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Abstract: Bacterial infections have caused serious threats to public health due to the antimicrobial
resistance in bacteria. Recently, gold nanoclusters (AuNCs) have been extensively investigated for
biomedical applications because of their superior structural and optical properties. Great efforts
have demonstrated that AuNCs conjugated with various surface ligands are promising antimicrobial
agents owing to their high biocompatibility, polyvalent effect, easy modification and photothermal
stability. In this review, we have highlighted the recent achievements for the utilizations of AuNCs
as the antimicrobial agents. We have classified the antimicrobial AuNCs by their surface ligands
including small molecules (<900 Daltons) and macromolecules (>900 Daltons). Moreover, the
antimicrobial activities and mechanisms of AuNCs have been introduced into two main categories
of small molecules and macromolecules, respectively. In accordance with the advancements of
antimicrobial AuNCs, we further provided conclusions of current challenges and recommendations
of future perspectives of antimicrobial AuNCs for fundamental researches and clinical applications.

Keywords: gold nanoclusters; antimicrobial agent; small molecule; macromolecule;
antimicrobial mechanism

1. Introduction

Treatment of bacterial infection is facing challenge against antimicrobial resistance [1–4].
The antimicrobial resistance in bacteria remains growing for many reasons included overuse and
misuse of antibiotics and the spread of bacteria by various routes [5–7]. Therefore, the issue of
antimicrobial resistance constitutes a serious risk to public health. According to previous study, the
threat of antimicrobial resistance will represent the first cause of death with around ten million per year
in 2050 [8,9]. Among different solutions to overcome the antimicrobial resistance, the developments of
new antimicrobial agents are critically needed [10–12]. Nanomaterials with large surface area and facile
functionalization have exhibited superior physical and chemical properties for applications in catalysis,
electronic and medicine [13–20]. Recently, organic and inorganic nanomaterials offer an alternative
approach to treat infectious diseases caused by bacteria [21–27]. The antibacterial mechanisms of
nanomaterials have been demonstrated, such as the binding between nanomaterials and bacteria for
bacterial membrane disruption, photothermal heat generation to kill bacteria by light irradiation onto
nanomaterials, photocatalytic production of reactive oxygen species (ROS) via nanomaterials and
release of metals ions from nanomaterials to disrupt cellular components of bacteria [28–33].
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Recent advancements have been focused on the utilizations of metal nanoclusters including
gold, silver and copper as the antibacterial agents for bacterial infections [34–38]. Among the metal
nanoclusters, gold nanoclusters (AuNCs) have exhibited unique optical and structural properties for
the biomedical applications in imaging, detection, and therapy [39–45]. For the application in therapy,
AuNCs conjugated with various surface ligands have been extensively applied as the antimicrobial
agents owing to their high biocompatibility, polyvalent effect, easy modification and photothermal
stability [46–54]. The ligands of amino acids, peptides, antibiotics, antibodies, enzymes, DNA and
so forth have been demonstrated for the syntheses of AuNCs [55–66]. In this review, we focus
on recent achievements dealing with antimicrobial activity of AuNCs capped by various ligands.
The ligands embracing different chemical structures were grouped into small molecules (<900 Daltons)
and macromolecules (>900 Daltons) [67,68]. In molecular biology and pharmacology, small molecules
are commonly defined for the organic compound with the molecular weight lower than 900 Daltons.
Small molecules can be used to regulate a biological process [69]. Due to the small size, small molecules
are able to penetrate across cell membranes to reach targets in the bacterial cell. In contrast to small
molecules, macromolecules (>900 Daltons) are complex and usually exhibit therapeutic effect [70].
Therefore, in this review, AuNCs are classified by their surface ligands included small molecules and
macromolecules for the explanation of the antibacterial mechanism of AuNCs (Table 1). The details of
ligand size effects and antibacterial mechanisms of ligand-protected AuNCs are also discussed in this
review. Finally, challenges and perspectives about antimicrobial AuNCs are provided.

Table 1. Ligands and antibacterial mechanisms of AuNCs in this review.

Types Ligands (Molecular Weight) Antibacterial Mechanisms References

Small molecules

6-Mercaptohexanoic acid (148 Da) Increase of ROS generation by
MHA-AuNCs to kill bacteria

[71]

Glutathione (307 Da) Optimal radius of DPAu/AMD for the
increase of cell uptake

[72]

Allium cepa L. (Mixture) Increase of the interaction between AuNCs
and bacterial membrane

[73]

Mannose (180 Da) Bacterial aggregations [74]
Quaternary ammonium (282 Da) Increase of ROS generation by QA-AuNCs

with positive charge
[75]

4-Amino-2-mercaptopyrimidine
(127 Da)

Increase of ROS generation by AuDHMP
with positive charge

[76]

6-Mercaptohexanoic acid (148 Da) Increase of ROS generation by Au25NCs
with negative charge

[77]

Macromolecules

Lysozyme (143000 Da) Hydrolysis of bacterial cell wall by
lysozyme-AuNCs

[78]

Lysozyme (143000 Da) Multivalent interactions between
AuNC-L-Amp and bacterial

[79]

Vancomycin (1449 Da) Delivery of vancomycin into bacteria by
AuNC@Van

[80]

Vancomycin (1449 Da) Delivery of vancomycin into bacteria by
Au-SGaa-Van

[81]

G4NH2 & G4OH (14266 & 14277 Da) Inhibition of LPS aggregation [82]
Bacitracin (1422 Da) Damage of cell wall and increase of ROS

production by AuNCs@Bacitracin
[83]

2. Small Molecule-Conjugated AuNCs

In recent years, small molecules containing thiol, amine and hydroxyl groups have been used as
the ligands to synthesize AuNCs because of low cost, easy accessibility and facile modification.
These AuNCs have revealed promising potential as the antimicrobial agents. For example,
AuNCs protected by 6-mercaptohexanoic acid (MHA-AuNCs) have been prepared and used as an
antimicrobial agent [71]. Zheng et al. have compared the antimicrobial activities of MHA-conjugated
gold nanoparticles (MHA-AuNPs), MHA-AuNCs and Au(I)-MHA complexes for Gram-positive
Staphylococcus aureus (S. aureus). After incubation with S. aureus, MHA-AuNCs have shown superior
bacterial killing efficiency∼95% of the S. aureus. In comparison with MHA-AuNCs, the bacterial killing
efficiencies of MHA-AuNPs and Au(I)-MHA complexes are ∼3% and ∼5% for S. aureus, respectively.
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For the Gram-negative type Escherichia coli (E. coli), the bacterial killing efficiencies of MHA-AuNCs,
MHA-AuNPs and Au(I)-MHA complexes are individually ∼96%, ∼2% and ∼3%. Herein, MHA-AuNPs
have shown no significant antimicrobial activity. However, gold nanoparticles can be used as an
antibiotic carrier. The gold nanoparticles with large surface area allow them to conjugate a large
number of antibiotics for efficiently against various strains of bacteria [84–87]. In comparison with
gold nanoparticles, the antimicrobial activity of MHA-AuNCs is attributed to their ultra-small size for
the improvement of interaction with bacteria. After the internalization of MHA-AuNCs in bacteria,
the interaction between MHA-AuNCs and bacteria could cause a metabolic imbalance to result in the
increase of intracellular ROS production to eventually kill bacteria (Figure 1) [88].
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Figure 1. Antimicrobial activity of MHA-AuNCs due to the increase of interaction between
MHA-AuNCs and bacteria. Reproduced with permission from Reference [71]. Copyright © 2017,
American Chemical Society.

DNA nanopyramid (DP) is one of DNA nanostructures used in nanomedicine as delivery
carrier [89]. Setyawati et al. have used DP as the scaffold to incorporate glutathione-protected AuNCs
and Actinomycin D (AMD) to form a nanotheranostic agent (DPAu/AMD) as shown in Figure 2 [72].
The nanotheranostic agent of DPAu/AMD has been applied against E. coli and S. aureus. The result
indicates that DPAu/AMD show a significant killing efficiency compared to that of the free AMD
treatment for both of E. coli and S. aureus. The DPAu/AMD improve antibacterial effect by reduction
of 65% of S. aureus population compared to that of 42% for the free AMD. For E. coli, the bacterial
reductions of DPAu/AMD and free AMD are 48% and 14%, respectively. In comparison with free AMD,
the high antibacterial effect of DPAu/AMD can be attributed to that the optimal radius of DPAu/AMD
(38.3 nm) can increase the cell uptake for bacteria [90,91].
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Figure 2. Representative scheme of DPAu/AMD as a nanotheranostic agent. Reproduced with
permission from Reference [72]. Copyright© 2014, American Chemical Society.

Sinha et al. have developed a one-pot fabrication with properties including simple, novel, green,
economic, environment friendly and convenient for preparation of AuNCs with Allium cepa L. (AcL)
conjugation [73]. The peel extraction of AcL has biomolecules such as flavonoids, carbohydrates,
saponins, amino acid cysteine, sulphoxides, γ-glutamyl peptides and vitamins. The biomolecules with
thiol groups in the peel extraction of AcL have been used to reduce the precursor of Au (III) to form
Au (I) and Au (0) for the formation of AuNCs [92]. In this work, the antibacterial activities of AuNCs,
AcL and Tetracycline antibiotic have been investigated against Gram-negative E. coli. Results show
that AuNCs have the highest bacterial killing efficiency, followed by Tetracycline antibiotic and then
extraction of AcL the least. The highest antibacterial activity of AuNCs can be attributed to that the large
surface area and easy penetration ability of AuNCs can increase the interaction between AuNCs and
bacterial membrane to result in the death of bacteria. To combat bacteria, water-soluble biofunctional
AuNCs conjugated with mannose (Man-AuNCs) have been developed for the sensitive and selective
detection and bacterial inhibition of E. coli. (Figure 3) [74]. The mannose ligands conjugated on the
surfaces of Man-AuNCs have induced strong multivalent interactions between Man-AuNCs and FimH
proteins located on the bacterial pili of E. coli. The bacterial aggregations caused by Man-AuNCs lead
to the inhibition of the growth of E. coli. The antibacterial activity of Man-AuNCs has been shown
in Figure 3. The growth curve of E. coli in sterile LB media has shown a very low growth rate of E.
coli after incubated with Man-AuNCs (>250 nM) as shown in Figure 3A. In Figure 3B, the number of
colonies on the LB agar plates of untreated and Man-AuNCs-treated E. coli have been calculated to be
78 and 18 colony-forming unit (CFU), respectively. In this work, the Man-AuNCs have great potential
for use as an antibacterial agent due to high ligand density of mannose on the surface of Man-AuNCs
for multivalent interactions with E. coli.



Int. J. Mol. Sci. 2019, 20, 2924 5 of 17

   

Man-AuNCs have great potential for use as an antibacterial agent due to high ligand density of 

mannose on the surface of Man-AuNCs for multivalent interactions with E. coli. 

 

Figure 3. (A) Antibacterial effect of Man-AuNCs with their concentrations from 0 to 400 nM. (B) 

Colony formation of E. coli on LB agar plates in the (a) absence and (b) presence of Man-AuNCs (250 

nM). Insets of Figure 3A indicate photographs of E. coli (1.0×108 CFU/mL) grown for 10 h in the LB 

medium in the (a) absence and (b) presence of Man-AuNCs (250 nM). Reproduced with permission 

from Reference [74]. Copyright ©  2011, Elsevier. 

Recently, Xie et al. have synthesized and functionalized AuNCs using positive ligands including 

quaternary ammonium (QA-AuNCs), nona-arginine peptide (R9-AuNCs) and the transactivator of 

transcription peptide (Tat-AuNCs) by one-pot synthesis with glutathione as the reductant [75]. The 

antibacterial activities of AuNCs have been investigated by measuring their minimal inhibitory 

concentrations (MICs) in Gram-positive S. aureus, methicillin-resistant Staphylococcus aureus (MRSA), 

Gram-negative E. coli and multidrug-resistant E. coli. With the changes of ligand/reductant (L/R) 

ratio, the QA-AuNCs with an L/R ratio of 0.5:1 has exhibited superior antibacterial effect for the four 

targeting bacteria (Figure 4). The antibacterial mechanism of QA-AuNCs can be ascribed to the fact 

that the positive charge on the surface of QA-AuNCs can promote electrostatic adsorption onto 

bacterial cell membrane with negative charge. Additionally, then QA-AuNCs have induced 

disruption of membrane integrity, increase of membrane permeability and dissipation of the 

membrane potential of S. aureus. Eventually, QA-AuNCs can improve the generation of ROS and 

cause the death of bacteria [93]. Overall, QA-AuNCs have shown promising potential as the 

antibacterial agent using physicochemical mechanism for the skin infection model and the bacteremia 

model caused by MRSA [9,94]. 

Figure 3. (A) Antibacterial effect of Man-AuNCs with their concentrations from 0 to 400 nM. (B) Colony
formation of E. coli on LB agar plates in the (a) absence and (b) presence of Man-AuNCs (250 nM).
Insets of Figure 3A indicate photographs of E. coli (1.0×108 CFU/mL) grown for 10 h in the LB medium
in the (a) absence and (b) presence of Man-AuNCs (250 nM). Reproduced with permission from
Reference [74]. Copyright© 2011, Elsevier.

Recently, Xie et al. have synthesized and functionalized AuNCs using positive ligands including
quaternary ammonium (QA-AuNCs), nona-arginine peptide (R9-AuNCs) and the transactivator
of transcription peptide (Tat-AuNCs) by one-pot synthesis with glutathione as the reductant [75].
The antibacterial activities of AuNCs have been investigated by measuring their minimal inhibitory
concentrations (MICs) in Gram-positive S. aureus, methicillin-resistant Staphylococcus aureus (MRSA),
Gram-negative E. coli and multidrug-resistant E. coli. With the changes of ligand/reductant (L/R) ratio,
the QA-AuNCs with an L/R ratio of 0.5:1 has exhibited superior antibacterial effect for the four targeting
bacteria (Figure 4). The antibacterial mechanism of QA-AuNCs can be ascribed to the fact that the
positive charge on the surface of QA-AuNCs can promote electrostatic adsorption onto bacterial cell
membrane with negative charge. Additionally, then QA-AuNCs have induced disruption of membrane
integrity, increase of membrane permeability and dissipation of the membrane potential of S. aureus.
Eventually, QA-AuNCs can improve the generation of ROS and cause the death of bacteria [93].
Overall, QA-AuNCs have shown promising potential as the antibacterial agent using physicochemical
mechanism for the skin infection model and the bacteremia model caused by MRSA [9,94].
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Figure 4. Antibacterial activities of AuNCs conjugated with different ligands by measuring their
MICs. The lower MIC of AuNCs show higher antibacterial activity. Reproduced with permission from
Reference [75]. Copyright© 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Moreover, four ligands which are analogues of mercaptopyrimidine including 4-amino-2-mercapto
pyrimidine (AMP), 4,6-diamino-2-mercaptopyrimidine (DAMP), 4-amino-6-hydroxyl-2-mercaptopyr
imidine (AHMP), and 4,6-dihydroxyl-2-mercaptopyrimidine (DHMP) have been used to synthesize
mercaptopyrimidine conjugated AuNCs to combat multidrug-resistant bacteria [76]. For these
AuNCs, DHMP-conjugated AuNCs (AuDHMP) have exhibited negative charge and the others
AuNCs of AuAMP, AuDAMP and AuAHMP have shown positive charges. The zeta potentials
for AuDHMP, AuAMP, AuDAMP and AuAHMP are −38.6 ± 1.8, +33.6 ± 1.4, +37.6 ± 1.1 and
+12.7 ± 0.7 mV, respectively. All AuNCs have revealed antimicrobial activities against E. coli ATCC
35218 (Gram-negative bacteria) and S. aureus ATCC 29213 (Gram-positive bacteria). The AuDAMP
have the best performance of antimicrobial activity compared to AuAMP, AuAHMP and AuDHMP
because the high positive surface charge of AuDAMP can facilitate their electrostatic adsorption onto
the surface of bacteria to increase internalization of AuDAMP into bacteria. Furthermore, AuDAMP
also can fight mutli-drug resistant bacteria such as E. coli, Acinetobacter baumannii (A. baumannii),
Pseudomonas aeruginosa, Klebsiella pneumonia (K. pneumonia), methicillin-resistant Staphylococcus aureus
(MRSA) and vancomycin-resistant Enterococcus faecium (E. faecium). To kill bacteria, the mechanisms of
antimicrobial AuDAMP have been demonstrated by the combination of cell membrane destruction,
DNA damage and ROS generation caused by AuDAMP to bacteria (Figure 5) [95–97].
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American Chemical Society.

Nanomaterial-based antimicrobial agents with positive surface charges are generally considered
to lead higher antimicrobial activities as shown in the example of AuDAMP. However, Zheng et al.
have prepared five types of Au25NCs with negative surface charges including Au25NCs protected by
MHA (Type I), Au25NCs protected by p-mercaptobenzoic acid (MBA) (Type II), Au25NCs protected by
cysteine (Cys) (Type III), Au25NCs protected by MHA and cysteamine (Cystm) (Type IV) and Au25NCs
protected by MHA and 2-mercaptoethanol (AuMetH) (Type V) [77]. By the designs of surface ligands,
Au25NCs with more negative surface charges on the surface could induce more ROS generation to
react with metabolic enzyme of bacteria and then to kill the bacteria (Figure 6) [98,99]. The results in
this work indicate that surface charge of AuNCs plays a pivotal role in antimicrobial properties.
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3. Macromolecule-Conjugated AuNCs

Macromolecules are also commonly used as the surface ligands to prepare AuNCs for antibacterial
applications. With the conjugations of macromolecules, AuNCs have shown various antibacterial effects.
Recently, Chen et al. have synthesized lysozyme capped AuNCs (lysozyme-AuNCs) as an antimicrobial
agent [78]. The enzyme of lysozyme can hydrolyze the cell walls of pathogenic bacteria [100–102].
The lysozyme-AuNCs have exhibited bacteriostatic effects against pan-drug-resistant Acinetobacter
baumannii (A. baumannii) and vancomycin-resistant Enterococcus faecalis (E. faecalis) because of the
multivalent interactions of the Lysozyme-AuNCs with the target bacteria. Furthermore, lysozyme
conjugated AuNCs have been functionalized with ampicillin (AuNC-L-Amp) to combat MRSA
and other non-resistant bacteria [79]. In this work, AuNC-L-Amp have been proved to overcome
the increased β-lactamase at the site of MRSA and then the multivalent binding of AuNC-L-Amp
onto the bacterial surface can be applied to enhance the permeation of AuNC-L-Amp into bacteria.
The AuNC-L-Amp have shown a significant enhancement (50–89% fold increase) of antimicrobial
activity compared to that of free-Amp for nonresistant bacterial pathogens. The AuNC-L-Amp have
also revealed antimicrobial activity for MRSA, but free-Amp and AuNC-L have exhibited no significant
antimicrobial activity for MRSA (Figure 7). The mechanism for the use of AuNC-L-Amp as the
antimicrobial agent can be ascribed to the reasons including the increase of Amp concentration in
bacteria, multivalent presentation of antibiotics, hydrolysis of cell wall by lysozyme, dysfunction of
the bacterial efflux pump and ions released from AuNCs to inhibit bacterial growth [103–106].
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Furthermore, Liao et al. have constructed AuNCs to inhibit endotoxin activity by blocking on
active site of lipopolysaccharide (LPS) [82]. LPS is one of constituents of Gram-negative bacteria
responsible of sepsis to humans [107]. They have decorated subnanometer gold clusters (SAuNCs)
using methyl and ethyl groups to synthesize SAuNC-M and SAuNC-E, respectively. Additionally,
hydrophilic SAuNCs (SAuNC-A) and hydrophobic SAuNCs (SAuNC-H) have been synthesized.
The SAuNC-M and SAuNC-E have caused the inhibition of LPS aggregation but SAuNC-A and
SAuNC-H have been validated to produce LPS aggregation [108]. The endotoxin activity can be
effectively blocked by SAuNCs including SAuNC-M and SAuNC-E as means to fight sepsis. Results of
their work have shown that the antiendotoxin SAuNC-M and SAuNC-E could be the efficacious
antimicrobial agents to prevent sepsis due to infection from Gram-negative bacteria (Figure 9).
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The bacitracin-directed silver, gold and copper nanoclusters (AgNCs@Bacitracin,
AuNCs@Bacitracin and CuNCs@Bacitracin) have been obtained by Wang and coworkers [83].
The antibacterial activities of these nanoclusters have been investigated by the use of S. aureus.
The antibacterial mechanism of these nanoclusters have been demonstrated with the coordination
between bacitracin and the metallic atoms. In this work, the AgNCs@Bacitracin, AuNCs@ Bacitracin
and CuNCs@Bacitracin have respectively revealed 72.3%, 26.6% and 30.5% of the damage of bacterial
cell wall. Furthermore, AgNCs@Bacitracin, AuNCs@Bacitracin and CuNCs@Bacitracin have caused
the increases of the intracellular ROS production leading to the bacterial death (Figure 10). Taking the
advantages together, the nanoclusters of AgNCs@Bacitracin, AuNCs@Bacitracin and CuNCs@Bacitracin
have shown superior antibacterial activities because of the damage of bacterial cell wall and the
increase of intracellular ROS production. Additionally, bacitracin on the surface of nanoclusters has
also cooperated with metallic atoms to improve antibacterial activity of nanoclusters. Among these
three nanoclusters, AgNCs@Bacitracin have shown the best antibacterial activity compared to that
of AuNCs@Bacitracin and CuNCs@Bacitracin. Although sliver-based nanoclusters have exhibited
higher antibacterial activity compared to that of gold-based nanoclusters, gold-based nanoclusters are
still the most promising metallic antibacterial agent due to their remarkable advantages such as high
biocompatibility, polyvalent effect, easy modification and photothermal stability.
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4. Challenges and Opportunities

In this mini review, we have summarized recent achievements of AuNCs conjugated with small
molecules and macromolecules for the applications as the antimicrobial agents (Table 1). These studies
have demonstrated that AuNCs can be the potential antimicrobial agents because of their high
biocompatibility, polyvalent effect, easy modification and photothermal stability. Although different
AuNCs have been proven as the antimicrobial agents, however, their antimicrobial activities still need
to be improved. The first challenge to improve the antimicrobial activity of AuNCs is to prepare



Int. J. Mol. Sci. 2019, 20, 2924 12 of 17

AuNCs conjugated with antimicrobial surface ligands. The antimicrobial activity can be enhanced by
the use of synergistic effect between AuNCs and antimicrobial surface ligands. The second challenge
for antimicrobial AuNCs is to increase their cell uptake. With the controls of surface ligands, AuNCs
can bear positive charge and negative charge and even to have target-specific property for bacteria to
increase the cell uptake of AuNCs. The third challenge for antimicrobial AuNCs is to investigate the
details of antimicrobial mechanisms in bacteria. Until now, there are various mechanisms to explain
the antimicrobial performance of AuNCs. Therefore, experimental and theoretical investigations of
the metabolisms of AuNCs in bacteria are still required for better understanding their antimicrobial
activity. Overall, to realize the antimicrobial agents of AuNCs, a lot of work still need to be completed
for the improvement of antimicrobial activity of AuNCs to meet the requirement in clinic application.
With extensive investigations, we believe that AuNCs can be applied as the significant antimicrobial
agents in clinic in the near future.
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