived from big data have the potential to improve the
time resolution of migration flow estimates, especially for regional
and subnational contexts where platform adaptation among the
population is more widespread. However, early applications of
digital trace data used to study demographic and public health
trends suggest that additional work may be needed to resolve the
signals present in big data (37, 42, 43).

Large outflows from India, China, Indonesia, and several
African countries have little impact on the overall population
of those countries through 2045. However, uncertainty about the
magnitude of outflows from these countries generates substantial
uncertainty in the population age distribution in both sending
and receiving countries by the end of the forecasting period. Also,
very large outflows from India, China, Indonesia, and populous
countries in Africa are possible and could generate very large
inflows for a few popular destinations, unless destination countries
constrain the flow of migrants into their countries.

Our choice of a time-invariant destination model reflects the
fact that the share of migrants leaving one region for another has
been relatively stable over time and that we expect this pattern to
persist. An origin’s outflow rate and population size are the main
factors influencing the magnitude of outflows in the BFM. Even
if departure rates continue to follow historic patterns, the absolute
number of migrants leaving high-fertility countries or ones with
currently young populations will increase.

Materials and Methods

Data. BFM out-of-sample results and forecasts are based on the pseudo-Bayes
estimates of flows during 5-y periods starting in 1990 and running through 2020
(2, 3). The flow matrix for C countries in the period starting at time t is

Mt :=

⎛
⎜⎜⎜⎝

0 m1,2,t . . . m1,C,t

m2,1,t 0 . . . m2,C,t
...

...
. . .

...
mC,1,t mC,2,t . . . 0

⎞
⎟⎟⎟⎠, [1]

where mi,j,t is the flow of individuals from country i to country j during the period
starting at time t. The off-diagonal entries show the total number of movers whose
place of residence at the end of the period was different from the one they had
at the beginning of the period. The diagonal entries are set to zero as we are
interested only in modeling the magnitude of migration flows.

The sum of the entries in row i, mi,+,t =
∑

j mi,j,t , is the total number of
people whose residence was in country i at the start of period t but was some other
place at the end of period t. This sum approximates the outflows from origin i
during the period. Similarly, the sum of the entries in column j, m+,j,t =

∑
i mi,j,t ,

is the total number of people whose residence was in country j at the end of
the period but was somewhere else at the beginning of the period. This is the
total of the inflows to destination j during period t. The net flow for country c is
rc,t = m+,c,t − mc,+,t .

The flow matrix can underestimate the total number of people who mi-
grated during each 5-y period. Some people will start and finish the period
with residence i even though they established multiple residences other than
i throughout the period. A person might also start the period with residence i,
establish several residences throughout the period, and reside in country j at the
end of the period. The flow estimate would capture only the change from i to j.

Flow estimates are available for C = 200 countries during the six 5-y periods
starting in years t ∈ {1990, 1995, 2000, 2005, 2010, 2015}. This translates to
39,800 bilateral migration flows observed during six periods starting in 1990
and ending in 2020. We do not address uncertainty in historic migration flow
estimates; however, future work might account for such uncertainties in the
historic flow estimates to reflect an additional source of forecast uncertainty.

Bayesian Flow Model. We fitted a Bayesian hierarchical model to all available
flow estimates. The model takes advantage of three properties of the data-
generating process: 1) Every individual must start from one origin, 2) every
individual can choose just one of (C − 1) possible destinations, and 3) the spatial
distribution of migration flows remains relatively constant over time. We exploit
these three properties in the specification of the hierarchical model, which is as
follows:

Observations
{

mi,·,t | πi,·,t , δi,t
ind∼ Multinomial (Ni,t , πi,·,t)

Outflow

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ni,t = �δi,tPi,t + 1/2�
log δi,t

ind∼ Normal
(
(1 − φ)μi + φ log δi,t−1, σ2

i

)
φ∼ Uniform (0, 1)

μi
iid∼ Normal

(
ν , τ 2

0

)
ν ∼ Normal

(
μ0, 1002)

σi
iid∼ Beta (a0, b0)
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Inflow

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

πi,j,t = exp ηi,j,t/
∑

j �=i exp ηi,j,t

ηi,j,t
ind∼ Normal

(
κi,j, ψ2

i,j

)

κi,j
iid∼ Normal

(
0, 102)

ψi,j
iid∼ Beta (p0, q0),

where “ind” means independently distributed, “iid” means identically and inde-
pendently distributed, and �x� denotes the floor of x, i.e., the largest integer
smaller than x. Table 3 defines each term of the model.

Under this specification, the expected flow from origin i to destination j during
period t is

E
[

mi,j,t | πi,j,t , δi,t
]
= πi,j,tNi,t ≈ πi,j,tδi,tPi,t . [2]

This expected value encodes the three defining features of the generative process.
Each flow is composed of individuals who belonged to the population of the
origin country at the start of the period. Only a subset of the country’s population
migrates, and that fraction for origin country i in period t is δi,t . Every individual
leaving origin i in period t migrates to only one destination, and the distribution
of destinations is relatively stable over time. Destination preference stability is
encoded in the parameterization of the πi,·,t component of the model.

For each origin, the out-migration rate is modeled on the logarithmic scale
as a weighted average of two quantities: the logarithm of the last departure
rate, log δi,t−1, and the long-term mean rate for country i, μi. Stochastic varia-
tion around log out-migration rates is captured by σ2

i . This model ensures that
departure rates never drop below zero.

The mean ofπi,j,t over t represents the long-term relative tendency of migrants
from origin i to move to destination j. Variables in this model are time constant
to reflect the assumption that destination preferences encoded byπi,·,t are stable
from period to period. Variation about the long-term tendencies from period to

Table 3. Bayesian flow model notation

Parameter Definition
mi,j,t Integer-valued flow (data) from origin i to

destination j during period starting in year t
Ni,t Number of migrants departing origin i for period

starting in year t after rounding to the nearest
integer value

Pi,t Number of person years in origin i and period t
(000s)

δi,t Out-migration rate in migrants per 1,000 person
years for origin i for period starting in year t

πi,j,t Conditional probability of moving to j given the
origin is i in period t with πi,i,t = 0 and

∑
j πi,j,t = 1

for all i and t
πi,·,t Conditional probability vector of migrants from

origin i moving to destinations j �= i in period t
with πi,i,t = 0 and

∑
j πi,j,t = 1

φ Global weight on mean departure rate function
μi Long-term mean out-migration rate for origin i
σ2

i Temporal variation around departure rate from
origin i

ηi,j,t Destination weight at time t for destination j among
migrants from origin i

κi,j Mean destination weight for j among migrants from
origin i

ψ2
i,j Variance of destination weights j from origin i

ν Grand mean of long-term departure rates
μ0 User-specified prior for long-term departure rate

grand mean
τ2

0 User-specified variance about the long-term
departure rate grand mean

a0, b0 User-specified parameters for temporal variation
around departure rates

p0, q0 User-specified parameters for destination
probability variation for origin i

C Number of countries

period is represented by a random intercept mixed-effects model. Spatial distri-
bution tendencies (πi,·,t ) are encoded by an overparameterized model equivalent
to the centered logratio (clr) transformation (29); namely,

ηi,j,t = clr(πi,j,t) = log
πi,j,t(∏C−1

j=1 πi,j,t

)1/(C−1) . [3]

This model provides a flexible framework that could be extended to take origin-
and/or destination-specific variables into account, e.g., colonial relationships,
shared language, and economic differences creating push/pull forces among
country pairs. A sum-to-zero constraint on κi,j makes this model identifiable.

The model is implemented by Markov chain Monte Carlo (MCMC) using the
R NIMBLE software package (44–46). NIMBLE is designed to sample from the
posterior distribution of a Bayesian hierarchical model and is optimized for com-
putational efficiency; however, sampling the model remained computationally
slow. We overcame the computational challenges by approximating the model
and splitting it into an outflow component and an inflow component.

The outflow component includes all parts of the model involving δi,t . Country-
level departure rates, δi,t , are hidden variables in our model; however, the to-
tal number of people departing origin i in period t is only important to the
multinomial likelihood in that it yields Ni,t =

∑
j mi,j,t . This makes it possible to

sample the posteriors for μi, φ, and σi by approximating δi,t with the observed
out-migration rate for origin i, di,t =

∑
j

mi,j,t
Pi,t

. Our model assumes δi,t > 0; all
observed di,t are positive.

The inflow component includes all parts of the model involving πi,j,t . Infor-
mation in the data shared across different origin countries is fully contained in
the priors for κi,j and ψi,j. This makes it possible to parallelize this portion of the
MCMC sampler. A simulation in SI Appendix showed that inferences from the full
model and the approximate parallel implementation were very similar.

The δi,t approximation and parallelized inflow implementation reduced pro-
cessing time by several orders of magnitude. Parallelized performance gains,
however, make it necessary to specify a number of hyperparameters that might
otherwise be estimated simultaneously with the rest of the parameters in the
model.

Prior Specification. There are several user-specified parameters in the BFM.
We set the prior parameters using empirical aggregate metrics across all flows.
This preserves the information-sharing benefits of hierarchical modeling while
improving computation time by several orders of magnitude as follows:

• a0, b0: These define the prior distribution of the σi. More than 97% of the
SDs of log di,t by origin are smaller than 1. Values of σi near 0 can lead to
implausibly narrow intervals for some small countries. Values of σi larger
than 1 can yield a few highly variable outflows, leading to implausibly large
proportions of the population out-migrating. We therefore set a0 and b0 so
that values of σi close to zero are unlikely and values above 1 are impossible.
We did this by minimizing the sum of the differences of the 2.5 and 97.5%
quantiles from Beta(a0, b0) and (0.15, 0.99).

• τ0: This parameter represents the amount of variation around the long-term
outflow mean for each origin. We set this value equal to approximately three
times the SD of the mean log origin outflow rate over t.

• μ0: This parameter represents the mean of long-term means of the log
outflows for each origin. We set it equal to the mean over i of the log origin
outflow rate means over t within each origin i.

• p0, q0: We found p0 and q0 by minimizing the sum of the differences
between the 2.5 and 97.5% quantiles of the Beta(p0, q0) distribution and the
quantiles of means by origin of SDs of clr(pi,j,t) over t for each destination j
for all positive flows. We calibrated this prior to means to avoid degenerate
specifications that can oversample values near zero. This approach implies
that realizations of ψi,j are sampled around the distribution of the SD grand
mean.

Forecasting. Migration flow data used to fit the BFM are not disaggregated
by age or sex; however, forecasts must be disaggregated by age and sex. Age-
specific and sex-specific forecasts have implications for fertility and mortality in
the sending and receiving countries. We use the Rogers–Castro migration age
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schedule used in the United Nations projections for many countries including
China in the 2020 to 2025 period (15, 47). This schedule was used for all countries
and forecast periods. Sex-specific forecasts are necessary to generate accurate
impacts of fertility changes for the sending and receiving countries. We modeled
the sex composition of outflows by splitting outflow forecasts by sex in proportion
to the empirical distribution of the origin population.

After drawing S samples from the posterior distribution of the parameters of
the BFM, we generated probabilistic forecasts as follows:

For s = 1, . . . , S,

1) Sample a departure rate for origin i during period t from the posterior predic-
tive distribution for δ(s)

i,t and convert it to an integer N(s)
i,t = round

(
δ
(s)
i,t Pi,t

)
.

2) Sample an allocation vector from the posterior predictive distribution ofπ(s)
i .*

3) Sample a flow vector from the density m(s)
i,·,t | N(s)

i,t , π(s)
i ∼ Multinomial(

N(s)
i,t , π(s)

i

)
.

4) Distribute outflow counts by age group according to a Rogers–Castro migra-
tion schedule (47) and sex according to the observed proportions present in
the population.

5) Increment t; update Pi,t for all i with population changes due to migration,
fertility, and mortality; and repeat until reaching the last period of the forecast.

For C countries, T periods, and S samples, this procedure leads to a C ×
C × T × S-dimensional array. Each flow matrix sampled using this procedure is
guaranteed to yield zero total net global migration, i.e., to ensure that the sum of
inflows and the sum of outflows across countries are equal. Furthermore, country
inflows, country net flows, regional flows, and global flows are all implicitly
defined by the model.

Population projections were generated from a custom-adapted version of the
bayesPop R package (48). Our implementation makes it possible to trace inflows
back to specific origins by age and sex for each period. Models of mortality and
fertility implemented in bayesPop make forecasts generated from our implemen-
tation bona fide population projections based on bilateral migration flows rather
than country-level net migration.

We put thresholds on the fraction of the population leaving in any one
period to avoid unprecedented decreases in origin country populations. Thresh-
olds were empirically calculated using the historic flow and population data.
Migration forecasts among Gulf Cooperation Council (GCC) member countries
(United Arab Emirates, Bahrain, Kuwait, Qatar, Oman, Saudi Arabia) and labor-
supplying countries (Bangladesh, Egypt, India, Indonesia, Pakistan, Philippines)
require special treatment (23). We calculated GCC and GCC-labor bounds as
the maximum observed percentage of the population departing these countries
from 1990 to 2020. GCC member countries were constrained so that no more
than 42% of the population departs in any single period. GCC labor-supplying
countries were constrained so that no more than 3% of the population departs
in any one period. The non-GCC bound was set to the 99th percentile of historic
mean departure rates among non-GCC and non-GCC labor countries. This bound
constrains departure rates for all flows unrelated to GCC countries so that no more
than 16% of the population departs in any single period.

Gravity Model. We evaluated the Bayesian hierarchical model by comparing
out-of-sample performance to a gravity model of migration (7). After removing
flows with zero migrants, we used ordinary least squares to fit the gravity model:

log mi,j,t =β0 + β1 log Pi,t + β2 log Pj,t + β3 log Di,j

+ β4 log PSRi,t + β5 log PSRj,t

+ β6 log IMRi,t + β7 log IMRj,t

+ β8 log urbani,t + β9 log urbanj,t

+ β10 log LAi + β11 log LAj

+ β12LLi + β13LLj

+ β14LBi,j + β15OLij + β16COLi,j

+ β17 (t − 2000) + β18 (t − 2000)2 + εi,j,t .

*Destination model parameters are time constant; hence, posterior predictive distribution
realizations πi,·,t are denoted π

(s)
i .

We used UN estimates of population, distance between capitals, potential
support ratio, and infant mortality ratios. All other variables were obtained from
the CEPII database (49) or were manually coded. Table 4 gives the definition for
each covariate in the gravity model.

Hurdle Model. More than half of the historic flows are zero, but the gravity
model approach (6, 7) does not account for these migration flows explicitly. To
deal with this, we also fitted a gravity-like hurdle model using a two-stage method
that removes the need to censor the data.

A hurdle model is a two-stage alternative to a zero-inflated mixture model.
Hurdle models explicitly model the generative process, leading to counts equal-
ing zero. If an observation is greater than zero, then the hurdle is crossed and the
second stage of the model is fitted to the positive counts (18). The hurdle gravity
model with a Poisson count component and a binomial zero component is as
follows:

mi,j,t | mi,j,t > 0 ind∼ Poisson
(
λi,j,t

)
,

1mi,j,t>0
ind∼ Binomial

(
1, ωi,j,t

)
,

with positive count covariate matrix X[1+] and zero covariate matrix X[0],

log λi,j,t = X[1+]
i,j,t β,

logit ωi,j,t = X[0]
i,j,tγ.

The mean for the positive component,λi,j,t , uses the same regressors as the grav-
ity model, yielding estimates for the parameter vector β = (β0, β1, . . . , β18).

The mean for the zero component includes the populations Pi,t and Pj,t ,
the distance between the capitals Di,j, a shared land border indicator LBi,j, and
a shared official language indicator OLi,j. Hence, the parameter vector for the
zero component is γ = (γ0, γ1, . . . , γ5). Table 1 shows that the out-of-sample
coverage for the truncated Poisson hurdle model was quite good, but that the
prediction errors for both the gravity model and the hurdle model were much
larger on average than for the other models considered.

Mean Absolute Percentage of Error. For a total of F flows in the flow matrix M
and the flow matrix estimate M̃, the mean absolute percentage of error is defined
as

MAPE
(

M, M̃
)
=

100
F

∑
i �=j

|mi,j − m̃i,j|
mi,j + 1

. [4]

Normalizing the errors by the magnitude of the observed flow puts the magni-
tude of errors into context. This means that the errors are measured relative to the
size of the underlying flows. We use mi,j + 1 instead of mi,j in the denominator
to avoid degeneracies that arise when flows are equal to zero.

Table 4. Gravity model covariates

Parameter Definition
Pi,t Population of country i at the start of period t
Di,j Distance between capitals of country i and country j
PSRi,t Potential support ratio for country i at the start of

period t, i.e., the number of people aged 15 to
64 y per person aged 65+ y

IMRi,t Infant mortality ratio for country i at the start of
period t

urbani,t Percentage of the population living in urban
settings for country i at the start of period t

LAi Land area of country i
LLi Landlocked indicator for country i
LBi,j Indicator of shared land border between countries i

and j
OLi,j Indicator of shared official language in countries i

and j
COLi,j Indicator of colonial relationship between countries

i and j
t First year of period
εi,j,t Variation not explained by the model
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Data, Materials, and Software Availability. Data and code have been de-
posited in https://github.com/ngwelch/bayesFlow (50). All other study data are
included in the article and/or SI Appendix.
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