
*For correspondence: baccus@

stanford.edu

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 21

Received: 10 June 2015

Accepted: 12 November 2015

Published: 14 November 2015

Reviewing editor: Ronald L

Calabrese, Emory University,

United States

Copyright Jadzinsky and

Baccus. This article is distributed

under the terms of the Creative

Commons Attribution License,

which permits unrestricted use

and redistribution provided that

the original author and source are

credited.

Synchronized amplification of local
information transmission by peripheral
retinal input
Pablo D Jadzinsky, Stephen A Baccus*

Department of Neurobiology, Stanford University School of Medicine, Stanford,
United States

Abstract Sensory stimuli have varying statistics influenced by both the environment and by

active sensing behaviors that rapidly and globally change the sensory input. Consequently, sensory

systems often adjust their neural code to the expected statistics of their sensory input to transmit

novel sensory information. Here, we show that sudden peripheral motion amplifies and accelerates

information transmission in salamander ganglion cells in a 50 ms time window. Underlying this

gating of information is a transient increase in adaptation to contrast, enhancing sensitivity to a

broader range of stimuli. Using a model and natural images, we show that this effect coincides with

an expected increase in information in bipolar cells after a global image shift. Our findings reveal

the dynamic allocation of energy resources to increase neural activity at times of expected high

information content, a principle of adaptation that balances the competing requirements of

conserving spikes and transmitting information.

DOI: 10.7554/eLife.09266.001

Introduction
The statistics of sensory input vary over time, due to moving objects, background motion as would

arise from optic flow, and due to active sensation such as sniffing (Shusterman et al., 2011), whisk-

ing (Hill et al., 2011) or eye movements (Tatler et al., 2006). To achieve better performance in the

current condition, many sensory systems measure the recent sensory statistics and adjust their

responses to the expected sensory input. For example, adaptation in the visual system adjusts a

cell’s dynamic range based on the expected stimulus distribution, including the stimulus mean

(Barlow and Levick, 1969) and variance (Victor and Shapley, 1979; Smirnakis et al., 1997;

Nagel and Doupe, 2006). In addition, the retina adapts to spatiotemporal correlations so as to

remove predictable signals and enhance the response to novel input (Hosoya et al., 2005).

These expectations derive from correlations in visual input, which can extend over a wide range

of scales due to extended textures, motion of large objects, and from eye and body movements.

For example, object motion sensitive ganglion cells receive peripheral inhibition to suppress the pre-

dictable excitatory input due to small, fixational eye movements and transmit unpredictable, novel

signals from moving objects (Olveczky et al., 2003). In addition, inhibition from fast, large global

shifts may reflect the instantaneous expectation that an eye movement is occurring, and play a role

in saccadic suppression (Roska and Werblin, 2003; Geffen et al., 2007).

In addition to peripheral inhibition, it has long been known that changes in the retinal image far

away from the receptive field center produce excitation (known as the ‘periphery’ or ‘shift’ effect)

(Krüger and Fischer, 1973; Mcilwain, 1964) in various species, including cat, rabbit, and primate

(Watanabe and Tasaki, 1980; Krüger and Fischer, 1973). The functional importance of long-range

excitation, however, is unclear despite numerous studies on the spatiotemporal properties of this

input. Many studies have focused on the stimulus parameters that generate excitation
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(Barlow et al., 1977; Ikeda and Wright, 1972; Li et al., 1992; Passaglia et al., 2009). However,

few studies have measured how long-range excitation changes the neural code for local stimuli

(Passaglia et al., 2009), and none has considered how image statistics might relate to such long-

range excitation.

We examined how peripheral stimulation changes how a ganglion cell encodes the central part of

its receptive field. Numerous studies in the salamander retina have characterized the properties of

the ganglion cell receptive field center (Smirnakis et al., 1997; Hosoya et al., 2005;

Olveczky et al., 2003; Geffen et al., 2007; Kastner and Baccus, 2011; Werblin, 1972), and have

studied the effects of peripheral stimuli on the neural code as related to eye movements

(Olveczky et al., 2003; Geffen et al., 2007; Baccus et al., 2008). Our experiments were performed

in the isolated intact retina, and ganglion cell spiking activity was recorded using a multielectrode

array.

We find that peripheral stimulation amplifies information transmission about the local stimulus in

ganglion cells. Underlying this increase in information in neural responses is a more complete adap-

tation to the local stimulus, allowing for both low and high local contrast environments to be

encoded with a similar response range. This rapid change in the neural code causes the cell to

encode the intensity sequence of the stimulus and the contrast at different times relative to the

global shift, thus causing peripheral motion to act as a timing signal to coordinate the encoding

across a population of cells. We further show that these effects can be produced by a simple model

combining local and peripheral inputs prior to a threshold and an adaptive stage. Finally, using the

same model we show that the pulse of increased information that we observed when stimulating the

periphery matches in timing the expected arrival of novel information generated by a global image

shift as would occur during motion of a large object or an eye/head movement.

Our results show that global motion switches the neural code from one that conserves energy,

encoding only strong stimuli, to one that transmits greater information and encodes both weak and

strong stimuli. These findings reveal a principle of adaptation that acts to allocate energy resources

in the form of neural activity to times that are expected to contain novel information.

eLife digest To see an object, light must travel from it and be focused onto the retina at the

back of the eye. The image projected onto each retina is then processed by neurons known as

ganglion cells, which transmit a processed version of the image to the brain. Each ganglion cell

responds to a specific section of the retinal image, in particular to intensity changes or movements

that occur within that region, known as the cell’s receptive field. However, ganglion cells in the

retina of many species can also become active if rapid movements occur in parts of the retinal image

that are far away from the receptive field of that ganglion cell.

Jadzinsky and Baccus have now investigated how this peripheral motion affects the response of

salamanders’ retinal cells. The images consisted of a central object surrounded by a checkerboard

pattern, the brightness of which could be varied to change the contrast of the image (higher

contrast images stimulate the ganglion cells more strongly). Then, either the entire image or only

the central object moved. Moving the whole image represents the pattern that would be seen if a

salamander moved its eye or head to look at a new part of a scene.

Jadzinsky and Baccus found that when only the central object moved, the ganglion cells only

responded to high-contrast images that strongly stimulated the cells, effectively conserving energy

by only responding to strong signals. However, when the whole image moved, the cells also

responded to lower-contrast images, showing that they had switched to processing the local region

of the scene in more detail. These effects could be reproduced in a simple mathematical model.

The model suggests that the ganglion cells increase their information transmission at times when

a large amount of new information is expected to be received: for example, immediately after the

salamander has moved its eyes. The next challenges in this research are to identify the specific

retinal neurons that generate this change in processing in the ganglion cells, and to further

understand how sensory input influences how the nervous system allocates energy resources.

DOI: 10.7554/eLife.09266.002
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Figure 1. Global image shifts increase sensitivity to weak local input. (A) (Top) A diagram of the stimulus is shown. The central square representing an

object shifted left or right either in the presence of a static periphery (still periphery, moving object, left in bottom panel) or in conjunction with the

periphery (global shift, right in bottom panel). In both conditions, the central stimulation was the same. Shifts occurred every 0.5 s, and the luminance

level in the object changed every 110 s to one of four values spaced logarithmically. Lower panel shows the central stimulus region under both

peripheral conditions. One checker is colored red (not used in actual stimulus) to help the reader identify the relationship between this particular

checker and the central stimulus. (B) Average firing rate response of four different cells from different preparations to four different luminance values

under both peripheral conditions: object shift (left), global shift (right). Stimulus shifts to the right (0 s) and left (0.5 s) are marked with dotted lines. The

classical (linear) receptive field center, computed from a white noise checkerboard stimulus is shown as a colored oval. (C) Average firing rate

computed between 50 and 150 ms after the stimulus shifted to the left and right for the cell shown in (B, top panel), colors of dots show different

luminance levels corresponding to the curves in (B). A linear fit (lines) to the data was used to compute the sensitivity m to the luminance of the central

region, computed as the slope of the firing rate vs. the log of the central luminance for left and right object shifts with periphery still (open circles,

mL;Still, mR;Still) and for global shifts (filled circles, mL;Shift). (D) The ratio of the luminance sensitivity m during global and object shifts compared for

each cell to the firing rate in the object shift condition, indicating the strength of the object shift stimulus. Axes are logarithmic. Results for mStill and

mShift were averaged over shifts to the left and right. Cells above the dotted line increased the slope of firing vs. central luminance by more than a

factor of two during a global shift compared with an object shift. Colored dots correspond to the cells shown in (B).

DOI: 10.7554/eLife.09266.003
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Results

During global shifts, peripheral stimulation increases the response to
local stimuli
To measure how peripheral motion changes the response of ganglion cells, we presented a stimulus

to simulate image movement in the retina due to two different conditions: a moving object in a

static scene or global motion as would be caused by movement of the eye or a large object. We

chose a set of brief stimuli that could produce a wide variation in excitation – from extremely weak

to very strong – depending on a cell’s location, to determine the effect of peripheral excitation, and

how that effect varies with the cell’s central excitation. The stimulus consisted of a central square

object with a constant luminance in front of a checkerboard peripheral pattern. The object covered

the classical linear receptive field center plus part of the surround of most cells (Figure 1A, top

panel). To present the same central stimulus in the presence and absence of strong peripheral stimu-

lation, either the object alone (object shift) or the whole stimulus (global shift) was shifted abruptly

by one peripheral square, 50 mm in length, ~1 degree of visual field in the salamander. We then var-

ied the central luminance level to measure the effect of the strong peripheral stimulus in encoding

the luminance of the central stimulus. When the object moved alone, many cells showed transient

activity, which depended on the location of the cell relative to the object border (Figure 1B, left col-

umn). As expected, those cells near the center of the object showed the weakest activity because

they experienced little change in light intensity, and overall, the response was insensitive to the cen-

tral luminance value. In the global shift condition, however, brief strong firing events occurred during

both right and left shifts for most cells including those in the center of the object (Figure 1B, right

column). To assess the effect of the peripheral shift on the ability of a cell to distinguish different

central stimuli, we computed the slope of a line fit to the firing rate as a function of the log of central

intensity, and found this slope to be much greater during the global shift (Figure 1C). We examined

which cells were most strongly affected by the periphery by comparing responses to all constant

luminance objects under both peripheral conditions. In doing so, we found that the cells with the

weakest response to the object condition showed the greatest enhancement of sensitivity from

peripheral motion, with 39 out of 76 cells at least doubling the slope of their firing rate vs. the log of

central luminance (Figure 1D). This increased activity during the global shift condition could not be

attributed to the linear receptive field of the cell overlapping the object border, as steps to the right

and left would have linear contributions of opposite signs, even if such stimuli might be within the

spatial region occupied by the classical receptive field surround (Demb et al., 2001; Borghuis et al.,

2013). Accordingly, the effect of the global shift was mostly insensitive to the phase of the checkers

in the periphery (see Materials and methods). Thus, peripheral stimulation enhanced the sensitivity

to weak central stimuli during abrupt global image motion.

Peripheral input gates central information transmission
To analyze the dynamics of the effects of peripheral stimuli on the processing of central input, we

decoupled the central and peripheral inputs by presenting a stimulus with a continuously flickering

light intensity in the center, combined with brief peripheral motion. Although this stimulus differs

from a global image shift, which simultaneously changes central and peripheral regions as in (Fig-

ure 1), the independent control of central and peripheral stimuli allowed us to assess the dynamics

of how the periphery changes the encoding of a central stimulus. To create a local naturalistic input,

the central object intensity flickered with a temporal power spectrum resembling natural scenes,

which was inversely proportional to the frequency – called ‘pink noise’ (Simoncelli and Olshausen,

2001) (Figure 2A, right panel inset). The periphery was a checkered pattern that was either still, pro-

ducing no temporal input, or reversed every 0.5 s, producing strong synchronized peripheral stimula-

tion. For most recorded cells, shortly after peripheral stimulation there was an excitatory effect –

indicated by an increase in firing (Krüger and Fischer, 1973) – followed by strong inhibition as

might underlie a previously reported component of saccadic suppression (Roska and Werblin,

2003), and then a slower recovery to the baseline state (Figure 2B and Figure 2—figure supple-

ment 1A). This effect also occurred with both left and right shifts of the checkers (Figure 2B, inset),

indicating that this effect was primarily not caused by the classical (linear) receptive field surround,

which would have produced opposite effects for the two background phases.
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The presence of excitatory input, however, does not reveal how peripheral input changes the

neural code for central input. For example, peripheral excitation could potentially saturate the cell,

and thus mask central input. We therefore measured the sensitivity to the central region using a lin-

ear-nonlinear (LN) model (see Materials and methods), consisting of a linear temporal filter repre-

senting the average feature preferred by the cell followed by a static nonlinearity capturing the cell’s

average threshold and sensitivity, defined as the average slope of the nonlinearity

Figure 2. Peripheral gating of information transmission. (A-i) Spatial stimulus design showing central and peripheral regions. (A-ii) The temporal

sequence in each region. The center stimulus flickered randomly with a naturalistic amplitude spectrum proportional to 1/f (inset). In the periphery, the

stimulus either shifted (reversed in sign) every 0.5 s or was still. Most cells had linear receptive field centers fully contained in the central region (yellow

oval indicates receptive field center). (B) Peristimulus time histogram aligned to the time of peripheral stimulation. Inset shows the two different

peripheral shifts averaged separately, indicating that both excitation and inhibition occur for both peripheral phases. (C) Filters and nonlinearities of a

linear-nonlinear model computed from the spike times and the center signal. In the Shift case, only spikes from the high firing rate window were used

(gray box in B). The dashed nonlinearity is the curve that would have resulted from a vertical shift of the Still case to account for the observed increase

in activity in the high firing rate window. (D) Mutual information between the spike count in a 50 ms time window and the central region as a function of

time after the peripheral shift. Inset shows information computed separately for left and right shifts of the grating. (E) Average for different cell types of

the normalized information in the Shift condition for three different cell types; biphasic Off (n = 95 cells), slow Off (n = 10) and slow On (n = 7).

Information was normalized by the value in the last bin. (F) Average across cells of the information that the spike count carries about the peripheral

signal I(R; P) or about the central region once information about peripheral input has been removed (see Materials and methods). By the chain rule of

mutual information, the two quantities add to the total amount of information the spike count conveys about the stimulus, I(R; P, C).

DOI: 10.7554/eLife.09266.004

The following figure supplement is available for figure 2:

Figure supplement 1. Peripheral shift increases the response to central stimuli with a natural temporal spectrum.

DOI: 10.7554/eLife.09266.005
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(Chichilnisky, 2001; Baccus and Meister, 2002). In this case, although the LN model does not cap-

ture all of the nonlinear dynamics of the receptive field center (Gollisch and Meister, 2010) (some

of which is captured in a model below), the nonlinearity can be used as a statistical measure of sensi-

tivity to the central stimulus (Kastner and Baccus, 2011; Baccus and Meister, 2002; Rieke, 2001;

Zaghloul et al., 2005) at different times relative to the peripheral shift.

To observe changes in the neural code associated with peripheral excitation, we computed two

LN models: one when the periphery was still and the second one under the shift condition using only

spikes from a 50 ms gating window centered on the peak of excitation (Figure 2C). Even though the

firing rate greatly increased during 50–100 ms after the peripheral shift, the temporal filter changed

little when compared to the still condition, indicating that the cell continued to convey the same

average feature about the visual stimulus during the 50 ms high firing rate interval (Figure 2C). We

defined the sensitivity to the central stimulus as the average slope of the nonlinearity (Kastner and

Baccus, 2011; Baccus and Meister, 2002) and found that the sensitivity was the greatest 50–100 ms

after a peripheral shift, during the high firing rate window. This indicates that the increase in firing

rate after the peripheral shift is not due to a response independent of the center stimulus, as such

an effect would have shifted the nonlinearity vertically, leaving the sensitivity to the center

unchanged (Figure 2C, dashed line). Instead, we find that an abrupt peripheral shift dynamically

gates the response of a cell, enhancing the cell’s sensitivity to its preferred visual feature near the

receptive field center.

However, the amount of information conveyed is influenced not only by sensitivity but also by

noise, and thus an increase in sensitivity does not necessarily imply an increase in information trans-

mission. Therefore, to confirm that the increased activity and sensitivity were accompanied by an

increase in transmitted information, we estimated the mutual information between the stimulus

sequence in the object region and the cell’s response as measured by the spike count at different

times relative to the peripheral shift. This quantity is IðR;CjpÞ, the mutual information between the

response, R, and the central intensity, C, given a particular peripheral stimulus p 2 P , where p is the

time relative to the peripheral shift (see Materials and methods).

We found that just after a peripheral shift, information about the central stimulus sharply

increased as compared to when the periphery was still, indicating that a signal from the periphery

increases information transmission from the central region (Figure 2D, Figure 2—figure supple-

ment 1B and C). After this increase, information transmission then decreased (100–300 ms after the

global shift) and then recovered to the baseline state. All cell types showed a sharp increase of infor-

mation during the gating window, with the peak time depending on the cell type (Figure 2E). The

leftward shift of the nonlinearity (Figure 2C) increased the slope of the nonlinearity and information

transmission because the threshold of the nonlinearity in the baseline condition was positioned to

the right of the mean stimulus, which is the case for ganglion cells of diverse species including mam-

malian and primate retina (Chichilnisky, 2001; Keat et al., 2001).

In this analysis, by considering IðR;CjpÞ we are taking the more traditional point of view that cells

encode signals in the center of their receptive fields and are modified by other (peripheral) signals.

However, one could argue that ganglion cells are actually encoding the periphery and being modi-

fied by the center. The total information between the response and both central and peripheral stim-

uli, IðR;P;CÞ can be separated into two components by the chain rule for mutual information

(Cover and Thomas, 1991) (see Materials and methods).

IðR;P;CÞ ¼ IðR;P Þþ IðR;CjP Þ

¼ I R;Pð Þþ I R;Cjpð Þh ip"P
(1)

However, on average, for all cell types studied, the information that the cell carried about the

peripheral stimulus IðR;P Þ was substantially smaller than the information the cell carried about the

center given the peripheral stimulus (IðR;CjP Þ), averaging 27% of IðR;CjP Þ (Figure 2F). These

results support the view that peripheral input gates information transmission from the central region.

Although it may seem puzzling that little information is conveyed about the periphery even

though there is a large timed increase in the average firing rate, this is because the large peak at

~100 ms represents only the average response to the stimulus. On any given trial, the decision to

fire is primarily controlled by the central input and in many cases, no spikes occurred when the

periphery moved. Nonetheless, the brain could use a population of cells to identify the gating
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window as a time when activity increases synchronously throughout the retina. Our analysis using the

number of spikes in a time bin neglects more complex encoding due to latency (Gollisch and Meis-

ter, 2008) and firing patterns in the population (Schnitzer and Meister, 2003). Yet, this analysis

Figure 3. A more adapted representation underlies an increase in information transmission. (A) The spatial

stimulus was the same as in Figure 2. The time course of the central stimulus was a Gaussian white noise stimulus

with one of four different contrasts or 100% binary contrast, consisting of black and white intensity values. PSTHs

are shown for the different conditions. (B) Filters computed using only spikes from 50 ms time windows,

corresponding to color boxes in (A). Purple, gating window; Olive green, suppression window; Orange, recovery

window. (C) Input distributions (left) and nonlinearities in the same three 50 ms time windows as in (B). Upper

curves are all in units of the linear prediction; lower curves show the same data but in units of standard deviation

of the linear prediction. The abscissa is displayed on a logarithmic scale, such that normalization by the standard

deviation produces a lateral shift. (D) Average adaptation index across cells that exhibited peripheral excitation

(see Materials and methods, n = 400).

DOI: 10.7554/eLife.09266.006

The following figure supplement is available for figure 3:

Figure supplement 1. Periphery induced changes in adaptation.

DOI: 10.7554/eLife.09266.007
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suggests that the brain could extract this increased information simply by counting spikes, without

the need for a more complex decoding scheme across time bins or using the population.

Information transmission increases to half the maximal value
We then compared the amount of information transmission with the theoretical maximum given the

cell’s stochastic firing properties. We assessed the theoretical maximum by computing the sigmoidal

nonlinearity that maximized information about the stimulus, given a cell’s maximum firing rate and

measured spiking noise as defined by its spike-count distribution for a given average response,

P ðrjhriÞ. The average firing rate however was not constrained at a particular value, in contrast to pre-

vious studies, meaning that a leftward shift of the nonlinearity with the same maximum would gener-

ate a higher average firing rate (Pitkow and Meister, 2012) (see Materials and methods). After a

shift, the information conveyed was 0.47 ± 0.04, (n = 18 cells) of the maximal value, compared with

0.24 ± 0.05 before the shift. Thus, after the shift, the neural code used more of the capacity of the

cell given its noise properties and the spike count code. However, this came at the increased cost of

energy in terms of a higher firing rate (6.9 ± 1.7 Hz after the shift, and 1.9 ± 0.3 before the shift). Pre-

vious results indicate that the high threshold of ganglion cells allows them to conserve spikes at the

expense of maximal information transmission (Pitkow and Meister, 2012). Our analysis indicates

that after a peripheral shift, the neural code shifts away from energy conservation and towards high-

throughput information transmission.

Peripheral stimulation gates a change in adaptation
To examine which properties of the neural code changed between the shift and still conditions, we

presented a Gaussian white noise sequence with a fixed mean and different contrasts, defined as

the standard deviation divided by the mean. This allowed us to compute and compare separate LN

models for each contrast. We observed that both excitation and inhibition from a peripheral shift

depended on the central contrast, with a much stronger increase in firing observed at low contrast

(Figure 3A). This result is consistent with the observation that cells with the weakest response to a

moving square had the strongest effect from peripheral stimuli (Figure 1). We then fitted LN models

as stated above at different contrasts during 50 ms time windows corresponding to gating, suppres-

sion, and recovery (Figure 3B–C). As the contrast in the central region decreased, the filter in some

cells became slower and more monophasic as previously reported (Baccus and Meister, 2002).

However, although at low contrast, the gating window’s firing rate exceeded the recovery window’s

firing rate by more than 20-fold, the filters were markedly similar. Thus, peripheral stimulation

affected the sensitivity, but had a minimal effect on the average local features preferred by the gan-

glion cells.

Changes in sensitivity are also known to be caused by adaptation to the local contrast. We there-

fore tested how peripheral stimulation influenced adaptation to the central contrast by measuring

changes in adaptation as a function of time since the peripheral shift. For an ideally adapting cell,

the sensitivity would scale in inverse proportion to the contrast (Figure 3—figure supplement 1A–

B). Previous results, however, have shown that ganglion cells adapt less than this ideal amount, in

particular at low contrasts (Ozuysal, 2012). We found that in the gating window, responses to differ-

ent contrasts were much more similar to each other, indicating a greater level of adaptation to the

central contrast (Figure 3C). This effect arose because at low contrast, the slope of the nonlinearities

changed more than at high contrast, similar to the stronger effects of gating seen with cells that

responded more weakly to a shifting object (Figure 1D). At 3% contrast, the slope changed by 5.5 ±

1.1 Hz per contrast unit (one s.d. of the nonlinearity input was 0.03 contrast units, or 3% ) and at

24% contrast the slope changed by 0.20 ± 0.06 Hz per contrast unit (one s.d. was 0.24 contrast units,

or 24% ) (Figure 3—figure supplement 1C). As a result of these effects at different contrasts, during

the gating window nonlinearities reached a more similar height across contrasts. Accordingly, when

normalized by the stimulus standard deviation at each contrast, nonlinearities also had a more similar

shape across contrasts in the gating window. We computed an index of adaptation that takes the

value of 1 for an ideally adapting cell and 0 for a non-adapting cell (see Materials and methods and

Figure 3—figure supplement 1A–B), and found that most cells increased their adaptation to con-

trast during the gating window, such that all contrasts were represented with more similar responses

than during the recovery window (Figure 3D). This indicates that an increase in adaptation underlies
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the increase in information during the gating window, such that near the receptive field center, both

weak and strong signals are conveyed.

Intensity sequence and contrast are encoded serially after a peripheral
shift
Cells exhibiting contrast adaptation – by changing their sensitivity when the contrast changes – will

increase information about fluctuations in intensity, but potentially lose information about the con-

trast itself (Fairhall et al., 2001). Because many cells showed increased adaptation after a peripheral

shift, we tested whether the cells encoded different properties of the stimulus – the sequence of

light intensities and the contrast – at different times relative to a peripheral shift. We designed a

flickering stimulus that had a relatively small number of conditions to facilitate the estimation of

information about the stimulus sequence and/or the contrast. The center followed a binary white

noise M-sequence, at four possible contrasts s, where the instantaneous intensity value was �þ s�m

and � is the mean intensity, fixed throughout the experiment and m ¼ �1 are the instantaneous val-

ues of the M - sequence (see Materials and methods). All combinations of binary sequences (up to

four frames, lasting 400 ms, mð4Þ 2 Mð4Þ, contrasts and times relative to peripheral excitation were

presented an equal number of times (see Materials and methods and Figure 4A). Figure 4B shows

raster plots for one-cell ordered according to contrast and mixing the responses to all M - sequen-

ces. We estimated the mutual information between the response and two stimulus parameters at dif-

ferent times relative to the peripheral shift – the light intensity sequence in the previous four frames

(Mð4Þ), I
�

R;Mð4Þjp
�

, and the center’s contrast ð
P

Þ, IðR;
P

jpÞ, where s 2
P

(Figure 4C). We found

that the responses coming from the same cell at different times carry different types of information.

When computing I
�

R;Mð4Þjp
�

, the analysis was conducted as if the brain was decoding the stimulus

sequence without knowing the contrast. The results were similar, however, if we considered that the

brain might decode the contrast, and use this knowledge to better decode the stimulus sequence

(eq (10) and Figure 4—figure supplement 1). Whereas a static neural code would typically face the

choice between adaptation and preserving the adapting statistic, a dynamic neural code avoids this

tradeoff by rapidly switching between complementary representations of the same stimulus.

Figure 4. Different stimulus properties are conveyed with different dynamics. (A) Experimental design for

the measurement of sequence and contrast information. The center object follows a binary M-sequence at four

different contrasts. Each position in the sequence and contrast combination occurs at all possible times relative to

a peripheral shift. (B) Raster plots for an example cell aligned to the time of the peripheral shift and ordered

according to contrast. Many different sequences are shown for each contrast value. Luminance values in the center

change every 100 ms, generating temporally discrete responses. Vertical lines show the times used to extract

responses for the information calculation. (C) Average across cells (n = 94) of the normalized information conveyed

about the contrast (four different levels, solid line) or the four frame stimulus sequence M(4) (dashed line) as a

function of time since the shift.

DOI: 10.7554/eLife.09266.008

The following figure supplement is available for figure 4:

Figure supplement 1. Different components of the stimulus are conveyed with different dynamics.

DOI: 10.7554/eLife.09266.009
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A simple model produces gating and changes in adaptation
To identify the minimum components required to produce the dynamic neural code we observed,

we began with the known structure of excitatory input to a ganglion cell consisting of a central path-

way comprising a linear filter, a static nonlinearity and an adaptive stage. This central pathway model

was analogous to an accurate model of contrast adaptation (Ozuysal, 2012), where the rectified

nonlinearity and adaptation likely occur at the bipolar cell synaptic terminal, although here we used

a simplified adaptive stage. Nonlinear peripheral input is delivered only in the inner retina, as hori-

zontal cells do not respond to fine gratings (Baccus et al., 2008). Therefore, the only remaining

choice in the model structure was the level at which to combine the peripheral input. Because a

peripheral shift caused the overall nonlinearity of the LN model to shift laterally, rather than vertically

with respect to the central pathway’s linear input (Figures 2 and 3), the peripheral pathway delivers

input prior to the nonlinearity, corresponding to input to the bipolar cell terminal (Figure 5A). The

peripheral pathway can be represented by small rectified subunits that cause the response to be

insensitive to the peripheral pattern (Victor, 1979; Olveczky et al., 2003). Rather than explicitly sim-

ulate spatiotemporal dynamics of the periphery, we modeled the net effect of the abrupt peripheral

stimulus via a timed biphasic signal. The model effectively replicated the data for Gaussian stimuli at

different contrasts (Figure 5C, D), as well as for constant luminance stimuli (Figure 5—figure sup-

plement 1).

A key aspect of the model is the order in which the signals are combined. Because the peripheral

input is delivered prior to the threshold and adaptive stage, it is summed with the unadapted mea-

sure of the central input. This causes the peripheral input to have a larger effect on weak central

stimuli than on strong ones as experimentally observed (Figures 1 and 3). Furthermore, weak stimuli

only cross threshold when peripheral input is applied (Figure 5B), allowing the adaptive stage to

encode and adapt to signals of all strengths, including those from a central stimulus with a constant

intensity (Figure 5—figure supplement 1B). Thus, when peripheral excitation is present (Figure 5B,

Figure 5—figure supplement 1A), the model applies a lower threshold relative to the central input,

conveying more information about the full range of contrast environments, but less information

about the contrast level. When peripheral input is absent or inhibitory, the model applies a high

threshold with respect to the central input (Figure 5B and Figure 5—figure supplement 1A), con-

veying primarily higher contrasts and encoding information about the contrast level.

Peripheral input is independent of central contrast
An important conclusion we derived from the model is that a single amplitude of peripheral input

(equivalent to a fixed threshold shift with respect to the central input) replicates the results at all cen-

tral contrasts. Thus even though the effects of peripheral input differ with the central contrast, this is

because of the differing downstream effects of adaptation; the peripheral signal itself delivered prior

to the threshold does not depend on the central contrast.

Peripheral excitation and inhibition act across a similar spatial scale
We then measured the scale of excitation and compared it to the scale of transient peripheral inhibi-

tion, which is thought to play a role in suppressing the effects of eye movements (Olveczky et al.,

2003; Roska and Werblin, 2003). To measure the distance over which lateral excitation acts, we

designed a stimulus to measure peripheral gating of sensitivity to a central object as a function of

distance from the peripheral stimulus. The stimulus had three different components. First, the

periphery was composed of 50 mm checkers that covered the whole screen. Second, on top of the

periphery, a mean intensity gray mask covered the peripheral checkers over the central region; the

size of the mask, L, was varied. Third, the central object consisting of a pink noise flickering

sequence was then added on top of the central gray region and was presented as a fenestrated

checkerboard pattern of fixed size (Figure 6A–B). By decreasing the mask size, more peripheral

checkers were present, and the distance between peripheral checkers to any measured cell was

decreased. At the smallest mask sizes, peripheral checkers were intercalated with the central region

object, and occupied all space not covered by the central object (Figure 6B, bottom). The excitatory

influence of gating acted at distances of up to 1 mm (Figure 6C). This further confirms that the effect

was distinct from the linear receptive field, which would not be activated by a fine checkerboard at
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this distance. The observed changes in sensitivity indicate that excitatory and inhibitory influences

acted over a similar scale, equivalent to a radius of ~20 deg. of visual angle.

Figure 5. Gating of information through a shift in an internal threshold. (A) Model of a cell where two pathways

are combined prior to a threshold and an adaptive block, implemented here as a feed forward divisive effect with

a memory. Peripheral pathway is composed of many nonlinear subunits making the pathway insensitive to the

stimulus spatial pattern and delivers biphasic input to the central pathway (first positive, then negative). The

stimulus is Gaussian white noise at 3–24% contrast matching the experiment (and colors) in Figure 3. The central

pathway is composed of a linear temporal filter, because stimulus is only a function of time. (B) Signals arising at

points (a), (b) and (c) whose locations in the model are marked in panel (A). When the peripheral input is positive

(gating window, purple bar) or negative (suppression window, olive green bar) the central input is shifted to higher

or lower values with respect to the baseline state (recovery window, orange bar) and fixed threshold. Right, the

Gaussian distribution of the filtered stimulus occurring at point (c) in (A) compared to the threshold nonlinearity

occurring after point (c) in (A) during the gating (purple), suppression (olive green) and recovery (orange) windows.

The peripheral input effectively shifts the Gaussian mean with respect to the fixed threshold. (C) Model responses

to the same Gaussian stimulus used in Figure 3 at the times of the corresponding color bars in (B). (D) Adaptation

index for the model’s output as a function of time after the shift.

DOI: 10.7554/eLife.09266.010

The following figure supplement is available for figure 5:

Figure supplement 1. Model responses to peripheral gating for steady central stimuli.

DOI: 10.7554/eLife.09266.011
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Discussion
Our results show that global image shifts generate a signal that increases information transfer about

a cell’s preferred visual feature from local regions near the receptive field center. In the gating time

window, a change in the neural code is explained by a simple additive signal prior to a threshold fol-

lowed by an adaptive stage. As a result, a broader range of signals is transmitted, with a stronger

effect on weak, low-contrast stimuli commonly found in natural scenes (Tadmor and Tolhurst,

2000). This gating of information transmission, caused by the peripheral signal, results in more com-

plete adaptation to the image contrast as compared to other times. We explain the functional

importance of this effect as the resolution of two competing needs: conservation of spikes and the

rapid encoding of information when it is expected that information in the center will suddenly

increase.

A model compares the timing of gating with the expected increase in
information after a global shift
Our results indicate that transient peripheral input increases information transmission about the

visual feature in the receptive field center. However, for natural images and an abrupt global shift in

the image as from motion of a large object, the eye or head, the transient effect of gating would be

combined with transient changes in image statistics created by the image shift. We therefore com-

pared the timing of our gating results (Figure 2) to the dynamics of the expected information trans-

mission for natural scenes during an abrupt shift in the image. The statistics over the receptive field

center depend both on the image and the sequence of eye movements, and have strong correla-

tions over time. Consequently, attaining representative statistics of the distributions of both light

intensity and responses over multiple time points requires many trials. Owing to the difficulty in sam-

pling the high dimensional distribution of the stimulus and responses over multiple time points (see

Materials and methods), such an experiment would be prohibitively long. We therefore addressed

this question using a spatiotemporal version of our model of gating with simulated eye movements

and a large number of natural images.

To estimate the timing of information transmission under natural images, we combined natural

images with simulated global shifts of the image (Figure 7A-i). The spatiotemporal model used for

fast Off-type ganglion cells had the same structure as the reduced model (Figure 5), but we

replaced the initial linear filter with the spatiotemporal receptive field measured from a fast Off-type

bipolar cell (Baccus et al., 2008). Because peripheral gating is delivered prior to the threshold in the

model, it is likely that it represents an input presynaptic to the bipolar cell terminal. Furthermore,

because strong adaptation to contrast is thought to arise in the presynaptic terminal, the model is

effectively of the synaptic release from bipolar cells, although the actual density of bipolar cells was

not modeled. Thus, although further nonlinearities exist in the inner retina that would make the

responses of ganglion cells to natural scenes more complex, we expect this model will be informa-

tive as to the relative timing of bipolar cell release and peripheral gating. Fast Off-type bipolar cells

are roughly linear at a constant mean intensity for a stimulus that flickers (Figure 7—figure supple-

ment 1) or jitters as in fixational eye movements, and previous models indicate that these cells may

convey the primary input to fast Off-type ganglion cells (Baccus et al., 2008). Because the model

was used to estimate the information transmitted after a global image shift, we measured the noise

in bipolar cells at different contrasts. The signal-to-noise ratio (SNR) increased with contrast, which

was incorporated into the model ( Figure 7A-iii, see Materials and methods).

This model does not capture all nonlinearities of the bipolar cell response, including luminance

adaptation, a slightly saturating nonlinearity for high contrast stimuli, and weak contrast adaptation.

Furthermore, because we did not include luminance adaptation, the model effectively assumes that

during the fixation period, adaptation has reached a steady state, and that the global shift is too

brief to cause substantial luminance adaptation. The main goal of the model, however, was to gain

insight into the dynamics of information transmission under sudden image shifts.

The input to the model consisted of a set of natural images combined with fixational drift eye

movements interrupted by a sudden image shift of 6 degrees (Figure 7A), sufficient to exceed most

local image correlations (Figure 7—figure supplement 1A). Because natural images have strong

correlations, and because bipolar cell receptive fields are biphasic both in space and time, fixational

drift created a relatively small change in the filtered stimulus (Figure 7A-ii). However, for a brief
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window of time after the shift, the light intensity seen by the bipolar cell was less correlated with its

previous values (Figure 7B, D and F). During this window, a wider range of possible filtered stimuli

occurred, but still with most values remaining close to zero and under the fixed threshold

(Figure 7A-ii, B). Based on the noise measurements in bipolar cells, because of the higher variance

after the shift, the SNR of the bipolar cell membrane potential would be expected to increase. Note

that these simulations do not include the effects of moving objects in the environment, which would

cause the stimulus to more closely resemble experiments in Figures 2–4, where central and periph-

eral inputs are uncorrelated.

We first estimated the mutual information between the set of linearly filtered stimuli, G ¼ fgðtÞg,

and the model’s response, R ¼ frðtÞg, as a function of time from the shift (Figure 7C, dashed line).

Because of strong correlations in the stimulus (discussed further below), sequential measurements of

the intensity in a new environment are largely redundant, and thus may not convey added informa-

tion. To account for this effect, we estimated the novel information learned about the stimulus from

a response given that the system has access to the previous response. This is the conditional mutual

information IðGt;RtjRt�D

; pÞ between the set of linear predictions Gt and the responsesRt at the

Figure 6. Similar spatial scale for peripheral excitation and inhibition. (A) Experimental design for measuring the spatial scale of peripheral excitation

and inhibition (see Materials and methods). (Top) The periphery was a checkerboard pattern with squares of 50 mm covering all the screen that reversed

in intensity at 1 Hz. (Middle) A gray mask with no temporal component and variable size, L, was drawn on top of the checkers. (Bottom) The object was

a checkered pattern with a square size of 100 mm (shown in green for illustration). Object squares in the center flickered with a pink noise distribution,

with an equivalent contrast of 10% , changing every 30 ms. (B) Top, schematic of how the different components of the stimulus were layered. Middle

and Bottom, a sample cell’s spatial receptive field for the object stimulus is shown in red with the color representing sensitivity to that particular square

of the object for two different sizes of the intermediate mask. With this design, the object does not change across the different conditions and any

change in the sensitivity to the object is due to the distance of the peripheral checkers. (C) Average over cells (n = 66) of the normalized sensitivity to

the object stimulus, which was computed as the average slope Sðd; tÞ of the nonlinearity of a linear-nonlinear model normalized by the average slope of

the nonlinearity when the background was at infinity, Sð¥; tÞ as a function of time bin t, relative to the background shift for two different mask sizes. (D)

Average of the normalized sensitivity as in panel (C) as a function of distance between the cell and the mask during the gating window (50–100 ms after

the shift) and an inhibitory window (150–200 ms after the shift). Each point in a line corresponds to the minimum distance between the cell’s linear

receptive field and the background checkers for a particular background condition mask L. For the gating window, the baseline of sensitivity at 0–50

ms, which is too soon after the shift to be affected by it, was subtracted for each distance d. This subtraction was not done for the recovery window

because at distances less than 500 mm, residual inhibition creates a saturating decrease in sensitivity, causing many cells to have zero slope at this time.

See Figure 6—Figure supplement 1 for sensitivity before the subtraction of this baseline.

DOI: 10.7554/eLife.09266.012

The following figure supplement is available for figure 6:

Figure supplement 1. Similar spatial scale for peripheral excitation and inhibition.

DOI: 10.7554/eLife.09266.013
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same time t given the response at the previous time point Rt�D

, computed for a given delay p from

the shift (see Materials and methods). As expected, because during fixational eye movements

responses are highly correlated in time, each additional sample conveyed little novel information.

However, after the sudden shift moved the receptive field to a new location, the conditional mutual

information abruptly increased (Figure 7C, solid line). Unlike the mutual information at different

times relative to the shift, IðG;RjpÞ, the conditional mutual information captures the intuition that

most of the information about the new environment should occur in a short amount of time (Fig-

ure 7—figure supplement 2). Most importantly, the conditional mutual information showed faster

dynamics (Figure 7C, continuous black line), with new information arriving faster than the peak of

the linear prediction (Figure 7C, green line).

We then compared the timing of the increase in information from gating (Figures 2–3) with the

timing of the expected increase in the conditional information following the shift (Figure 7D). We

found that these greatly overlapped, meaning that the active increase in information produced by

gating is timed to match the expected increase in novel information generated by the shift. Given

the statistics of natural scenes and the measured noise in bipolar cells, our model indicates that gat-

ing represents a mechanism that increases information transmission at the expected peak of novel

information after a global shift in the image.

A principle of adaptation that dynamically balances information
transmission and energy conservation
Adaptation is typically considered to be a process that optimizes information transmission given the

current environment, and previous studies have focused on which threshold response curve would

maximize information in the current environment (Laughlin, 1981; Brenner et al., 2000). However,

it is clear that information transmission is not the only objective, as the threshold of retinal ganglion

cells is much higher than predicted by this ideal. Consequently, it has been proposed as an alterna-

tive factor that ganglion cells conserve spikes at the expense of maximal information transmission

(Pitkow and Meister, 2012). We propose that neither view of a neural code optimized for a single

current environment – either for maximal information transmission or for energy efficiency – is fully

representative of natural vision. Our findings indicate that a peripheral shift causes a switch from a

code that conserves energy to one of increased information transmission, with higher information

transmission occurring at the expected time of higher signal-to-noise ratio and higher information

content. These results suggest a general principle of neural coding – the dynamic allocation of neural

activity to times most likely to contain novel information. This principle of adaptation acts to allocate

resources across environments, and in fact is analogous to known principles of communication the-

ory that act to enhance dynamic information transmission under an energy constraint.

Allocation of power in communications theory
An energy-efficient communications channel that carries signals over a range of frequencies should

allocate power such that signal power plus noise power is a constant, except for frequencies where

noise exceeds a value set by the available power (Shannon, 1998; Warland and Rieke, 1999). This

concept of efficient power allocation is known as ‘water-filling’, as suggested by the notion of pour-

ing power allocated to signal transmission into a basin whose depth varies according to noise but

whose surface level is constant.

It is less well appreciated in neuroscience that the same water-filling principle applies to efficiently

allocate power over time when the noise level dynamically varies as can occur during wireless trans-

mission (Goldsmith and Varaiya, 1997). In this case, greater power should be allocated to times of

higher SNR. Because a higher variance signal has a higher SNR in the bipolar cell (Figure 7A-iii

[Ozuysal, 2012]), this principle agrees with our observation that additional spiking is allocated to

times of expected high variance of the filtered stimulus (Figure 7C–D). However, because both sig-

nal and noise are changing dynamically, further studies are needed to compare dynamic changes in

information transmission to an estimated optimal allocation of power over time given the changing

stimuli and noise.
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Figure 7. Model of central information for natural scenes with eye movements. (A) Spatiotemporal model used in the simulation. (A-i) An eye

movement trajectory overlaid on a natural image, consisting of fixational drift, and a sudden eye movement (green line) that takes the center of each

cell from one image location (insets) to another. The image series is convolved (˜) with a separable spatiotemporal filter previously measured from a

fast Off-type bipolar cell (Baccus et al., 2008), yielding a linear prediction for a bipolar cell at each spatial location. (A-ii) (Top) The linear prediction for

100 model bipolar cells over different images as a function of time. A sudden eye movement occurs at 0 s (dotted line). Vertical scale is in arbitrary

units. (Middle and Bottom) The linear prediction is shown for a population of bipolar cells (one at each spatial location) at 100 ms before and after the

sudden image shift responding to the image and eye movement trajectory shown in (A-i). Color scale is the same in both images. (A-iii) Noise model.

(Top) signal to noise ratio measured experimentally in a bipolar cell from repeats of a spatially uniform Gaussian white-noise stimulus under different

stimulus contrasts (Figure 7—figure supplement 1) (Ozuysal, 2012). (Bottom) Noise generated with this model, shown in the same arbitrary units as in

(A-ii) Top. Black line is the standard deviation of the noise at each point in time. (A-iv) (Top) After the linear central input is summed with the noise, the

result is passed through a rectifying nonlinearity and then through a feedforward divisive operation representing a simplified version of adaptation, as

in the model in Figure 5. (B) Distributions of linear prediction values over many images at different times, compared with the rectifying nonlinearity

(black line) from (A-iv). Distributions before t = 0 s and after 350 ms are identical. (C) Dynamics of information transmission after a sudden eye

movement. The Shannon mutual information IðGt;RtjpÞ between the linearly filtered stimulus, gðtÞ, and the model output, rðtÞ (black dashed line) at a

given delay from the shift, p, and the conditional mutual information IðGt;RtjRt�D

; pÞ between the same quantities when conditioning on the response

Figure 7 continued on next page
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Potential role of peripheral gating during eye movements
Our results indicated that gating occurs at the time when the expected statistics of the central input

will change. This expectation may arise from the sudden movement of large objects, and we expect

that peripheral gating will be important during natural saccadic eye movements. Previous results

have strongly implicated transient nonlinear peripheral inhibition in suppressing the effects of fixa-

tional eye movements on object motion sensitive ganglion cells (Olveczky et al., 2003), and the sim-

ilar spatial scale of peripheral nonlinear gating and nonlinear inhibition (Figure 6) is consistent with a

role of gating in eye movements.

Although salamanders and other amphibians have differences in their eye movements in that they

make head saccades to target prey (Manteuffel and Roth, 1993), they have similar fixational drift

(Manteuffel et al., 1977) and optokinetic head movements (Manteuffel, 1984) to mammals.

Accordingly, the property of object motion sensitivity related to fixational eye movements is com-

mon to both salamanders and mammals. Similarly, the basic phenomenon of peripheral retinal exci-

tation has been observed in mammals, and we expect that effects on neural coding we observe here

will be similar. The duration of the ~1 degree global image shifts we have used (Figure 1) is one

stimulus frame (~30 ms), similar to the duration of a ~1 degree saccade in a number of species, for

rabbit, cat and monkey, 20–50 ms (Collewijn and Zuidam, 1977; Evinger et al., 1981; Fuchs and

Johns, 1967); humans, ~20 ms (Baloh et al., 1975); and fish, ~70 ms (Easter, 1975). Although larger

saccadic eye movements are longer in duration, the key property we find is that the timing of the lin-

ear filter in the receptive field center is coincident with temporal filtering from the peripheral input.

Thus, even if the global shift is more smooth as in the case of a larger saccade or an amphibian head

saccade, we expect that the excitation from both center and periphery will still coincide.

Synchronization signals and dynamic allocation of sensitivity
Timing signals that indicate a changing stimulus have been observed in other systems that use active

sensation, including sniffing in olfaction and whisking in the vibrissae system (Shusterman et al.,

2011; Hill et al., 2011). In these cases, an efferent copy of a motor command can provide the timing

signal. But because the retina lacks such an efferent copy, a signal that the stimulus is changing must

be computed from the sensory input. Inhibitory amacrine cells are known to deliver signals laterally

across long distances, and could increase the firing rate through synaptic disinhibition

(Barlow et al., 1977). We note that a similar organization is found in the hippocampus, where a

common signal is generated by oscillations in inhibitory neurons (Buzsáki, 2002). On the principle

that the threshold should be lowered when greater information is expected, synchronous oscillations

between brain regions may perform a similar function of allocating sensitivity to time intervals of

greater information content.

Tradeoffs in the neural code
The neural code embodies a choice between tradeoffs. A high threshold may be efficient in terms of

energy, at the expense of the amount of information (Pitkow and Meister, 2012). A biphasic filter

and a threshold may emphasize novelty in natural scenes (Srinivasan et al., 1982), but certain stimuli

such as a constant luminance will be rejected. An adaptive system may improve information trans-

mission across an entire set of stimuli, but the particular statistic that triggers adaptation may be

lost. It is commonly assumed that a cell makes a single choice among these alternatives, whatever

Figure 7 continued

at a previous time rðt� DÞ (black solid line). Both stimuli and responses were averages over bins of 50 ms. Also shown is the standard deviation of the

linear prediction from (A-iii) (green line). (D) Comparison of the expected conditional mutual information from the model at each time after an image

shift (black line) with the time course of information transmission measured during experiments for several cell types (reproduced from Figure 2E).

DOI: 10.7554/eLife.09266.014

The following figure supplements are available for figure 7:

Figure supplement 1. Noise measurements in bipolar cells.

DOI: 10.7554/eLife.09266.015

Figure supplement 2. Correlations and information in a spatiotemporal model of gating.

DOI: 10.7554/eLife.09266.016
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the benefits and consequences. Our results, however, show that cells can sequentially switch

between complementary representations to capture the benefits of both.

Materials and methods

Electrophysiology
Larval tiger salamander retinal ganglion cells were recorded using an array of 60 electrodes (Multi-

channel Systems) as described (Kastner and Baccus, 2011). Intracellular recordings from bipolar

cells were performed using sharp microelectrodes as previously described (Ozuysal, 2012)

Visual Stimulus
A video monitor projected stimuli at 60 Hz, and values of intensity changed at 30 Hz. The monitor

was calibrated using a photodiode to ensure the linearity of the display. Stimuli had a constant mean

intensity of ~10 mW/m2. Contrast was defined as the standard deviation divided by the mean of the

intensity values, unless otherwise noted.

Moving objects versus global shifts
To measure the difference between object and global shifts (Figure 1), the stimulus consisted of a

square object 1200 mm on a side and a constant luminance of one of four logarithmically spaced val-

ues, and was presented in front of a black and white background checkerboard (50-mm squares).

Either the object alone or the entire image was suddenly displaced 50 mm left and right at 1 Hz. The

experiment was repeated with both phases of the background checkerboard, for a total of 16 com-

binations of shifts. Each combination was presented for 110 s twice in interleaved format with move-

ments happening every 0.5 s. The first 10 s of each presentation were discarded leaving 200 trials

per condition, with an equal number of left and right shifts that were analyzed independently (see

Figure 1C).

Linear-nonlinear model
LN models for Gaussian stimuli (Figure 3) consisted of the light intensity passed through a linear

temporal filter, which describes the average response to a brief flash of light in a linear system, fol-

lowed by a static nonlinearity, which describes the threshold and sensitivity of the cell (Baccus and

Meister, 2002). To compute LN models for white noise stimuli, we first computed linear filters, F(t),

which were the time-reverse of the spike-triggered average. Then, we calculated linear prediction, g

(t), as the convolution of the temporal filter and the central stimulus, s(t),

gðtÞ ¼

ð

F ðtÞsðt� tÞdt (2)

A static nonlinearity, NðgÞ, was computed by averaging the value of the firing rate, rðtÞ, over bins

of g(t). The filter, F ðtÞ, was normalized in amplitude such that it did not amplify the stimulus, i.e. the

variance of s and g were equal (Baccus and Meister, 2002). Thus, the linear filter contained only rel-

ative temporal sensitivity, and the nonlinearity represented the overall sensitivity of the

transformation.

For pink noise stimuli (Figure 2), a sequence was generated with an amplitude spectrum that was

inversely proportional to the frequency (1=f). Because the stimulus contained temporal correlations,

the linear filter was computed by reverse correlation while normalizing by the autocorrelation of the

stimulus (Baccus and Meister, 2002).

Mutual information as a function of time
In our experimental designs, the full stimulus S consisted of two components, the periphery, P, and

a center stimulus C. In all experiments, the periphery was either still (with zero entropy and thus the

set of responses R contained no information about it), or reversed at 1 Hz. By discretizing time in 50

ms bins we create 20 different peripheral conditions p 2 P , each of which represents a time relative

to the period of the peripheral stimulus. By the chain rule of information (Cover and Thomas, 1991)

IðR;P;CÞ ¼ IðR;P Þþ IðR;CjP Þ (3)
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The last term can be understood as the average information that the response carries about the

central stimulus if the peripheral stimulus was known. This equation can also be written as

(Cover and Thomas, 1991)

IðR;P;CÞ ¼ IðR;P Þþ hIðR;CjpÞip2P (4)

where the last term is an average over all instances of the peripheral stimulus p 2 P .

We computed IðR;CjpÞ (the quantity inside the :h ip2P in eq (8)) for each time bin p relative to the

peripheral period (Figure 2D, inset) so that for each p there is no information between the cell’s

response and the peripheral stimulus (because under the set of stimuli analyzed there is only one

peripheral stimulus, which has zero entropy). To analyze how information varies as a function of time

relative to the peripheral shift, we show IðR;CjpÞ averaged over both phases of the periphery, each

of which had a similar time course (Figure 2D, inset).

Pink noise analysis
A 200 s sequence of a Gaussian pink noise (1/f amplitude spectrum) stimulus with an equivalent con-

trast of 10% was repeated 10–20 times. For the stability of information calculations with this number

of repeats, see (Figure 2—figure supplement 1B). In the Still condition, the periphery was static

and in the Shift condition the peripheral checkerboard shifted every 0.5 s. As stated above, each

time relative to the peripheral period was analyzed separately, so that under each condition there

was no information between the response of a cell and the periphery’s position. Although the central

sequences were not the same for each time bin relative to the peripheral shift, by having 200 central

sequences per periphery we limit the chance of biasing any particular periphery by associating it

with more (or less) discriminable central stimuli. Center sequences were identical between the Still

and the Shift conditions, and therefore the differences between IðR;CjpÞ under still and shift for any

peripheral stimulus p is only attributable to the one difference in the experimental conditions, the

presence or absence of peripheral stimulation. The response, ri, during trial i was defined as the

number of spikes in a 50 ms time bin; other intervals from 12 to 160 ms yielded similar results (Fig-

ure 2—figure supplement 1B).

The mutual information, IðR;CjpÞ, was computed by taking the difference between the total

response entropy, HðRjpÞ, and the conditional (noise) entropy, H R;Cjpð Þ (Cover and Thomas,

1991),

IðR;CjpÞ ¼HðRjpÞ�HðRjC;pÞ (5)

where

HðX1jX2Þ ¼�
X

x1;x2

pðx1;x2Þlog2

�

pðx1jx2Þ
�

(6)

Entropy values were calculated from a histogram estimate of probability distributions.

Dynamics of contrast and sequence information
The central stimulus followed a 4-bit M-sequence, with each stimulus frame having one of two val-

ues, �þ DI and �� DI, and a Michelson contrast ðDI=�Þ of one of four possible values, 3, 6, 12 and

24%. Each four frame sequence occurred once in a repetition of the M-sequence, where Mð4Þ is the

set of all 16 possible combinations of four binary digits. The luminance in the center was updated at

10 Hz, and therefore one presentation of the M-sequence lasted 0:1s�24 ¼ 1:6s. The sequence was

repeated for 11 trials at a given contrast and the responses for the first trial after a transition to a

new contrast were discarded from the analysis. Contrasts were picked randomly without replace-

ment and then a different order chosen once all four contrasts were tested. A stimulus was defined

as the combination of the center (both sequence and contrast) and the periphery. By binning time in

100 ms there are 10 possible peripheral stimuli (time p relative to peripheral period), 16 possible

sequences, mð4Þ and 4 possible contrasts (s) for a total of 640 different stimuli. Each stimulus was

measured at least 10 times.

When the central stimulus is divided into the stimulus sequence, mð4Þ 2 Mð4Þ and the contrast,

s 2
P

, the total information from eq (1) can be further expanded into:
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IðR;P;
X

;Mð4ÞÞ ¼ IðR;P Þþ IðR;
X

jP Þþ IðR;Mð4Þj
X

;P Þ

¼ IðR;P Þþ IðR;
X

jpÞþ IðR;Mð4Þj
X

; pÞ
D E

p2P

(7)

Where IðR;
P

jpÞand IðR;Mð4Þj
P

; pÞ are functions of time p. The quantity IðR;Mð4Þj
P

; pÞ repre-

sents the information the brain could extract about the stimulus-sequence at a given time relative to

the peripheral stimulus if it knew the contrast. Whereas IðR;Mð4ÞjpÞ represents the information that

the brain could extract about the stimulus sequence at a given time if it did not know the contrast.

Comparisons of the time course of IðR;Mð4ÞjpÞ and IðR;
P

jpÞ (Figure 4C), as well as between

IðR;Mð4Þj
P

; pÞ and IðR;
P

jpÞ (Figure 4—figure supplement 1), indicate that the dynamics of

information about sequence and contrast are different whether the brain can use contrast informa-

tion to decode the sequence or not.

Spatial extent of peripheral changes in sensitivity.

To measure the spatial extent of increases and decreases in sensitivity, the central stimulus con-

sisted of a mask in the pattern of a checkerboard, with squares 100 mm in size, that flickered with a

pink noise stimulus intensity that was the same in all squares (Figure 5A). The overall size of the

mask was 1.2 mm. The central stimulus was identical in all conditions. The background was a more

finely scaled checkerboard, with squares 50 mm in size, and a central blank region that was varied in

size from the full size of the monitor (no checkers in the periphery) to 0 mm (checkers everywhere

except in central stimulus). At smaller values of the central blank region, the background was interca-

lated with the central region (Figure 5B, bottom). For each location of the peripheral stimulus, we

computed an LN model between the center stimulus and the cell’s response and calculated the aver-

age slope of the nonlinearity for different time windows.

Model integrating central and peripheral input
The model of long-range excitation consisted of a central stimulus s(t) that was passed through a lin-

ear filter F(t), yielding the filtered central input

bðtÞ ¼

ð

1

0

F ðtÞsðt� tÞdt (8)

The filtered central input was combined with a signal, a(t), that depended on background motion.

Because the goal of this model was to investigate the integration of central and peripheral signals,

and not the origin of the peripheral signal as has been studied elsewhere in greater detail

(Passaglia et al., 2009), we defined a(t) to be a biphasic function of time that began at the time t =

0, representing the time of the saccade. As to a plausible origin of this input, the peripheral effect

occurred for a high spatial frequency checker and did not depend on the direction of the shift. Such

a response could be generated by a group of rectified subunits as found in the receptive fields of

polyaxonal amacrine cells (Baccus et al., 2008), but this was not explicitly implemented here.

Because a(t) had two phases, positive and negative, whereas polyaxonal amacrine cells are thought

only to deliver inhibition, it is expected that the positive phase would arise through disinhibition

delivered through a second intervening amacrine cell that provides tonic inhibition.

The central and peripheral inputs were then passed through a threshold nonlinearity Nð:Þ.

cðtÞ ¼ NðbðtÞþ aðtÞÞ (9)

The nonlinearity was chosen with a slope of one and the threshold equal to 0.9 times the maxi-

mum amplitude of the peripheral signal a(t)�.

The output of the threshold function was then scaled by feedforward divisive adaptation, yielding

the model output

y tð Þ ¼
cðtÞ

aþ
Ð

FaðtÞcðt� tÞdt
(10)

Fa(t) was an exponentially decaying filter with an integral of one, and a time constant set to 10 s,

although this parameter could be varied from 1 to 100 s with little effect. Smaller values of a yield

more complete adaptation. However, for constant luminance experiments, equation (10) reduces to
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a constant independent of the luminance value when a = 0, therefore non-zero values of a are

needed. Thus, the value of alpha was optimized to yield changes in adaptation as observed in the

data, as well as responses to different levels of constant luminance. We used a = 0.30, but values

from 0.05 to 2.00 could be used with similar results.

Spatiotemporal model under global shifts
From previous studies, the first sharp threshold encountered in the retina is at the bipolar cell synap-

tic terminal (Mennerick and Matthews, 1996). Thus, the filter in the model should correspond to

the spatiotemporal receptive field of a bipolar cell, which we took from our previous measurements

of fast-Off bipolar cells (Baccus et al., 2008) (Figure 7A). In order to use the model to assess infor-

mation transmission, we measured the noise in the membrane potential of bipolar cells as a function

of contrast and found that the level of noise increases roughly linearly with contrast (Figure 7A-iii).

This allowed us to choose a noise level at each time point that depended on the filtered stimulus,

approximating measured bipolar cell noise.

A set of 342 images were taken from a database of natural scenes (Tkačik et al., 2011). The bipo-

lar cell membrane potential was simulated by combining a linear receptive field pathway (Figure 7A-

i) and noise (Figure 7A-iii). Because the filtering and noise of bipolar cells was measured at a fixed

mean intensity, to avoid the need to incorporate luminance adaptation into the model, we normal-

ized the mean intensity of all images. The linear receptive field center and surround were modeled

independently, with each being a filter separable in space and time. Spatial linear predictions were

made by convolving each image with a spatial disk of 1.0 and 2.5 degrees of visual space corre-

sponding to center and surround. To compute the complete linear prediction of cells, images were

jittered around according to a random walk with mean velocity of 0.33˚ per second simulating fixa-

tional eye movements and an instantaneous saccade simulated by a step of 6˚ in a random orienta-

tion in the image location. The temporal receptive fields for the center and surround were convolved

with this image series and summed, generating the complete linear prediction for each location as a

function of time; gx,t where x denotes the location and t the time. From the 342 images, a total of

82,863 identical bipolar cells with non-overlapping centers were simulated.

Because bipolar cell noise depends on the stimulus contrast (Figure 7A-iii), we used a model of

the noise whereby the instantaneous standard deviation of the noise at each point in time relative to

the shift depended on the standard deviation of the linear prediction across the bipolar cell popula-

tion (Figure 7A-iii, lower panel, black trace). This created the greatest noise during the gating win-

dow, and thus potentially underestimates the actual information conveyed. From the signal standard

deviation at a particular time, an equivalent Gaussian contrast was found that would generate a lin-

ear prediction with the same standard deviation. With the equivalent Gaussian contrast, a level of

noise was chosen such that the signal to noise ratio was the same in the simulation and in the bipolar

cell’s measured membrane potential noise under repetitions of Gaussian stimulation at different con-

trasts (Figure 7A-iii, upper panel). Each cell in the model received independent noise which was

generated from a Gaussian distribution.

Information calculations from the model
The linear prediction gðtÞ and model output rðtÞ were binned to compute mutual information and

conditional mutual information. The linear prediction gðtÞ and the response rðtÞ were divided into 16

unequal bins, positioned to maximize information about the total range of gðtÞ and rðtÞ. The same

bins were kept for all delays, p relative to the shift. The information that the response carries about

the linear prediction at a particular delay p relative to the shift, was computed as IðGt;RtjpÞ by tak-

ing the difference between the total response entropy at a given delay, HðRtjpÞ, and the conditional

(noise) entropy, HðRtjGt; pÞ. The conditional mutual information between the linear prediction gðtÞ

and the response rðtÞ given the previous response rðt� DÞ at a given delay, p, was computed as

IðGt;RtjRt�D

; pÞ ¼HðGtjRt�D

; pÞ�HðGtjRt�D

;Rt; pÞ (11)

Adaptation index
To compute a change in adaptation at different times relative to a shift, an index was computed that

compared the measured change in the slope of the nonlinearity to the change expected from
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complete adaptation. After presenting a series of contrasts si, we computed the nonlinearities Nð:Þ

of an LN model, and from each nonlinearity extracted the slope mi. Picking one contrast as refer-

ence, we normalized the slopes and the contrasts by those of the reference ~m ¼ m=m0 and s
~ ¼

s=s0 and fitted a line to ~m vs. 1
s= . The adaptive index is the slope of the fitted line, which will be

one for an ideally adapting cell and zero for a nonadapting cell (Figure 3—figure supplement 1A–

B).

Ideal information
The goal was to find the nonlinearity that maximized the mutual information IðG;RÞ, between the

set of linear predictions, G and the set of spike counts, R, given the noise properties of the cell. We

began with the linear prediction as a function of time gðtÞ, the spike count distribution at that time,

P
�

rðtÞ
�

, computed over trials, and the average rate at that time, hrðtÞi, computed by averaging

over trials. The nonlinearity N0ðgÞ maps gðtÞ at a time t onto a model average firing rate hr
¢

ðtÞi at

that time, but to include noise that was most consistent with the observed noise we computed from

the data the distribution of spike counts for a given average rate, P
�

rðtÞjhri
�

. This function mapped

each average rate hrðtÞi at each time onto a distribution P
�

rðtÞ
�

. The optimized nonlinearity, N0ðgÞ,

was a sigmoid parameterized by a slope, x1
�1 and a midpoint, x0, and was constrained to have the

same minimum (zero) and maximum rate as the measured data N0 xð Þ ¼ rmax

1þe�ðx�x0 Þ=x1
. To find for each

candidate N0ð:Þ the best estimated joint distribution P
�

gðtÞ; r
¢

ðtÞ
�

between gðtÞ and the model distri-

bution of spike counts r
¢

ðtÞ, we used N0ð:Þ to mapgðtÞ onto hr
¢

ðtÞi, and then used the function

P
�

rðtÞjhri
�

to map hr
¢

i onto P
�

r
¢

ðtÞjgðtÞ
�

for a particular value of gðtÞ, i.e.

P
�

r
¢

ðtÞjgðtÞ
�

¼ P
�

rðtÞjN0ðgÞ
�

. Then, we weighted this conditional distribution by the marginal prob-

ability of the linear prediction g, P(g), which has a Gaussian distribution, to compute the full joint dis-

tribution of gðtÞ and r
¢

ðtÞ,

P
�

gðtÞ; r
¢

ðtÞ
�

¼ P
�

gðtÞ
�

P
�

r
¢

ðtÞjgðtÞ
�

(12)

from which the mutual information was computed. Then we performed a grid search of the parame-

ters of N0ð Þ and found from P
�

gðtÞ; r
¢

ðtÞ
�

the nonlinearity that maximized IðGt; Rt
¢

Þ. The maximum

value of IðGt; Rt
¢

Þ was taken as the maximum amount of information given the measured noise of

the cell, and its minimum and maximum firing rate.
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Krüger J, Fischer B, Barth R. 1975. The shift-effect in retinal ganglion cells of the rhesus monkey. Experimental
Brain Research 23:443–446. doi: 10.1007/BF00238025

Laughlin SB. 1981. A simple coding procedure enhances a neuron’s information capacity. Z Naturforsch 36:910–
912. [cited 2012 Mar 20].

Li CY, Zhou YX, Pei X, Qiu FT, Tang CQ, Xu XZ. 1992. Extensive disinhibitory region beyond the classical
receptive field of cat retinal ganglion cells. Vision Res [Internet] 32:219–228.

Manteuffel G, Plasa L, Sommer TJ, Wess O. 1977. Involuntary eye movements in salamanders. Die
Naturwissenschaften 64:533–534. [cited 2012 Feb 10]. doi: 10.1007/BF00483559

Manteuffel G. 1984. A ’physiological’ model for the salamander horizontal optokinetic reflex. Brain Behavior and
Evolution 25:197–205. doi: 10.1159/000118865

Manteuffel G, Roth G. 1993. A model of the saccadic sensorimotor system of salamanders. Biological
Cybernetics 68:431–440. doi: 10.1007/BF00198775

Mcilwain JT. 1964. Receptive fields of optic tract axons and lateral geniculate cells: peripheral extent and
barbiturate sensitivity. Journal of Neurophysiology 27:1154–1173.

Mennerick S, Matthews G. 1996. Calcium current in synaptic terminals of retinal bipolar neurons. Neuron 17:
1241–1249. [cited 2014 Dec 11].

Nagel KI, Doupe AJ. 2006. Temporal processing and adaptation in the songbird auditory forebrain. Neuron 51:
845–859. cited 2011 Jul 22. doi: 10.1016/j.neuron.2006.08.030

Olveczky BP, Baccus SA, Meister M. 2003. Segregation of object and background motion in the retina. Nature
423:401–408. doi: 10.1038/nature01652

Ozuysal Y, Baccus SA. 2012. Linking the computational structure of variance adaptation to biophysical
mechanisms. Neuron 73:1002–1015. cited 2012 Mar 8. doi: 10.1016/j.neuron.2011.12.029

Passaglia CL, Freeman DK, Troy JB. 2009. Effects of remote stimulation on the modulated activity of cat retinal
ganglion cells. Journal of Neuroscience 2925:2467–2476. cited 2013 Jul 5. doi: 10.1523/JNEUROSCI.4110-08.
2009

Pitkow X, Meister M. 2012. Decorrelation and efficient coding by retinal ganglion cells. Nature Publishing Group
15:1–11. Mar 11 [cited 2012 Mar 12].

Rieke F. 2001. Temporal contrast adaptation in salamander bipolar cells. Journal of Neuroscience 21:9445–9454.
Roska B, Werblin F. 2003. Rapid global shifts in natural scenes block spiking in specific ganglion cell types.
Nature Neuroscience 6:600–608. doi: 10.1038/nn1061

Schnitzer MJ, Meister M. 2003. Multineuronal firing patterns in the signal from eye to brain. Neuron 37:499–511.
doi: 10.1016/S0896-6273(03)00004-7

Shannon CE. 1998. Communication in the presence of noise. Proceedings of the IEEE 86:447–457. doi: 10.1109/
JPROC.1998.659497

Shusterman R, Smear MC, Koulakov AA, Rinberg D. 2011. Precise olfactory responses tile the sniff cycle. Nature
Neuroscience 14:1039–1044. cited 2013 Aug 12. doi: 10.1038/nn.2877

Simoncelli EP, Olshausen BA. 2001. Natural image statistics and neural representation. Annual Review of
Neuroscience 24:1193–1216. doi: 10.1146/annurev.neuro.24.1.1193

Smirnakis SM, Berry MJ, Warland DK, Bialek W, Meister M. 1997. Adaptation of retinal processing to image
contrast and spatial scale. Nature 386:69–73. doi: 10.1038/386069a0

Srinivasan MV, Laughlin SB, Dubs A. 1982. Predictive coding: a fresh view of inhibition in the retina. Proceedings
of the Royal Society B Biological Sciences 21622:427–459. cited 2012 Sep 7. doi: 10.1098/rspb.1982.0085

Strong SP, de Ruyter van Steveninck RR, Bialek W, Koberle R. 1998. On the application of information theory to
neural spike trains. Pacific Symposium on Biocomputing 80:197.

Tadmor Y, Tolhurst DJ. 2000. Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in
natural scenes. Vision Research 40:3145–3157. doi: 10.1016/S0042-6989(00)00166-8

Tatler BW, Baddeley RJ, Vincent BT. 2006. The long and the short of it: spatial statistics at fixation vary with
saccade amplitude and task. Vision Research 46:1857–1862. cited 2013 Aug 29. doi: 10.1016/j.visres.2005.12.
005
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