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ABSTRACT

Studies of gene fusions in solid tumors are not
as extensive as in hematological malignancies due
to several technical and analytical problems asso-
ciated with tumor heterogeneity. Nevertheless,
there is a growing interest in the role of fusion
genes in common epithelial tumors after the discov-
ery of recurrent TMPRSS2:ETS fusions in prostate
cancer. Among all of the reported fusion partners
in the ETS gene family, TMPRSS2:ERG is the most
prevalent one. Here, we present a simple and sensi-
tive microarray-based assay that is able to simulta-
neously determine multiple fusion variants with a
single RT-PCR in impure RNA specimens. The
assay detected TMPRSS2:ERG fusion transcripts
with a detection sensitivity of <10 cells in the pres-
ence of more than 3000 times excess normal RNA,
and in primary prostate tumors having no >1% of
cancer cells. The ability to detect multiple transcript
variants in a single assay is critically dependent
on both the primer and probe designs. The assay
should facilitate clinical and basic studies for
fusion gene screening in clinical specimens, as it
can be readily adapted to include multiple gene loci.

INTRODUCTION

Chromosome rearrangements are a characteristic feature
of cancer. More than 350 gene fusions, as a consequence
of chromosome aberrations, have been identified (1).
While gene fusions are common in hematological malig-
nancies, their presence in solid tumors is not as well stu-
died due to several technical and analytic problems related
to tumor heterogeneity (1). Only very limited gene fusion
events were discovered in solid tumors, mostly in sarco-
mas, until the recent discovery of TMPRSS2:ETS fusion
genes in prostate cancer (2). This finding has since

changed the general view that gene fusions play only a
minor role in the pathogenesis of epithelial tumors.
Therefore, there is renewed interest in searching for
fusion genes in solid tumors, due to their potential
impact on basic research and clinical application as has
been demonstrated in chronic myelogenous leukemia
(CML) (3,4).

The recurrent gene fusion event in prostate cancer
involves an androgen controlled gene, TMPRSS2, and
members (ERG, ETV1 and ETV4) of the ETS transcrip-
tion factor family (2,5,6). Among these fusion genes,
TMPRSS2:ERG is the most prevalent and the only
member detected in the majority of reports. This fusion
transcript results from ~3 Mb interstitial deletion between
these two loci at chromosome 21q22. It was found in
approximately half (15-78%) of all prostate cancers
(2,6-17). As an androgen-related transcription factor
controlling cell proliferation, TMPRSS2:ERG has been
associated with disease pathogenesis and is a promising
biomarker for prostate cancer progression, prognosti-
cation and early detection (18-21). While the presence of
TMPRSS2:ETS fusion genes is highly prostate cancer-
specific, its significance as a prognostic biomarker is still
controversial partly because many of the clinical studies
have been relatively small scale. Therefore, it is important
to develop a simple and robust assay for identifying var-
ious TMPRSS2:ETS and potential fusion genes in other
solid tumors. However, this could be challenging due to
high heterogeneity in prostate cancer and other solid
tumors, compared to leukemias and lymphomas (22).

Several approaches that have been used previously for
hematological malignancies have been applied to detect
TMPRSS2:ERG exon fusion variants. These include
fluorescent in situ hybridization (FISH) (2,12,14,17,23),
RT-PCR and sequencing (2,7,9,13), quantitative PCR
(qPCR) (2,8,24) and array-based comparative genome
hybridization (array CGH) (10-12). FISH may be the
most commonly used method, but it has relatively low
resolution, and therefore, cannot accurately determine
different fusion variants. Array CGH has a higher
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resolution but is costly and often fails when there is normal
cell contamination.

RT-PCR and gqPCR are relatively easy to perform.
However, to assess multiple potential fusion variants
requires multiple sets of primers and probes, and a corre-
sponding large quantity of RNA templates. Moreover,
sequencing RT-PCR products is laborious and difficult
to adapt in routine clinical laboratories. Here, we describe
an exon array-based detection system, combined with a
RT-PCR reaction, that accurately determines multiple
TMPRSS2:ERG fusion transcripts in specimens with
only a minor population of tumor cells. The method
adopts several features of the Virochip (25) protocol to
establish a specific, sensitive and semi-quantitative assay
that is very useful for analyzing highly heterogeneous solid
tumors.

MATERIALS AND METHODS
RNA isolation

The cell lines described in the article were obtained from
the American Type Culture Collection (ATCC, Manassas,
VA, USA) and cultured as recommended. Frozen unpur-
ified prostate tissues were obtained during routine surgery,
and classified pathologically by one of us. The total RNA
was extracted with Trizol (Invitrogen, Carlsbad, CA,
USA) following the manufacturer’s instructions. The pri-
mary tumor samples were purified by Qiagen RNeasy mini
kit (Qiagen, Valencia, CA, USA).

Microarrays

The exon and junction probes are 30-mer oligonucleotides
synthesized by Integrated DNA Technologies (Coralville,
1A, USA) or Illumina/Invitrogen (San Diego, CA, USA)
and printed on poly-L-lysine slides at 50 uM along with
Human Cot-1 DNA (Invitrogen), which is enriched for
repetitive sequences, and herring sperm DNA (Promega,
Madison, WI, USA), which was used as nonspecific con-
trol. The printing procedure has been described and essen-
tially follows the manual of the DeRisi arrayer with silicon
microcontact printing pins (Parallel Synthesis Technolo-
gies, Inc. Santa Clara, CA, USA) (25-27). Arrays were
postprocessed with succinic anhydride-based method for
blocking before hybridization as previously described (27).
The protocols related to array printing and hybridization
in this article generally can be found in the following link:
http://cat.ucsf.edu/equipment/arrayer/index.html.

Probe labeling

The RT-PCR reaction was performed with an OneStep
RT-PCR kit (Qiagen) essentially following the manufac-
turer’s protocol, except that the final reaction volume was
scaled down to 20 ul. The forward (GTT TCC CAG TCA
CGA TCC AGG AGG CGG AGG CGG A) and reverse
primers (GTT TCC CAG TCA CGA TCG GCG TTG
TAG CTG GGG GTG AQG) are located at exon 6 of ERG
and exon 1 of TMPRSS2 respectively, as described (2,9).
The 5-ends of both primers have the sequence of primer
B (GTT TCC CAG TCA CGA TC) for the subsequent
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step of PCR labeling with a single primer B as described
previously (25).

The procedure is a modification of the previously
reported ‘Round ABC’ protocol (25). Briefly, the RT—
PCR reaction was assembled at 4°C in a PCR workstation
and transferred to a thermocycler with the block pre-
heated to 50°C. The initial reverse transcription was per-
formed at 50°C for 30min and followed by 95°C for
15min to activate HotStarTag DNA polymerase as well
as to inactivate the reverse transcriptases (Round A). The
PCR conditions were 35 cycles at 92°C for 30s, 55°C for
30s and 68°C for 1.5min with a final extension step at
68°C for S5Smin (Round B). One microliter of unpurified
product was subsequently used as a template for another
20 cycles of amplification to label the amplicons via a
previously described ‘Round C* PCR protocol (94°C for
30, 40°C for 30s, 50°C for 30s and 72°C for 1 min) with
primer B and a 4:1 mixture of aminoallyl dUTP (Ambion,
Austin, TX, USA) and dTTP for probe labeling (25). The
labeled amplicons were purified with DNA Clean-up and
Concentrator-5 columns (Zymo Research, Orange, CA,
USA), eluted in 9 pl of sodium bicarbonate (pH 9.0) and
coupled with 1ul of DMSO dissolved Cy3 NHS esters
(GE Healthcare, Piscataway, NJ, USA) for 30-60 min.
The Cy3-labeled amplicons were purified with DNA
Clean-up and Concentrator-5 columns and eluted with
10 pl of 10 mM Tris—HCI (pH 8.0). Then, the Cy3-labeled
amplicons were diluted in water and combined with 3.6 pl
of 20x SSC, 0.5ul of HEPES (pH 7.0) and finally 0.5 pl
of 10% SDS to reach final volume of 25pul. The mixed
solution was heated for 2min at 95°C, cooled to room
temperature and hybridized to the exon mapping arrays
at 63°C overnight essentially as previously described
(25-27). The hybridized arrays were washed and scanned
with a GenePix 4000B scanner (Molecular Device,
Sunnyvale, CA, USA) and analyzed by GenePix Pro 6.0
software.

2D DNA-FISH

Frozen prostate cancer samples were sectioned onto slides.
Cell nuclei were isolated in situ with ice-cold cytoskeleton
buffer (CSK: 300mM sucrose, 100mM NaCl, 10mM
PIPES, 3mM MgCL,, ImM EGTA and 0.5% Triton
X-100) (28). The slides were fixed by dipping in ice-cold
methanol for 3 min, followed by ice-cold acetone. After
air drying the slides, they were allowed to age for at
least 1 week in ethanol.

DNA-FISH was carried out according to a method for
single copy loci detection (28). The protocol was adapted
with few modifications, using 50-mer oligonucleotides
specific to the loci of interest and labeled with a desired
hapten. Two probes were used for FISH for break-
apart assay. A probe located at the promoter region of
TMPRSS2 was labeled with biotin (Bio/GACTCCA
GGAGCGCTCCCCAGAATCCCCTTCCTTAACCCA
AACTCGAGCC). The other probe at exon 2 of ERG was
labeled with 5-6-carboxyfluorescein (S6FAM) (56FAM/
GATCTTTGGAGACCCGAGGAAAGCCGTGTTGA
CCAAAAGCAAGACAAATG). Detection of probes was
achieved by using antibodies conjugated to quantum dots
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(Qdot) against the hapten label. Conditions were opti-
mized to use a combination of two antibodies (1:200)
obtained from Invitrogen-Molecular Probes™ (Qdot
655 *sheep anti-Bio primary antibody conjugate; Qdot
525* Goat anti-FITC whole IgG primary antibody conju-
gate). Image acquisition was done with a Zeiss Axioplan
2e microscope (Carl Zeiss, Inc.). All pictures in the corre-
sponding three channels were deconvolved and optical
sections merged to produce 2D pictures using Axiovision
4.0 software (Carl Zeiss, Inc.) and Image J (Rasband, W.S.,
ImageJ, U. S. National Institutes of Health, Bethesda,
MD, USA, http://rsb.info.nih.gov/ij/, 1997-2006.)

RESULTS
Microarray-based TMPRSS2:ERG exon fusion mapping

To develop a multiplexing assay that is highly sensitive in
clinical samples of high complexity, we adopted our
Virochip system (25). The key protocol, Round ABC,
designed for unbiased amplification (29), is crucial for
identifying various fusion variants in this application.
Through literature review, we found that most of the
TMPRSS2:ERG fusion junctions are between exons 1 or 2
of the TMPRSS2 and exons 2-5 of the ERG (2,7,9,13).
Such constraints perhaps are related to whether a func-
tional ERG protein can be made from the gene fusions (9).
Therefore, we initially used a pair of primers at exon 1 of
the TMPRSS2 and exon 6 of the ERG for RT-PCR. As
shown in Figure 1A, PCR products were only generated
when there was a gene fusion, since the two primers
are located at different genes. Subsequently, the PCR
products were labeled and hybridized to an exon array
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Figure 1. TMPRSS2:ERG exon mapping strategy. (A) The RT-PCR is
performed using a 3’ primer from exon 6 of the ERG and a 5 primer
from exon | of the TMPRSS2. Only fusion transcripts can be exponen-
tially amplified since the two primers are at different genes. The probes
on the array are derived from exons 1-3 of the TMPRSS2 and exons
1-5 of the ERG (Table 1). (B) The hybridization pattern of RT-PCR
labeled amplicons with total RNA derived from the VCaP cell line.
The result clearly shows that the fusion junction is at exon 1 of the
TMPRSS?2 and exon 4 of the ERG, as illustrated in the fusion scenario
in (A). A probe that spans on the junction of exon 1 and 2 of the
TMPRSS?2 is labeled as “1/2’.
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for mapping the exons near the fusion junction. Printed
on the array are 30-mer oligonucleotide probes derived
from exons 1-3 of the TMPRSS2 and exons 1-5 of the
ERG (Table 1). Each selected sequence is represented by
two complementary probes (F: forward and R: reverse
complement) since sometimes PCR-labeled amplicons
may bind to only one strand of the probe, based on
empirical observations (25). We observed that probes
with reverse complementary (R) orientation worked con-
sistently with our RT-PCR labeling protocol.

A prostate cancer cell line, VCaP, (30) with a
TMPRSS2 and ERG fusion (2) was used for initial feasi-
bility testing. The total RNA was subjected to RT-PCR
with a pair of primers located at exon 6 of ERG and exon
1 of TMPRSS2 (2,9). The unpurified product was labeled
and hybridized on the microarray (Figure 1B). Only spots
corresponding to exon 1 of TMPRSS2 and exons 4-5 of
ERG developed strong signals. This result indicates the
fusion junction is at the exon 1 of TMPRSS2 and exon
4 of ERG, which is consistent with a previous report (2).

To mimic a typical clinical situation, in which small
population of cancer cells are present among normal
host cells in a primary tumor, we spiked decreasing
amounts of total RNA extracted from VCaP cells into
an excess of HeLa RNA, which does not have the fusion
transcripts. The detection limit is 32 pg of VCaP RNA in
the presence of 100ng of HeLa RNA (Figure 2). This
translates into only 1-3 cancer cells in the presence of
3000 times more normal cells. The level of sensitivity is
superior to previous methods for detecting fusion tran-
scripts (24).

TMPRSS2:ERG fusion junction mapping in primary
prostate cancer

To test the ability of the exon mapping array to detect
and characterize TMPRSS2:ERG fusion transcripts in
clinical samples, we isolated total RNA from frozen unpur-
ified primary prostate tissues obtained during surgery.

Table 1. Exon probes

Name Sequence

T1F GGGCGGGGAGCGCCGCCTGGAGCGCGGCAG
T2F ACATTCCAGATACCTATCATTACTCGATGC
T3F GGTCACCACCAGCTATTGGACCTTACTATG
T1/2F TGGAGCGCGGCAGGTCATATTGAACATTCC
G1F AGGGACATGAGAGAAGAGGAGCGGCGCTCA
G2F AGACCCGAGGAAAGCCGTGTTGACCAAAAG
G3F GCTGGTAGATGGGCTGGCTTACTGAAGGAC
GAF TTATCAGTTGTGAGTGAGGACCAGTCGTTG
G5F CTCTCCTGATGAATGCAGTGTGGCCAAAGG
T1R CTGCCGCGCTCCAGGCGGLGLTCCCceaeee
T2R GCATCGAGTAATGATAGGTATCTGGAATGT
T3R CATAGTAAGGTCCAATAGCTGGTGGTGACC
T1/2R GGAATGTTCAATATGACCTGCCGCGCTCCA
G1R TGAGCGCCGCTCCTCTTCTCTCATGTCCCT
G2R CTTTTGGTCAACACGGCTTTCCTCGGGTCT
G3R GTCCTTCAGTAAGCCAGCCCATCTACCAGC
G4R CAACGACTGGTCCTCACTCACAACTGATAA
G5R CCTTTGGCCACACTGCATTCATCAGGAGAG

T, TMPRSS2; G, ERG. F, forward probe; R, reverse comple-
ment probe.
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Many of these tumors had a substantial fraction of normal
stromal cells. Total RNA (5-50ng) from prostate cancers
(n = 20) and nonmalignant hyperplastic prostate tissues
(n = 10) were subjected to RT-PCR labeling and array
hybridization. The results showed that 7/20 cancers but
0/10 nonmalignant samples had TMPRSS2:ERG fusion
genes. To confirm the presence of the gene fusions, direct
sequencing was performed for the seven samples. The
sequencing data validated the exon fusion findings revealed
by the array assays. Similar to other reports (7,12,13),
some samples clearly showed two or more bands on
the agarose gel when the PCR products were subjected
to electrophoresis, corresponding to two or more fusion
transcripts in the same specimens.

The multiple fusion transcripts in a single prostate
cancer sample may reflect tumor heterogeneity or alterna-
tive splicing events. In order to map multiple fusion
junctions in a single assay, we redesigned the exon array
to include junction probes between exons 1 and 2 of the
TMPRSS?2 gene and exons 1-6 of the ERG gene (Table 2).
The modified probe set showed very clearly that the
patient sample #15 had two fusion transcripts and also
revealed the relative ratios of the two fusion transcripts
through their respective signal intensities (Figure 3). In
this case, the two fusion transcripts are between exon 4
of the ERG fused to ecither exon 1 (T1G4) or exon 2
(T2G4) of the TMPRSS2. The signal intensity of T2G4
junction probe is weaker than that of the T1G4 junction
probe (Figure 3A), consistent with the intensities of the
probes within the exons. These two fusion transcripts are
very likely due to alternative splicing. Figure 4 summarizes
the cluster analysis (31) of the seven arrays; the results
are shown in Table 3. Multiple fusion variants were
found in 4/7 positive samples.

TMPRSS2 vCap

32

Figure 2. Assay sensitivity. The VCaP total RNA was serially diluted in
a solution containing HeLa RNA to mimic the heterogeneous cell
population in primary tumors or human body fluids. The total
amount of RNA for each reaction is 100ng. The laser power (PMT
600, 100% output) was adjusted to maximize the sensitivity of detec-
tion. Therefore, the intensity of the each expected feature (T1, G4, G5)
is at the saturated level. The signal disappeared when the VCaP RNA
was diluted from 1:3125 (32 pg) to 1:15625 (6.4 pg).
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Table 3 also lists the percentages of cancer cells in the
tumors, the Gleason tumor grades and the detected var-
iants of TMPRSS2:ERG fusion transcripts. In this small
sample set, there is no clear association between tumor

Table 2. Junction probes

Name Sequence

T1G1F CCTGGAGCGCGGCAGCCCCCGAGGGACATG
T1G2F CCTGGAGCGCGGCAGGTTATTCCAGGATCT
T1G3F CCTGGAGCGCGGCAGCCGTCAGGTTCTGAA
T1G4F CCTGGAGCGCGGCAGGAAGCCTTATCAGTT
T1G5F CCTGGAGCGCGGCAGATGCCACCCCCAAAC
T1G6F CCTGGAGCGCGGCAGATCCTACGCTATGGA
T2G1F ATGGCTTTGAACTCACCCCCGAGGGACATG
T2G2F ATGGCTTTGAACTCAGTTATTCCAGGATCT
T2G3F ATGGCTTTGAACTCACCGTCAGGTTCTGAA
T2G4AF ATGGCTTTGAACTCAGAAGCCTTATCAGTT
T2G5F ATGGCTTTGAACTCAATGCCACCCCCAAAC
T2G6F ATGGCTTTGAACTCAATCCTACGCTATGGA
T1G1R CATGTCCCTCGGGGGCTGCCGCGCTCCAGG
T1G2R AGATCCTGGAATAACCTGCCGCGCTCCAGG
T1G3R TTCAGAACCTGACGGCTGCCGCGCTCCAGG
T1G4R AACTGATAAGGCTTCCTGCCGCGCTCCAGG
T1G5R GTTTGGGGGTGGCATCTGCCGCGCTCCAGG
T1G6R TCCATAGCGTAGGATCTGCCGCGCTCCAGG
T2G1R CATGTCCCTCGGGGGTGAGTTCAAAGCCAT
T2G2R AGATCCTGGAATAACTGAGTTCAAAGCCAT
T2G3R TTCAGAACCTGACGGTGAGTTCAAAGCCAT
T2G4R AACTGATAAGGCTTCTGAGTTCAAAGCCAT
T2G5R GTTTGGGGGTGGCATTGAGTTCAAAGCCAT
T2G6R TCCATAGCGTAGGATTGAGTTCAAAGCCAT

T, TMPRSS2; G, ERG. F, forward probe; R, reverse comple-
ment probe.

4 5 T1/2

TMPRSS2e1

TMPRSS2e2

ERG exon

junction probe

el a
el e2 e4 eb5 eb6 e7 E M

Figure 3. Detecting multiple fusion transcripts with junction probes.
(A) The exon probes alone show the sum of the signal derived from
individual transcripts. The junction probes reveal the species of the
transcripts. These two sets of data together are very useful to distin-
guish weak but true signals from otherwise random background signals.
(B) A scheme is presented to assist with data interpretation for (A),
which shows coexistence of T1G4 and T2G4 transcripts.
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Figure 4. Cluster analysis of seven prostate cancer samples having
fusion transcripts. The signal intensity of each feature is divided by
the intensity of a nonspecific control (herring sperm DNA) to normal-
ize the data for cluster analysis. The result is shown in Table 3. The
samples having similar fusion transcript variants were clustered
together by the program.

Table 3. The percentage of cancer cells in the tumors, the Gleason
tumor grades and the detected variants of TMPRSS2:ERG fusion
transcripts

Sample no.  Cancer (%)  Gleason grade  Fusion transcripts

1 30 7 T1-G4; T2-G4
2 20 5

3 50 5

4 20 6 T1-G4
5 80 9

6 1 6

7 90 8

8 20 4

9 80 8

10 1 6 T1-G2
11 2 6

12 70 7

13 20 9 T1-G4
14 1 6

15 70 8 T1-G4; T2-G4
16 20 8

17 80 8 T1-G4; T2-G4
18 50 7 T1-G2; T1-G3; T1-G4
19 80 7

20 80 7

grade and the presence of fusion transcripts. A relatively
larger study also showed that the presence of fusion tran-
script was associated with tumor stage but not tumor
grade (12). Consistent with the VCaP titration study
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ERG TMPRSS2

Figure 5. Heterogeneity of FISH patterns of interstitial deletion
between TMPRSS2 and ERG in a primary prostate tumor. An
unpaired green dot (TMPRSS2 probe, indicated by arrows) suggests
an interstitial deletion. Nonrandom variation of FISH patterns is
shown by the fact that most of the green and red signals (two different
but nearby probes) are paired in each panel. This variation is expected
on a heterogeneous aneuploid cancer cell population, which often
makes it difficult to distinguish meaningful events from random back-
ground aberrations.

(Figure 2), the clinical assay can detect the fusion tran-
script when only 1% tumor cells is present in the prostate
tissue (sample 10).

FISH analysis

We used FISH analysis to independently confirm our
array approach. Our FISH procedure (28) employed
50-mer probes that were labeled with small haptens
for target hybridization in conjunction with individual
hapten-specific, quantum dot conjugated antibodies for
signal detection. The resolution of this method is ~50 kb.
We designed two probes for the FISH assays, one at the
promoter region of TMPRSS2 (green in Figure 5) and the
other at exon 2 of ERG (red in Figure 5). We observed
heterogeneity of the FISH patterns in some primary pros-
tate cancer samples (Figure 5). It is more difficult to find
interstitial deletions between TMPRSS2 and ERG in
tumor samples containing low percentages of cancer cells
by FISH. Therefore, we used samples that contained
>80% cancer cells without detectable fusion genes to con-
firm the results of the arrays. The FISH experiments
revealed no genomic deletions at this location for all the
selected samples (#5, #7, #9, #19 and #20) that were simi-
larly nondeleted by array hybridization.

DISCUSSION

We have established a simple assay that can concurrently
profile variants of TMPRSS2:ERG fusion transcripts
by combining a single RT-PCR with an exon array.
The modified ‘Round ABC’ protocol, which was
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originally designed for genomic amplification (29) and has
been widely adopted for chromatin immunoprecipitation
(ChIP) and whole-genome DNA microarrays (ChIP-chip)
(32,33) and Virochip (25,34) experiments, is a simple
and relatively unbiased amplification procedure to semi-
quantitatively measure the fusion variants in a complex
sample. Previously, the same simple procedure was used
to obtain 83% (25kb/30kb) of the SARS coronavirus
genome with total nucleic acids isolated from a viral
culture (25).

The inclusion within the array of probes derived from
individual exons and potential fusion junctions simplifies
the breakpoint mapping and increases the confidence of
data interpretation (Figures 3 and 4). In contrast to some
reports that used multiple primers targeted to every poten-
tial fusion junction in hematological malignancies (35-38),
we used a single set of primers for target amplification
(Figure 1). The fusion junctions were subsequently
decoded by array. This design significantly reduces the
problems associated with primer dimers in the multiplex
PCR reaction, and creates more room for future assays
to include additional fusion genes. Furthermore, most
searches for fusion genes have focused on blood cancers,
because the cells can be purified before analysis. The appli-
cation of the previous methodologies is less useful for
highly complex solid tumors that are inevitably admixed
with normal cells. For example, a previously reported
MLLFusionChip could not be applied to samples with
cancer cells of <5-10% in 1 pg of total RNA (39).

The current assay should facilitate a thorough compi-
lation of the gene fusion variants in primary prostate
specimens, which may be useful for stratifying the aggres-
siveness of prostate cancer (13). In this regard, fusion var-
iants of EWS with another member of the ETS family,
FLI1, have been shown to be an independent predictor
of disease progression in Ewing’s sarcoma (40,41). It will
be of interest to compare in transfected cells the biological
activities of the different TMPRSS2:ERG variants from
patients with contrasting clinical outcomes (41).

While some studies have suggested that the presence
of TMPRSS2:ERG fusions is associated with more
aggressive disease or higher Gleason tumor grade,
other investigators did not reach the same conclusion
(12,14,17,20,23,42). We also did not find such an associa-
tion in a small series of samples. However, all of these
results are defective due to small sample size. The tech-
nology described here should make possible a larger scale
investigation to find whether there is a correlation between
the aggressiveness of the disease and the presence of
specific fusion genes.

It is crucial to have true cancer-specific biomarkers for
early cancer detection as well as for minimal residual dis-
ease monitoring, which has been extensively demonstrated
in hematologic maligancies (43). Such biomarkers could
help to avoid under- or over-treatment. Thus, there is past
interest (24,44) in applying TMPRSS2:ERG fusion assays
for such application since PSA and many other markers
in development are not truly prostate cancer-specific (45).
A recent study reported a TMPRSS2:ERG assay with
a sensitivity of detecting 1600 VCaP cells (24). However,
this level of sensitivity might not be sufficient for broad
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clinical application, especially with small biopsy specimens
or urine samples. We were able to achieve an assay sen-
sitivity of <32 pg of total RNA derived from VCaP cells,
an equivalent to 1-3 cells (Figure 2). Because our assay is
simple and amenable to automation, it is readily adaptable
to clinical studies. While it has been challenging to adapt
microarray-based technology to the clinic, some tests
(e.g. AmpliChip CYP450 and MammaPrint) have been
approved by FDA (46).

The same strategy can be applied to detect other less
prevalent fusion transcripts (TMPRSS2:ETV1 and
TMPRSS2:ETV4) in prostate cancer (2,5,6). In addition,
the exon array approach can also be applied to other
fusion genes, such as BCR-ABL in CML and clonal
Ig/TCR rearrangements in lymphocytic malignancies.
While this methodology development was motivated
by the clinical need, it is generally applicable to other
research requirements that are analogous to the situation
for detecting fusion genes in the single cell level when
a large excess of normal cells are present. For example,
a developmental biologist may use a similar approach to
screen mutants that have a desirable gene fusion when
direct gene targeting is not feasible.

There are some shortcomings of using RNA tran-
scripts as prostate cancer biomarkers, despite our ability
to achieve very sensitive detection of TMPRSS2:ERG
fusion variants. First, RNA is unstable and difficult to
process in routine clinical assays. Second, commonly used
drugs that inhibit androgen growth pathways, including
GnRH agonists and testosterone antagonists, may dimin-
ish the production of the TMPRSS2:ERG mRNA fusion
transcript, thereby producing false-negative results in
patients on hormonal therapy with evolving androgen-
independent tumors. Indeed, it has been reported that
TMPRSS2:ERG mRNA fusion transcripts are not expres-
sed in androgen-independent tumors in spite of the pre-
sence of interstitial deletions in between TMPRSS2 and
ERG at chromosome 2122 (10). While FISH is useful
for identifying genomic rearrangements, it has relatively
lower resolution and is difficult to use in highly heteroge-
neous samples with small percentages of tumor cells.
We have recently developed a technology, designated
Primer Approximation Multiplex PCR (PAMP) for iden-
tifying breakpoints in genomic DNA without the need
to purify cancer cells from normal tissues (26). We are
optimizing this assay for detecting the breakpoints
between TMPRSS2 and ERG loci for primary prostate
tumors to overcome any potential problems associated
with RNA based biomarkers. In addition, the DNA-
based assay will provide information about whether
multiple fusion transcripts in a sample are derived from
alternative splicing or tumor heterogeneity. The best
approach may ultimately be to combine DNA and RNA
based assays in a common format.
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