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a b s t r a c t 

Biological self-organisation can be regarded as a process of spontaneous pattern formation; namely, the 

emergence of structures that distinguish themselves from their environment. This process can occur at 

nested spatial scales: from the microscopic (e.g., the emergence of cells) to the macroscopic (e.g. the 

emergence of organisms). In this paper, we pursue the idea that Markov blankets – that separate the in- 

ternal states of a structure from external states – can self-assemble at successively higher levels of organ- 

isation. Using simulations, based on the principle of variational free energy minimisation, we show that 

hierarchical self-organisation emerges when the microscopic elements of an ensemble have prior (e.g., 

genetic) beliefs that they participate in a macroscopic Markov blanket: i.e., they can only influence – or 

be influenced by – a subset of other elements. Furthermore, the emergent structures look very much like 

those found in nature (e.g., cells or organelles), when influences are mediated by short range signalling. 

These simulations are offered as a proof of concept that hierarchical self-organisation of Markov blankets 

(into Markov blankets) can explain the self-evidencing, autopoietic behaviour of biological systems. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

There is growing interest in the role of Markov blankets and

ssociated partitions in understanding self-organisation– and the

ccompanying self-evidencing that arises from Bayesian mechan-

cs ( Friston, 2019 ). A key aspect of this self-organisation is the hi-

rarchical decomposition of Markov blankets of Markov blankets.

his notion has emerged in the literature at several levels; rang-

ng from conceptual analyses in the context of ethology and evolu-

ion ( Allen, 2018 ; Clark, 2017 ; Friston et al., 2015 ; Kirchhoff et al.,

018 ; Pellet and Elisseeff, 2008 ; Ramstead et al., 2018 ), through to

he emergence of multicellular organisms ( Kuchling et al., 2019 )

o the implicit renormalisation group that furnishes a particu-

ar perspective on (quantum, statistical and classical) mechanics

 Friston, 2019 ; Friston et al., 2014 ). 

However, despite the potential importance of these conceptual

nd mathematical analyses, no one has yet provided a proof of

rinciple that Markov blankets of Markov blankets can emerge us-

ng numerical analyses. In this paper, we report such a proof of
∗ Correspondence author at: The Wellcome Centre for Human Neuroimaging, In- 
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rinciple by illustrating the emergence of blankets of blankets un-

er the unitary principle of (variational) free energy minimisation.

e frame this in terms of self- organisation or pattern forma-

ion in cells, to emphasise the simplicity and biological plausibil-

ty of the underlying dynamics – although this framing is more

y analogy than any detailed consideration of inter-and intracellu-

ar communication. Our primary aim was to show that hierarchal

ompositions of Markov blankets of Markov blankets can emerge

rom gradient flows on variational free energy, under an appropri-

te generative model. 

In brief, the notion of a Markov blanket allows one to define

ny system or structure in a way that distinguishes it from the en-

ironment or milieu in which it resides. The Markov blanket plays

he role of a statistical boundary that allows one to talk about

 system per se ( Alcocer-Cuarón et al., 2014 ; Schrödinger, 1944 ).

uch structures can be described at multiple scales, from macro-

olecules such as ribonucleic acids, through organelles to organs

nd organisms and even beyond. A Markov blanket is a set of

tates that separates the internal or intrinsic states of a struc-

ure from extrinsic or external states. Importantly, when interac-

ions between states are spatially dependent, as is the case for

tates pertaining to the physical description of biological organ-

sms, this separation can be spatial in nature. Consequently, in

his setting, a Markov blanket describes a spatial boundary. More-

ver, this boundary comprises sensory and active states, as is the

https://doi.org/10.1016/j.jtbi.2019.110089
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2019.110089&domain=pdf
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case for biological systems, like membrane receptors and the cy-

toskeleton underneath them. In other words, a (biological) physi-

cal boundary is a Markov blanket (with sensory and active states),

where dependencies between states are determined by location in

space. And obvious example here would be the membranes that

surround organelles and cells. The crucial aspect of a Markov blan-

ket is that it provides a formal definition of what it means for the

internal states of a structure to exist in a way that is condition-

ally independent of its external states. This definition precludes

a (spatially dependent) direct coupling between internal and ex-

ternal states, such that they only influence each other vicariously

through the Markov blanket ( Friston 2013 ). 

Markov blankets play a central role in several disciplines. For

example, in Bayesian statistics and machine learning, they organ-

ise the architecture of message passing in neuronal networks and,

indeed, the way we implement many statistical tests ( Pellet and

Elisseeff, 2008 ). In control theory, they underlie the circular in-

teractions between system and environment ( Baltieri and Buck-

ley, 2018 ). In theoretical biology, they are the cornerstone of varia-

tional approaches to self-organisation under the free energy princi-

ple. These variational treatments have been applied at many levels;

ranging from variational ethology and evolution (Ramstead, Bad-

cock et al. 2017, Constant, Ramstead et al., 2018 ), through to self

organisation, and adaptive behaviour in neuroscience ( Friston 2010 ,

Limanowski and Blankenburg 2013), down to morphogenesis and

pattern formation at the cellular level (Kiebel and Friston 2011,

Friston et al., 2015 ), and up to mental manipulation and imagi-

nation ( Hohwy, 2016 ; Yufik and Friston, 2016 ). In this sense, the

Markov blanket is a scale free concept that underwrites the dy-

namics of all self-organising systems, at some level. 

Markov blankets are not necessarily spatially extensive mem-

branes; they are just a set of states that separates internal and

external states. For example, the brain’s Markov blanket might in-

clude all its sensory receptors and neuromuscular junctions. At the

cellular level, Markov blankets can be associated with membranes

that surround cells and intracellular organelles, or to the surface

of membrane-less organelles where a liquid-liquid phase separa-

tion takes place ( Mitrea and Kriwacki, 2016 ). Notably, any spatially

dependent interactions between system and environment can exist

only in virtue of the permissive role of a statistical boundary; that

is, a Markov blanket. However, this does not constrain such inter-

actions within the physical boundary, such in the case of channels

allowing ions to cross the cellular membranes or the production of

heat by warm-blooded animals ( Virgo, 2011 ; Virgo et al., 2011 ). 

Previous work has already addressed the inextricable link be-

tween Markov blankets and living organisms. In particular, any bi-

ological self-organising system can be viewed as generating and

maintaining Markov blankets at multiple scales ( Friston, 2013 ).

Consequently, morphogenesis at any particular level of description

becomes the process of constructing a Markov blanket with a par-

ticular structure, as exemplified by the organisation of an ensem-

ble of undifferentiated cells into a differentiated target morphol-

ogy ( Friston et al., 2015 ; Kuchling et al., 2019 ). In a companion

paper, we have articulated the implications that the emergence

of nested Markov blankets have for our understanding and inter-

pretation of an organism’s dynamics, with the important consid-

eration that Markov blankets do not have to be co-extensive with

the biophysical boundaries of an organism ( Kirchhoff et al., 2018 ).

These arguments are in turn tightly connected with considerations

about a system’s cognitive domain that exuberates spatial bound-

aries, analogously to the cognitive domain of a ‘glinder’ (a set of On

states surrounded by Off states) in the Game of Life ( Beer, 2014 ).

In the present paper, we ask how an ensemble of constitutive

parts, endowed with Markov blankets, could self-organise to cre-

ate a Markov blanket at a higher scale; namely, a Markov blanket

of Markov blankets. In particular, we focus on the minimal set of
rior beliefs, a hierarchically organised system must express, and

ow these beliefs at different scales are linked. 

Our basic conclusion is that a single principle is sufficient to

xplain the emergence of hierarchical structure; namely the vari-

tional free energy principle. This does not imply that hierarchi-

al organisation is an emergent feature of any coupled random dy-

amical systems; rather, with the right sort of generative model,

n ensemble of Markov blankets (e.g., cells) can self-assemble a

arkov blanket around the ensemble (e.g., an organ). A generative

odel here refers to a probabilistic model of how external states

nfluence the Markov blanket that is implicit in the dynamics of in-

ernal states. In the current setting, having the right sort of genera-

ive model can be regarded as having the right sort of prior (prob-

bilistic) beliefs that are endowed by evolution. In what follows,

e will use simulations to provide a numerical proof of principle

hat minimising variational free energy (under a suitable genera-

ive model) leads to hierarchical self-organisation. Throughout the

aper “free energy” will refer to variational free energy. While this

s closely related to the thermodynamic concept of free energy (see

riston, 2019 for details), variational free energy is an informational

uantity that provides an upper bound on surprise (a.k.a., surprisal

r the negative log probability of sensory data). 

This paper is organised as follows: first, we review the concept

f a Markov blanket in biological systems and draw the link be-

ween statistical independence and physical boundaries. By doing

o, we provide an intuition on the chief role that Markov blan-

ets have in self-organisation within the free energy principle. We

hen consider the implications of the existence of a Markov blanket

or the behaviour of random dynamical systems obeying the varia-

ional free energy minimisation principle. A technical treatment of

arkov blankets in the emergence of physical structures and asso-

iated (quantum, stochastic, and classical) mechanics can be found

n Friston, 2019 ). This section emphasises the autopoietic nature of

ystems that ( Maturana, 1974 ), through the dynamics of their in-

ernal and active states, resist a natural tendency to disorder. In

he final sections, we describe simulations of self-organisation at

wo levels: these furnish a proof of concept for self-organisation

nto Markov blankets and the hierarchical formation of blankets of

lankets, respectively. We conclude with a discussion of how this

reatment relates to other characterisations of biological self organ-

sation. 

. Markov blankets and variational treatments of self 

rganisation 

Biological systems generally segregate themselves from their

nvironment to form boundaries, which define the distinction be-

ween what is internal to the system and what is external ( Alcocer-

uarón et al., 2014 ; Kauffman, 1993 ; Kelso, 1995 ; Nicolis and Pri-

ogine, 1977 ; Schrödinger, 1944 ). In this paper, these boundaries

re formalised in terms of Markov blankets; namely, statistical

oundaries that separate internal and external states (e.g., a cellu-

ar membrane separating intracellular and extracellular dynamics).

n particular, spatial boundaries are an instantiation of the statis-

ical independencies, when physical state interactions are spatially

ependent, as is often the case for biological systems. This separa-

ion is a fundamental property of self-organising systems, because

heir very existence implies the presence of a boundary that dis-

inguishes inside (i.e., self) from the outside (i.e., environment). 

Living systems maintain the integrity of their boundaries (i.e.

arkov blankets), in the face of an ever-changing environment.

his means that life has evolved mechanisms for the gener-

tion, maintenance, and repair of Markov blankets. A system

ndowed with such mechanisms connotes an autopoietic organ-

sation that autonomously assembles its own components; in
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1 We thoroughly explore the implications of hierarchical organisation of Markov 

blankets for description of living organisms in the more philosophically motivated 

paper by Kirchhoff et al. (2018 ). On the other hand, from an evolutionary perspec- 

tive, these arguments encourage new questions and interpretations, like the identity 

of the very first prior or major evolutionary transitions of priors in unicellular and 

multicellular organisms (see discussion). 
2 This term is used as a synonym of prior expectations in the context of Bayesian 

inference. 
articular its boundaries, ( Maturana, 1974 ; Varela et al., 1974 ). This

utonomy does not imply isolation from the environment, which

on a thermodynamic account – is needed to provide energy

 Whitesides, 2002 ). Therefore, living organisms are operationally

losed, while presenting as thermodynamically open. The interac-

ion between system and environment is then mediated by the

oundary. Notably, this coupling is non-trivial, in that the organ-

sm must actively realise an ‘informational control’ of the environ-

ent (i.e., possess a teleology), by filtering, canalising and cate-

orising signals that carry information about their external causes

 Auletta, 2010 ). This implies that the system does not merely re-

pond to sensory states, but reacts to them to infer some (use-

ul) information about the world. At the same time, the boundaries

ust contain machinery that allows the system to act on external

tates. In short, definitive borders are essential for living systems,

s any dynamics that happens within and between systems can

nly take place in virtue of their existence ( Friston, 2013 ). 

Living organisms are complex systems, denoted by non-

inear interactions between multiple hierarchically arranged and

ested components ( Hilgetag et al., 20 0 0 ; Kauffman, 1995 , 1993 ;

irchhoff et al., 2018 ). As such, characterising how they self- 

rganise requires not only an understanding of how single com-

onents couple to each other, but also how microscopic and

acroscopic levels interact. This invokes the notion of top-down

nfluences on the low level dynamics ( Ellis et al., 2012 ) and

ice versa. 

Self-organisation has been addressed extensively in theoretical

iology using tools from statistical thermodynamics and informa-

ion theory to explain how biological systems resist a natural ten-

ency to disorder. This holdout is an apparent violation of the sec-

nd law of thermodynamics, or at least standard descriptions of

t ( Evans and Searles, 2002 ; Seifert, 2012 ). A more recent line of

ork within this framework ( Friston 2013 ) sees living organisms

s placing an upper (free energy) bound on their self-information

i.e., negative log likelihood of sensed states). This imperative is

otivated by the fact that biological systems have to maintain sen-

ory states within physiological bounds. This means the Shannon

ntropy (i.e., dispersion) of sensory states is necessarily bounded.

hannon entropy is the path or time average of self-information;

lso known as surprisal or surprise . In short, self-organisation can

e regarded as synonymous with systems that place an upper

ound on their self-information or surprise. In this variational for-

ulation of self-organisation – that emphasises its inferential as-

ect – living organisms are understood as placing a (free energy)

ound on surprise. 

These arguments rest upon ergodicity assumptions (implicit in

he fact that the sorts of systems we are interested in have char-

cteristic measures that persist over time). Ergodicity implies that,

ver a sufficiently long period, the time spent in a particular loca-

ion of state-space is equal to the probability that the system will

e found at that location when sampled at random ( Friston, 2013 ).

f this probability measure is finite, it means that any system will

evisit all its states (or their neighbourhoods) time and time again.

t is this peculiar behaviour that underwrites self-organisation;

amely, the existence of an attracting set of states that endow liv-

ng systems with characteristic states that they visit time and time

gain. 

The existence of an attracting set means that one can interpret

he long-term average of surprise as the entropy of the systems

ensory states. Crucially, because surprise is (negative) Bayesian

odel evidence, minimising free energy – defined as an upper

ound on surprise – is the same as maximising a lower bound

n the evidence for an implicit model of how sensory states are

enerated. In other words, the system can be regarded as a (gen-

rative) model of its environment ( Conant and Ashby, 1970 ), and

ill look as if it is gathering evidence for its own existence. This
as been called self-evidencing ( Hohwy, 2016 ). It follows that – by

inimising free energy – biological systems place an upper bound

o the entropy of their sensations by inferring their causes; this is

lso known as active inference ( Friston et al., 2010 ), and is closely

elated to formulations of the perception-action cycle in the life

ciences, like embodied cognition ( Clark, 2009 ), artificial intelli-

ence ( Ay et al., 2008 ), and cognitive neuroscience ( Fuster, 2004 ).

n short, self -organisation entails the bounding of self -information

hat can be cast as self -evidencing. 

In what follows, we use mathematical and numerical analyses

hat build upon a free energy formulation of pattern formation

 Friston et al., 2015 ). We start with subsystems whose dynamics

ossess a Markov blanket as an attracting set. We then integrate

he system until it self-organises into a stable configuration. Subse-

uently, we extend the simulation to consider hierarchical systems;

amely, configurations of configurations (i.e., blankets of blankets)

hat could, in principle, be extended indefinitely. 1 These simula-

ions were used to test the following hypothesis: if the main-

enance of Markov blankets can be cast as self-evidencing, then

elf-organisation should be an emergent property ( Kirchhoff et al.,

018 ) of subsystems that ‘believe’ 2 they participate in – or are en-

losed by – a Markov blanket. Because Markov blankets are de-

ned by conditional independencies, the requisite beliefs can be

pecified simply, in terms of communication or signalling between

ubsystems. In other words, it should be possible to reproduce hi-

rarchical self-organisation by equipping subsystems with beliefs

bout how they influence – and are influenced by – other subsys-

ems. The next section considers the formal basis of our simula-

ions, based upon random dynamical systems and their probability

ensity dynamics. 

. The Markov blanket partition 

This section associates random dynamical systems with living

rganisms, where the states of a system stand for its internal states

e.g., intracellular states), its blanket states (e.g., receptors on a cell

embrane and the actin filaments of the cytoskeleton) and exter-

al states (e.g., extracellular milieu). The systems under considera-

ion are complex (i.e., non-linear and hierarchical) and organise in-

ependently of any applied or external gradient: we will see that

uch systems exhibit a process of pattern generation that lead to

efinitive boundaries (i.e. Markov blankets), defining internal states

nd their relationship with external states. 

The notion of a Markov blanket was originally proposed in the

ontext of Bayesian networks or graphs ( Pearl, 1988 ), where it

efers to the parents of the set of states (that influence it), its chil-

ren (that are influenced by it), and the children’s parents. The

arkov blanket defines the conditional independencies between a

et of states � (the system) and a second set of states � (the en-

ironment). This concept can be translated into a biological set-

ing: for example, the intracellular milieu of a cell represents the

nternal states and the plasmalemma corresponds to the Markov

lanket, through which communication between intracellular and

xtracellular states is mediated ( Auletta, 2013 ; Friston, 2013 ). Cru-

ially, the Markov blanket can be decomposed into sensory S and

ctive A states, which are and are not children of the external
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Table 1 

Definition of the tuple �, �, S , A , M , p , q , P or self-evidencing. 

A sample space � from which random fluctuations ω ∈ � are drawn 

External states f � : � × A × �
f �→ � ∈ R �– states of the world (e.g. extracellular milieu) that depend on themselves and active states 

Sensory states f S : � × A × �
f S → S ∈ R S – states of sensors (e.g. receptor activity) but depend upon external and active states 

Active states f A : S × M × �
f A → A ∈ R A – states of action on the world (e.g. exocytosis of signalling molecules) that depend upon sensory and internal states 

Internal states f M : S × M × �
f M → M ∈ R M – the internal states of a system (e.g. genetic transcription) that depend on themselves and sensory states 

Generative model p ( ψ, S , A , μ| m ) – a probability density function over external, sensory, active and internal states for a system denoted by m 

Variational density q ( ψ| μ) – a probability density function over external states parameterised by internal states 

Fig. 1. System comprising interacting states. In (A) spatially-independent coupling among states is mediated by long-range interactions. In the first (left) panel all states 

influence each other, and are therefore indistinguishable. In (B) only short-range interactions are allowed; thus coupling among states is spatially dependent. However, two 

sets of states exist only in virtue of their spatial separation: i.e., they are effectively independent. In (C), internal (red) and external (blue) states can be distinguished in 

virtue of the separation mediated by a third set; namely, the Markov blanket, composed of sensory (yellow) and active (orange) states. External states can influence internal 

states only by acting on sensory states. On the other hand, internal states couple back to external states through active states. Note that in this scenario, active states are 

shielded from external states by sensory states – and sensory states are shielded from internal states by active states. This is the simplest dependency structure leading to a 

Markov blanket. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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states, respectively. Thus, the existence of a Markov blanket S × A

induces a partition of states in x ∈ X = � × S × A × �; external

states act on sensory states, which influence, but are not influ-

enced by internal states. Internal states couple back through active

states, which influence but are not influenced by external states

( Table 1 ). This partition ensures a statistical separation between in-

ternal and external states in the sense they are independent, when

conditioned on the Markov blanket. 

How this statistical concept can be translated into a biological

setting, and why is its presence so important? We start by con-

sidering a system in which long-range (e.g., electromagnetic) in-

teractions are possible, and states’ identity rests upon their cou-

pling. Here, every state interacts with all others, irrespective of

its spatial position; every state is therefore indistinguishable from

the remainder, because the fully interconnected nature of the sys-

tem precludes any statistical separation of one state from another

( Fig. 1 a). To engender statistical structure (i.e., an identity), cou-

pling has to be limited via interactions restricted in space. One

possible scenario displays two sets of states located far enough

for them to be statistically independent: the state of one set does

not influence the other and vice versa ( Fig. 1 b). However, in this

case interactions between sets are also precluded. When consid-

ering biological systems and their environment, this scenario be-

comes unrealistic, given the definition of biological organisms as

open systems ( Whitesides, 2002 ). Therefore, two sets of states can

be associated in a meaningful way to a biological organism’s in-

trinsic (i.e. internal) and extrinsic (i.e. external) states only when

a Markov blanket exists, which defines conditional or spatial in-

dependencies (i.e. identities) and interactions between the two

states. Notably, it is the restriction in space of interactions that

justifies the association between statistical and spatial indepen-

dence, thus between Markov blankets and spatial boundaries. This

is the minimal thus most general description of a biological self-

organising organism possible ( Fig. 1 c). Notably, interactions oc-

curs in virtue of the partition of the blanket states into sensory
nd active states, mediating the vicarious influence of external on

nternal states and the influence of internal on external states,

espectively. 

In reality, segregation emerges in the presence of coupling. In

ther words, a subsystem differentiates itself from the environ-

ent, but remains (statistically or energetically) coupled to it. This

s possible when two sets of states are conditionally independent

ot just because of their spatial separation, but in virtue of a third

et; namely, blanket states ( Fig. 1 c). These blanket states comprise

ensory and active states, mediating the vicarious influence of ex-

ernal on internal states and the influence of internal on external

tates, respectively. This concludes our description of a minimal

artition that enables a meaningful separation of internal and ex-

ernal states. 

How can the concept of Markov blanket expand when consid-

ring the hierarchical structure of biological systems? Let us group

nternal and blanket states into a single (macroscopic vector) state.

f this macroscopic state participates in some meaningful structure,

 macroscopic Markov blanket has to emerge, whose sensory and

ctive states – and the internal states insulated within – will each

e composed of microscopic Markov blankets. Hence, the forma-

ion of Markov blankets at any level of hierarchical organisation is

ntimately linked to the maintenance of Markov blankets ‘all the

ay down’ ( Fig. 2 ). On this view, self-organisation is a recursive

rocess of boundary formation that spans all levels of hierarchi-

al organisation. Later, we provide a proof of concept for this ar-

ument by simulating the hierarchical self-organisation of Markov

lankets. 

In summary, self-organisation has to feature the emergence

f boundaries that define an internal state space, separating it

rom external states, while allowing for vicarious coupling. It fol-

ows that hierarchical self-organisation requires the emergence

f Markov blankets of Markov blankets. In the next section,

e turn to the nature of the dynamics that underwrite this

mergence. 
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Fig. 2. Markov blanket of Markov blankets. We now broaden the perspective, and 

consider each Markov blanket (and internal states) as a macroscopic state. Again, 

given short-range interactions, the only way for a system to exist at this macro- 

scopic level is to be separated from its environment by a Markov blanket. The hier- 

archical nature of this system is induced by (macroscopic) Markov blankets of (mi- 

croscopic) Markov blankets, each of them insulating its respective internal states. 

(For interpretation of the references to color in this figure legend, the reader is re- 

ferred to the web version of this article.) 
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. Dynamical systems, self-organisation and self-evidencing 

We will be dealing with random dynamical systems expressed

s Langevin equations of the following form: 

˙ x = f ( x ) + ω 

f ( x ) = 

⎡ 

⎢ ⎣ 

f ψ 

( ψ, s, a ) 
f s ( ψ, s, a ) 
f a ( s, a, μ) 
f μ( s, a, μ) 

⎤ 

⎥ ⎦ 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

(1) 

This describes the dynamics of a system with a Markov blanket

n terms of the flow f ( x ) of its states and random fluctuations ω.

he flow of external ψ ∈ � , sensory s ∈ S , active a ∈ A and internal

tates μ ∈ M in the second equality, conforms to the dependen-

ies implied by a Markov blanket (see Table 1 ). External states can

nly be influenced by internal states through their Markov blan-

et, and are therefore called hidden states, because they are hid-

en behind the Markov blanket. In the specific setting of biological

ystems, the partition in Eq. (1) relies on the spatial location of

tates, and identifies sensory and active states as components of

patial boundaries. 

An alternative formulation of Eq. (1) is in terms of a Lagrangian,

hich allows us to describe the system’s dynamics in terms of a

radient flow using the Helmholtz decomposition. This rests upon

rgodic assumptions implied by the existence of an attracting set,

alled a pullback or random global attractor. Following Crauel et al.

1999 ), Crauel and Flandoli (1994 ) and Friston (2013 ), one can ex-

ress the flow of states in terms of a divergence-free component

nd a curl-free descent on a Lagrangian L ( x ) that corresponds to

he self-information or surprise associated with any state. This

ests upon ergodic assumptions implying the existence of an at-

racting set (conditioned of the model) in the state-space, called

 pullback or random attractor ( Crauel et al., 1999 ; Crauel and

landoli, 1994 ), and an associated probability density, the
rgodic density. 

f ( x ) = ( Q − �) ∇L ( x ) 
L ( x ) = − ln p ( x | m ) 

}
(2) 

Here, diffusion tensor � is half the covariance of the ran-

om fluctuations, and Q is an antisymmetric matrix that satis-

es Q(x ) = −Q (x ) T . The equality p( x | m ) = exp ( −L ( x ) ) is the solu-

ion of the Fokker-Planck equation describing the density dynamics

 Friston and Ao, 2012 ; Frank, 2004 ), where m denotes a particular

ystem or model (see Variational Free energy section). This ergodic

r nonequilibrium steady-state density is the probability density at

hich its rate of change is zero. Eq. (2) means the states of a sys-

em m at nonequilibrium steady-state are performing a gradient

scent on the ergodic density. This is revealing, because it shows

hat the system’s flow counters the dispersive effects of random

uctuations – by flowing towards the attracting states. 

f ( x ) = ( � − Q ) · ∇ ln p ( x | m ) (3) 

This gradient flow formulation also applies to the flow of inter-

al and active states 

f a ( s, a, μ) = ( � − Q ) · ∇ a ln p ( s, a, μ| m ) 
f μ( s, a, μ) = ( � − Q ) · ∇ μ ln p ( s, a, μ| m ) 

}
(4) 

These equations are the homologues of (2) for the internal and

ctive states, whose flow performs a gradient ascent on the er-

odic density over the internal states and their Markov blanket

note that this density does not involve the external states, in

irtue of the dependencies in Eq. (1) ). In short, the internal and

lanket states that constitute a subsystem are autopoietic, because

heir (nonequilibrium steady-state or ergodic) probability density

s maintained by the flow of the subsystem’s internal and ac-

ive states. In the context of spatially dependent interactions, the

ows partition expressed in Eq. (4) , afforded by the Markov blan-

et formalism, relies on the spatial separation of states by a spatial

oundary. 

. The variational free energy formulation 

The flow of the states therefore describes a gradient ascent on

he ergodic density. Analogously, in the setting of the stochastic

hermodynamics, the system will minimise its thermodynamic free

nergy ( Seifert, 2012 ). The link between thermodynamic and vari-

tional free energy rests upon associating the amplitude of ran-

om fluctuations on the motion of states with temperature – and

quipping them with particular units through the use of Boltz-

ann’s constant ( Friston, 2019 ; Seifert, 2012 ; Sekimoto, 1998 ). This

eans that the changes in variational free energy inherent in

elief updating can be linked directly to changes in thermody-

amic free energy in a way that is consistent with the Jarzynski

quality ( Jarzynski, 1997 ) and Landauer’s principle ( Bennett, 2003 ;

andauer, 1961 ). Please see Friston (2019 ) for a fuller discussion

nd England (2013 ) and Parrondo et al. (2015 ) for a related per-

pective. Although the ergodic density exists, it is not evaluated

xplicitly by the system, because this would require access to ex-

ernal states that are hidden behind the Markov blanket. However,

t is possible to use an alternative formulation that furnishes a de-

cription of the flow in terms of a gradient descent on a variational

ree energy associated with a generative model of the system in

uestion ( Friston et al., 2015 ): 

f μ( s, a, μ) = 

(
Q μ − �μ

)∇ μF 

f a ( s, a, μ) = ( Q a − �a ) ∇ a F 
F ( s, a, μ) = E q L ( x ) − Hq ( ψ ) | μ

} 

(5) 

Here, the flow of internal and active states has been expressed

s a gradient descent on variational free energy, which is a func-

ion of states that are available to the system. This follows because
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free energy depends on a variational density q ( ψ | μ) over external

states that is parameterised by internal states, and a generative

model p ( ψ , s, a, μ| m ), which is the system itself, where m denotes

the particular system ( Friston et al., 2015 ). 

Under this formulation of density dynamics, internal states will

appear to infer external states: the third equality expresses free

energy as the self-information (i.e., negative log evidence for the

model) expected under the variational density minus the entropy

of the variational density. This means that internal and active

states maximise the joint probability density – expected under

the variational density – over states conditioned on the system or

model in question. Moreover, internal states will reduce free en-

ergy by parameterising a variational density over external states

with maximum entropy; in accordance with Jaynes’ principle of

maximum entropy ( MacKay, 2003 ). Although not our focus here,

when variational free energy is minimised, the variational density

becomes the posterior density over hidden or external states, given

blanket states. In this sense, the internal states encode posterior

‘beliefs’ about external states; despite never seeing them directly. 

Crucially, the free energy formulation allows us to prescribe the

ergodic density in terms of a generative model. In other words, we

can write down a generative model and derive the dynamics ac-

cording to Eq. (5) as a gradient descent on the free energy equiva-

lent of surprise. In what follows, we will simulate self-organisation

by specifying a model about the causes of sensory states – and

by specifying the environmental dynamics generating those sen-

sations. This means we need to write down the generative model

p ( ψ , s, a, μ| m ) of the system in terms of the dynamics f ψ 

( ψ , s, a )

and f s ( ψ , s, a ) of the environment and how sensory states are gen-

erated. Interestingly, the generative process and model do not have

to be isomorphic: the generative model has only to approximate

the generative process to minimise free energy ( Baltieri and Buck-

ley, 2018 ). The generative model is usually expressed in terms of

random differential equations and nonlinear functions with a hier-

archical form. In this paper, we will omit these dynamics for sim-

plicity, and specify the relationship between external and sensory

states through the following (static) nonlinear functions: 

s = g ( 1 ) 
(
ψ 

( 1 ) 
)

+ ω 

( 1 ) 

ψ 

( 1 ) = g ( 2 ) 
(
ψ 

( 2 ) 
)

+ ω 

( 2 ) 

. . . 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(6)

Under Gaussian assumptions about random fluctuations ω,

Eq. (5) prescribes the likelihood and priors defining the generative

model or Lagrangian: 

p ( ψ, s | m ) = p 
(
s | ψ 

( 1 ) 
)

p 
(
ψ 

( 1 ) | ψ 

( 2 ) 
)

p 
(
s | ψ 

( 1 ) 
)

= N 

(
g ( 1 ) 

(
ψ 

( 1 ) 
)
, �( 1 ) 

)
p 
(
ψ 

( 1 ) | ψ 

( 2 ) 
)

= N 

(
g ( 2 ) 

(
ψ 

( 2 ) 
)
, �( 2 ) 

)
. . . 

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

(7)

Here, �( i ) corresponds to the precision or inverse variance of

the random fluctuations. This allows us to completely specify the

generative model in terms of beliefs about how sensations are gen-

erated and priors about hidden states. The key question we address

in the next section is: what are the right priors that enable the

emergence of Markov blankets at a higher macroscopic level – that

would enable us to interpret the ensuing macroscopic dynamics in

terms of the self-evidencing above. 

In the simulations of subsequent sections, we integrate

Eq. (5) using the Matlab routine spm_ADEM.m in the SPM

open source academic software. This generalised Bayesian filtering

scheme uses the Laplace assumption; i.e., the assumption that the

variational density has a Gaussian form. The use of a Bayesian fil-

tering scheme follows because the variational density q ( ψ | μ) over
xternal states approximates the posterior density p ( ψ | s, a, μ):

lease see Friston (2014; 2010) for details. In summary, one can

se standard Bayesian filtering to simulate self-organisation. This

llows one to specify the form of the ergodic or nonequilibrium

teady-state density in terms of the priors of a generative model.

he question now is: what sort of priors leads to hierarchical self-

rganisation? 

. Self-organisation of an ensemble 

In what follows, we present two sets of simulations. The first

onsiders the self-organisation of an ensemble of synthetic cells,

here each cell possesses its own Markov blanket. The second

imulation considers ensembles of ensembles to illustrate hierar-

hical self-organisation; namely, the self-assembly of Markov blan-

ets of Markov blankets. Crucially, these simulations use simple

enerative models, embodying the prior ‘belief’ that each member

an play the role of an internal, active or sensory state within the

nsemble. In other words, Markov blankets at one level of organ-

sation possess prior beliefs there is a Markov blanket partition at

he level above. However, each cell has no prior belief about its

articular role in the higher level Markov blanket – or the form

nd composition of this blanket. These elementary priors are easy

o specify because each role just depends upon the influences each

ember of the ensemble can or cannot exert on the others. This

eans, the only hidden state each member needs to infer is which

ole it plays at the higher level. We will see that this minimal set

f prior beliefs (and subsequent self-evidencing) results in the for-

ation of Markov blankets within the ensemble. The ensuing self-

imilar organisation can, in principle, be extended to any number

f hierarchical levels. We illustrate this kind of hierarchical self or-

anisation using 16 cells, each with their own Markov blanket, that

rganise into a cellular group or assembly, with its own Markov

lanket. We then consider an ensemble of ensembles that organ-

ses itself into a little organ encompassed in another Markov blan-

et. 

The first simulation illustrates the self-organisation of an en-

emble. Each cell interacts with other cells; in a process that even-

ually leads to a stable configuration with a boundary separating

nternal cells from their external milieu. This simulation draws on

revious work that interest morphogenesis ( Friston et al., 2015 ).

n this setting, self-organisation was simulated by minimising the

ariational free energy of each cell until they attained a prescribed

orphology. This morphology was achieved through spatially de-

endent (e.g. chemical) signalling – so that every cell sensed every

ther cell in a way that was consistent with their generative mod-

ls. The morphology was inscribed in beliefs common to all cells,

bout cell identity, sensation and secretion. Each cell was inter-

reted as a Markov blanket surrounding internal states: the action

active states) of a cell was the cause (i.e., external states) of the

ensations (i.e., sensory states) of the remaining cells. At the be-

inning of pattern-formation, cells were undifferentiated, because

hey were uncertain about their identity in the target morphology.

s self-organisation unfolded, each cell inferred a unique identity,

ocation and what they should sense at that location. When every

ell was in the right place, these inferences were fulfilled; thereby

inimising the free energy (i.e., self information or surprise) of ev-

ry cell. 

In more detail, this inference – in analogy to intracellular cas-

ade signalling and epigenetic mechanisms – was driven by the

inimisation of free energy. By generating identity-dependent pre-

ictions (e.g. genetic and epigenetic expression) about sensations,

very cell moved around and produced extracellular signals un-

il its predictions were confirmed. Predictions about sensations

aused by other cells (e.g. extracellular signalling) and its own ac-

ion (e.g. secretion and position) were constrained by prior beliefs
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bout the role of each cell in the target morphology. These prior

eliefs were the same for every cell (c.f., pluripotential or stem

ells). In other words, based on its identity, each cell had partic-

lar expectations about its sensory states. Because sensations were

aused by other cells, surprise could only be minimised when ev-

ry member of the ensemble had inferred a unique role within the

nsemble. In short, priors established a point attractor for the en-

emble dynamics, in terms of a free energy minimum, leading to

ifferentiation and self organisation to a target morphology. 

In the present work, we use the same strategy: we simulate

elf-organisation of an ensemble of cells, coupled through spatially

ecaying (e.g. chemical) signals. However, here, there is no target

orphology – only the prior that every cell will play the role of

n internal, sensory, or active cell, depending upon what it senses.

n other words, the priors embody the conditional independencies

mplied by the existence of a Markov blanket; in the form of in-

racellular and extracellular signalling between three cell types. As

he external states of each cell are the active states of other cells,

he system organises in a pattern that enables each cell to predict

ignals from its companions as precisely as possible. 

From the perspective of the ensemble there are no external

tates. This is an important point, as self-organisation is by def-

nition autodidactic: it does not require coupling with an exter-

al environment. The ensuing process leads to a spatial pattern,

herein components of the system are organised in a predictable

ashion with respect to each other. Such a pattern is inscribed in

he (e.g., genetically encoded) prior expectations about the sorts

f signalling a cell should expect to participate in. More precisely,

riors are over parameters that specify the form of the generative

odel, which shapes the free energy landscape, thus defining the

ttracting states towards which the dynamics of the ensemble con-

erge ( Friston et al., 2015 ). 

We now describe our simulation setup. The system comprised

ixteen pluripotential cells, which can become one of three types

f cells at the next hierarchical level; namely, internal, active and

ensory cells. Each cell type secretes a unique extracellular signal

nd communicates according to the conditional independencies re-

uired by a Markov blanket (see Table 2 ). The external states of

ach cell comprised its location ψ x ∈ R 

2 and the chemical signals

 y ∈ R 

3 released. This can be expressed as: 

 = 

[
ψ x 

ψ y 

]
= 

[
a x 
a y 

]
(8) 

Active states a x and a y (e.g., endoskeleton and secretory appa-

atus respectively) have an immediate effect on external states;

ence the identity mapping. This simplifying assumption means

e are ignoring time lags (and attenuation), and implies that there

s no environment, other than elements of the ensemble contribut-

ng to the external states. Its sensory states are the sensed intra-

ellular (produced by itself) and extracellular (produced by other

ells) signals. The latter is a function of distance, assuming signal

oncentration decreases exponentially over space. This can be ex-
Table 2 

Prior beliefs characterising dependencies and independencies. 

p y = 

μ a s ⎛ 

⎝ 

1 

0 

0 

0 

1 

0 

0 

0 

1 

⎞ 

⎠ 

Prior probability matrix p y over sen

types of signal. 

p α = 

μ a s ⎛ 

⎝ 

1 

1 

0 

1 

1 

1 

0 

1 

1 

⎞ 

⎠ 

μ
a 

s 

Prior probability matrix p α over sen

with active states ( a ); active state

states can interact with active sta

type. 
ressed as: 

 = 

[
s y 
s α

]
= 

[
ψ y 

α( ψ x , ψ y ) 

]
+ ω (9) 

Here, the sensory noise ω had a high precision (inverse vari-

nce) of exp(16). The sensed extracellular signals are returned by

he function α( ψ x , ψ y ), which models the spatial decay of signals,

here the extracellular sensations of the i th cell are given by 

 i = αi 

(
ψ 

i , ψ 

j 
)

= 

∑ 

j 

exp 

(
−
∣∣ψ 

i 
x − ψ 

j 
x 

∣∣) · ψ 

j 
y (10) 

Here, j indexes all cells other than the i th cell. Each cell gener-

tes predictions based on the same generative model, which spec-

fies the mapping from hidden states – namely, the type of the cell

 i – to sensations. The type is then the only hidden state that

he cells must infer. This inference is parameterised as an expected

robability by their internal states μi . Based on beliefs about its

ype, each cell then generates predictions about intracellular and

xtracellular sensations: 

g ( μi ) = 

[
p y 
p α

]
· σ ( μi ) 

σ ( μi ) = 

exp ( μi ) ∑ 

i exp ( μi ) 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(11) 

Here, p α and p y are prior beliefs about secretion and sensation

iven the type of cell (see Table 2 ), generating sensory predictions,

ccording to the generative model g ( μi ) (see Eq. (6) ), while σ ( μi )

s a soft-max function that returns expectations about the cells

ype. The resulting dynamics of internal and active states of each

ell can be expressed as follows: 

f μ( ̃  s , ̃  a , ˜ μ) = ( Q μ − �μ) ∇ μF = D ̃  μ − ∇ ˜ μ ˜ ε · �( 1 ) ˜ ε − �( 2 ) ˜ μ
f a ( ̃  s , ̃  a , ˜ μ) = ( Q a − �a ) ∇ ˜ a F = −∇ ˜ a ̃  s · �( 1 ) ˜ ε 

⇒ 

˙ a x = −∇ x ̃  s α · �( 1 ) 
α ˜ ε α

˙ a y = −�( 1 ) 
y ˜ ε y 

ε = 

[
ε y 
ε α

]
= 

[
s y − p y · σ ( μ) 
s α − p α · σ ( μ) 

]

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(12) 

Here ε = s − g(μ) is called a prediction error, and �(2) is the

recision of a Gaussian prior over internal states that parameterise

osterior beliefs about external states. The ~ notation denotes gen-

ralised coordinates of motion: see Friston, et al. (2010 ). The ap-

earance of the precision-weighted prediction errors in this equa-

ion arises from the Laplace assumption alluded to earlier. Because

ariational free energy is expressed in terms of log probabilities,

he Laplace assumption licenses a locally quadratic approximation

o the variational free energy. As such, a second order Taylor se-

ies expansion around the posterior mode is sufficient to charac-

erise this functional. Because the gradient of variational free en-

rgy evaluated at the posterior mode is zero (by definition), the
sed intracellular signals S y . Each cell secretes one of three 

sed extracellular signals S α . Sensory states ( s ) can interact 

s can interact with internal ( μ) and sensory states; sensory 

tes; every cell exchanges of signals with cells of the same 
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Fig. 3. Self-organisation at the first level. This figure illustrates four snapshots at different times during the simulation of the (final stage of) self-organisation of an ensemble 

comprising sixteen ’cells’, whose internal and active equations of motion describe a gradient descent on prediction error, relative to sensory states expected by each member 

of the ensemble. Every member is endowed with the same prior (genetic) beliefs about what they should signal and sense, depending upon their type (which has to be 

inferred on the basis of what they sense). These priors ultimately prescribe a point attractor for the dynamics of the ensemble. Each cell can then infer (via intracellular 

dynamics) its type and behave (via extracellular signalling) accordingly, while moving (via chemotaxis) to a location that fulfils its predictions about its extracellular signals. 

The emergent morphology of the ensemble is a cell of cells, with an internal (red) cell in the centre, surrounded by a membrane of active (green) cells in the middle, and 

sensory (blue) cells on the periphery. This is the spatial pattern that best fulfils the prior beliefs of all the constituent cells. Note that the cells are initially pluripotent and 

only acquire (i.e., infer) their (colour-coded) role in the Markov blanket, in virtue of their position and signalling with other cells as they self-organise (see for an example 

the internal state at time 40 and 70). This means the number of sensory, active and internal cells is not encoded in each cell’s prior; rather, it is an emergent property of 

self-organisation under the simple prior that each cell must be a particular type of cell. Furthermore, if a cell infers that it is a particular type, then it becomes that type –

because its inference is mediated by intracellular signalling that classifies a cell as one type or another. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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linear term of this expansion vanishes. The result is that free en-

ergy may be expressed as a function that is quadratic in the dis-

tance between each variable and its posterior mode (i.e., quadratic

in prediction errors). The gradient of the free energy is then simply

expressed as a precision-weighted prediction error. Eq. (12) shows

that internal and active states minimise (variational) free energy.

Thus, internal and active states perform a descent to minimise

prediction errors ( Friston, 2010 ). Under these equations of motion,

cells infer their identity based on sensations, while secreting ac-

cording to their role as the ensemble evolves. At the same time,

cells move to a position, where extracellular inputs can be best

predicted. 

Eq. (12) also evidences how surprise of observations given a

particular model is reflected in the free energy. The term ‘surprise’

(a.k.a. surprisal) is used here in the information theoretic sense

that quantifies how improbable a given event is ( Tribus, 1961 ). Sur-

prisal is a negative log probability (where the probability in ques-

tion is the marginal likelihood of sensory states under the gener-

ative model). It is this quantity that is upper bounded by the free

energy. Under the quadratic approximation to surprise (and vari-

ational free energy) employed in this paper, surprise scales with

the squared difference between the expected and observed sensory

state. This lets us associate surprise with a squared prediction er-

ror. As shown in Eq. (12) , free energy is also a function of weighted

squared prediction errors. As such, a surprising sensory state, when

there is a mismatch between expected and observed data, leads to

a large, precise, prediction error ( ε) and an increase in free energy.

The results of an exemplar simulation are shown in Fig. 3 . Self-

organisation leads the ensemble to assume a cell-like morphology,

with internal cells in the middle, encircled by active cells, sur-

rounded in turn by sensory cells. Because there are no prior beliefs

either about the location or about the number of cells per type,

these results constitute an emergent property, resulting from the

spatial dependency of interactions among agents. In other words,

the number of cells of each type is not pre-specified or part of

the generative model – it is an emergent property. Furthermore,

the arrangement of differentiated cells is not prescribed by each

cell’s prior beliefs – the arrangement is an emergent property that
s consistent with intercellular signalling. This is interesting in the

ense that the only arrangements that are consistent with a cell’s

eliefs about participating in a Markov blanket are exactly the ar-

angements that are consistent with a Markov blanket of cells: see

lso Cademartiri et al. (2012 ). 

Although the results reported in Fig. 3 are sensitive to the pri-

rs that constitute each cell’s generative model (please see discus-

ion), they do not depend sensitively upon the initial states of each

ell. In particular, random fluctuations in the initial positions and

tates of the cell do not affect the self organisation illustrated in

ig. 3 . Exactly the same arrangement can be reproduced quanti-

atively with different initial randomisations. On the other hand,

mall changes to the priors, such as the spatial decay of extracel-

ular signals – or the motility of cells – do affect the final config-

ration. For example, the number of internal cells can be greater

han one and the final positions of the cells vary with different

riors. Interested readers can repeat these simulations using dif-

erent initial randomisations and prior settings, using open source

ode (please see Additional Material). 

The simulation presented above illustrates the role of Markov

lankets in a simple but plausible world where only local inter-

ctions are permitted, in which prior beliefs (e.g., a genetic code)

ave learned that, in order to exist, a living system has to self-

enerate boundaries that separate it from – and mediate the cou-

ling with – its environment. As in real biological systems, the

onstituents of an ensemble interact with each other, leading to

ignal cascades. This signalling rests on inference (e.g., intracellular

ynamics) about the role each cell should play, where action (e.g.,

hemotactic signalling) realises that role. Cells then differentiate,

ased upon their prior beliefs (e.g., genetic code). In essence, the

nsemble reaches a steady state characterised by an internal mi-

ieu, which exists – in virtue of assembling its own Markov blan-

et – as integral part of the system. One could imagine that genes

pecify Markovian affordances to produce hierarchical structures;

uch as organs, tissues, organisms and so on. On this view, self-

rganisation is then a recursive process that engenders, at every

evel, the emergence of Markov blankets. We now pursue this us-

ng an extended simulation set up. 
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. Self-organisation: ensemble of ensembles 

The second simulation considers ensembles of organelles, each

omprising an ensembles of 16 cells, to illustrate hierarchical self-

rganisation; namely, the self-assembly of Markov blankets of

arkov blankets and the requisite coupling between levels. To in-

estigate the autonomous organisation of (256) cells at two lev-

ls, every cell is equipped with the same (genetic beliefs or) pri-

rs about their local and global identity, that is, they share be-

iefs about possible roles at both the ensemble (local) and ensem-

le of ensemble (global) level. Practically, each cell now had two

ets of hidden states – and prior beliefs – pertaining to their role

t the local (i.e., microscopic) and global (i.e., macroscopic) level.

rucially, these priors are the same as used in the previous simu-

ation; namely, they prescribe conditional independencies that are

andated by a Markov blanket at each level: 

p y 
p α

]
= 

[
p l y 
p l α

]
= 

[
p g y 

p g α

]
(13) 

Here, the superscripts denote the local (ensemble) and global

ensemble of ensemble) level. The only additional piece of infor-

ation required in this simulation is how the two levels couple

o each other. For computational expediency, we model the micro-

copic dynamics (cells within an ensemble) of only one ensemble

f sixteen cells, whereas for the remaining (fifteen) ensembles, we

ssume that the average behaviour conforms to the local dynamics

f the simulated ensemble. This is a mean field approximation in

he sense that we discount local fluctuations within each ensem-

le and assume only their average behaviour is ‘seen’ by any single

nsemble. This allows us to simulate the coupling of sixteen cells

f the fully simulated ensemble with other fifteen ensemble means

without simulating the other 15 ensembles explicitly). Notice that

he allocation of cells to ensembles does not imply an allocation to

 particular type of ensemble. The ensembles self-allocate as the

arkov blanket emerges at the higher level. In summary, this sim-

lation illustrates how sixteen cells self-organise in an ensemble

hat in turn self-organises with other fifteen identical ensembles,

hile describing the coupling between the local and global level. 

In particular, for the fully simulated k th ensemble, the global to

ocal extracellular coupling means that it only senses the average

f all other global signals, while the local to global coupling means

hat the average over its n active states informs the dynamics of

he remaining ensembles: 

s g 
α,ζ

= s a,k 

s y,k = a y,k = 

1 
n 

∑ 

ζ a l 
y,ζ

} 

(14) 

here ζ = 1 : n . The first and second equalities in (13) refer to the

xtracellular sensing of cells and the intracellular sensation of the

nsemble, respectively. In terms of local to global coupling, as they

re part of the same ensemble, these predictions will be congruent

ith each other and cells will therefore act in concert at the global

evel: 

 

(
μg 

ζ

)
= 

[
p g y 

p g α

]
· σ

(
μg 

ζ

)
(15) 

Here, μg 

ζ
is the expectation about global coupling for each cell

n the ensemble. 

In summary, sixteen cells locally self-organise in an ensemble,

uided by the (local) priors, while interacting with the remaining

fteen ensembles. Exemplar simulation results are shown in Fig. 4 ,

hich illustrates hierarchical self-organisation and pattern forma-

ion of Markov blankets within Markov blankets. The lower panels

f Fig. 4 show the evolution of each cell’s expectations (i.e., differ-

ntiation) at the local (left), and global (middle) level. The lower
ight panel shows the expectations of the cells of the sixth ensem-

le about their role at the global level. The sixth ensemble is an

ctive ensemble at the global level (colour-coded by green), and

his global identity appears to constrain the expectations of every

ell at the local level. 

A first interesting aspect of these simulation results is the ra-

idity with which the cells infer their type and implicitly dif-

erentiate into internal or blanket cells. This was a generic fea-

ure of the simulations, suggesting that the priors that lead to

ierarchical self-organisation require a fairly rapid specialisation

o enable self-assembly a global attractor. This reflects the circu-

ar causality or positive feedback loop between microscopic and

acroscopic (Markov blanket) dynamics that underlies this kind

f self-organisation. In other words, cells move and secrete chemi-

als accordingly to their inferred role in the Markov blanket parti-

ion; simultaneously, inference becomes more accurate as cells ap-

roach their final configuration. In the setting of hierarchical self-

rganisation, inference at the within ensemble (local) level is char-

cteristically faster than at the between ensemble (global) level.

his reflects a ubiquitous separation of temporal scales that charac-

erises hierarchical self-organisation ( Jung et al., 2015 ; Kiebel et al.,

008 ; Perdikis et al., 2011 ). A second noteworthy point is the spa-

ial structure emerging in these exemplar simulations: when in-

eractions are spatially dependent, active states – which can influ-

nce but are not influenced by external states – are enclosed by

ensory states, in a similar way as the cytoskeleton resides within

ellular boundaries, or muscles within the epithelium. Analogously,

ensory states, that can influence but are not influenced by inter-

al states, are segregated from the latter. Notice finally that as cells

ust possess a Markov blanket to distinguish each other at one

evel of description, at the level above there will be other ensem-

les (not shown) from which the simulated one will have to differ-

ntiate itself – by means of a Markov blanket. 

In the example shown in Fig. 4 , local expectations (lower left

anel) converge quickly, with a discernible differentiation after the

rst time step. Conversely, local expectations about the global type

ake much longer to converge, with the degree of uncertainty in

ome cells that only resolves at the final time step (see cell 12

n the lower right panel). This example may reflect the separa-

ion of timescales formalised in synergetics, and in particular by

he slaving principle, which deals with self-organisation and pat-

ern formation in open systems far from thermodynamic equi-

ibrium ( Carr, 1981 ; Ginzburg, 1955 ; Haken, 1978 ; Tschacher and

aken, 2007 ). In this setting, slow macroscopic patterns of activ-

ty are said to enslave fast microscopic patterns, while the macro-

copic patterns (known as order parameters) are constituted by the

icroscopic patterns; hence circular causality. 

. Discussion 

In this paper, we have presented a variational treatment of hier-

rchical self-organisation. Given local interactions, carefully crafted

rior (genetic) beliefs about conditional dependencies and inde-

endencies endow a system with a point attractor comprising in-

ernal states and their Markov blanket. Moreover, applying the

ame priors at any hierarchical level leads to the emergence of

arkov blankets within superordinate Markov blankets. A key fea-

ure of the simulations – used in this paper – is the absence of

ny explicit target morphology within the prior (e.g., genetic) be-

iefs of the system’s denizens. This is an emergent property, which

ppears to have a top-down effect on the blankets below. The sub-

equent emergence of a cell-like structure is interesting because it

peaks to characteristic spatial boundaries found in most biological

ystems; namely, cellular membranes. The isomorphism between

 statistical and spatial boundary rests on spatially dependent in-

eractions among internal and external states. In other words, the
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Fig. 4. This figure shows the (final) results of self-organisation of an ensemble of cells, where each constituent of the ensemble is itself a local ensemble. In this example, 16 

local ensembles, each composed of 16 cells, self-organise in a global ensemble. Panel A shows the evolution of the hierarchical system captured at three different moments. 

The colour of central circles reflects the inferred cells within each local ensembles; the peripheral circles indicate specialisation of local ensembles within the global ensemble. 

(colours: internal – red, active – green, sensory – blue). Note that there are no external states because the external states comprise the Markov blankets of other ensembles. 

The key thing to observe here is that (slow) self-organisation of local ensembles in a global Markov blanket, starting at time 1, relies on their very existence, that is, on (fast) 

self-organisation of cells composing each ensemble. At any temporal and spatial scale, the emergence of a Markov blanket reflects the particular independency structure, 

where internal cells do not influence sensory (i.e. surface) cells, in virtue of their separation by active cells. This separation induces conditional independence, because of 

the limited range of intracellular signals (that fall off with a Gaussian function of distance). Panel B shows the same results in an alternative format; namely, the evolution 

of expectations about type (i.e., differentiation) of cells within an exemplar local ensemble (left; local expectation), and of the local ensemble within the global ensemble 

(middle; global expectation). Notably, the identity of the local ensemble is the result (i.e. the average) of its constituent cell’s beliefs about their role at the higher level. This 

means that a local ensemble organises in concert with the other in a global ensemble because its cellular components have communal beliefs about their role (as a local 

ensemble) in the global one. These cellular beliefs about global identity are represented in the left illustration of Pannel B. Here, the exemplar ensemble becomes an active 

state. This means that a local ensemble organises in concert with the others in a global ensemble because its cellular components have communal beliefs about their role (as 

a local ensemble) at the global level. These cellular ‘beliefs’ about global identity are represented in the left illustration of Panel B. Here, the exemplar ensemble becomes an 

active state. This means that all its constituents will come to infer that they participate as an active state at the global level (left; local about global). Note the differentiation 

on both a local and global level; while local expectations about the cells’ role at the global level converge to the same type. Panel C displays the decrease in free energy of 

the hierarchical system as self-organisation takes place. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

c  

e  

o  

e  

t  

o  

p  

s  

t  

s  

a  

c  

l  

d  

t  

t  

m

states of a system can include its generalised motion in physical

space, such that the blanket states acquire the attribute of a spatial

location (and velocity). In turn, this means that spatial boundaries

can be identified with statistical boundaries, under conditional de-

pendencies of the flow internal and active states on external states.

As noted above, these normally involve short range statistical cou-

plings or, in physical terms, forces or chemical gradients ( Ao, 2009 ;

Seifert, 2012 ). Crucially, this sort of hierarchical self-organisation is

a recursive process that can repeat itself at higher levels of de-

scription. Interestingly, this perspective enables to identify ensem-

bles that are or are not self-organising: in this optic, the distinction

between a culture of cells and a multicellular organism resides in

the emergence of a Markov blanket at the ensemble level. Another

consequence of this recursive aspect is the absence of a privileged

point of view, when describing hierarchical self-organisation: the

dynamics at every level play the role of macroscopic states at the

level below, and the role of microscopic states at the level above.

An apparent example is morphogenesis, during which chemotaxis
nd development of a system’s components occurs within a global

onfiguration established by morphogen gradients controlling gene

xpression ( Balaskas et al., 2012 ; Chang et al., 2002 ). Notably, in

ur simulations, morphogen gradients could be interpreted as the

xpression of beliefs about the possible role at the ensemble level

hat each cell or element at the level below must have. Actuation

f these beliefs (morphogenesis) then occurs through an inference

rocess (differentiation), and realisation of the corresponding po-

itional predictions (chemotaxis); for an example that uses exactly

he notion of a Markov blanket and chemotactic signalling, please

ee ( Kuchling et al., 2019 ). At a subcellular scale, the same logic

pplies, so that self-organisation of microscopic organelles like the

ellular membrane and vesicular structures is constrained by be-

iefs about their role at the cellular level. On the same note, the

ialectic between hierarchical layers formalised above accounts for

he dynamics of multi-agent, complex systems, ranging from cul-

ural ensembles ( Ramstead et al., 2018 ) to complex urban environ-

ents ( Hadfi and Ito, 2016 ). 
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Here we associate biochemical structures, gradient flows and ki-

etics with Bayesian priors and belief propagation or updating –

s opposed to propositional or representational beliefs. The only

hing that licenses the use of the word ‘belief’ is that the macro-

olecular and cellular kinetics at hand were cast as a gradient

ow on variational free energy. This means that one can inter-

ret the resulting dynamics in terms of Bayesian belief updating

 Winn and Bishop, 2005 ). However, this is an ‘as if’ interpretation;

n the same sense that the folding of a macromolecule to minimise

ts thermodynamic free energy in computational chemistry – e.g.,

ammert et al. (2012 ) – looks ‘as if’ it is trying to minimise (ther-

odynamic) free energy. 

The advantage of being able to formulate this kind of self-

rganisation in terms of gradient flows on variational (as opposed

o thermodynamic) free energy is that variational free energy is

 functional of a generative model. This means that one can pre-

cribe the desired endpoint of self-organisation in terms of pri-

rs ( Friston et al., 2014 ). One might ask; where do priors come

rom? Here, we assume that they are a product of natural selection

i.e., Bayesian model selection) and are therefore entailed in genet-

cs and epigenetics ( Campbell, 2016 ; Frank, 2012 ; Ramstead et al.,

018 ). We do not try to provide a detailed account of the ensuing

radient flows in terms of molecular biology; e.g., Tabata and Takei

2004 ). However, one can imagine hypotheses based on variational

ree energy gradient flows can be tied to intra-and inter-cellular

ignalling; e.g., Cervera et al. (2019 ) and Friston et al. (2015 ) and

uchling et al. (2019 ). Interestingly, exactly the same challenge

rises in the neurosciences, where the equivalent gradient flows

ecome neuronal dynamics – and the accompanying challenges be-

ome understanding neurophysiology and neuronal microcircuitry

n terms of variational message passing; e.g., Friston et al. (2017 ). 

It is interesting to ask how the priors that underwrite this kind

f self-organisation are updated in terms of cell biology. The usual

esponse to this is to consider hierarchal processes of free energy

inimisation in terms of Bayesian model selection ( Allen, 2018 ;

ampbell, 2016 ; Frank, 2004 ; Ramstead et al., 2018 ). This leads

aturally to a link between natural selection and Bayesian model

election based upon the evidence bounds afforded by variational

ree energy. On this reading, natural selection becomes a form of

tructure learning (a.k.a. Bayesian model selection) based upon the

odel evidence associated with a particular phenotype. In short,

he (marginal) likelihood of a particular phenotypic structure – in

n evolutionary setting – is optimised in terms of its prevalence

n a population. Because this structure is a model of the exter-

al milieu, it entails particular priors. If these priors are fit for

urpose in terms of minimising variational free energy then they

ill be selected. For example, under some mild assumptions, the

eplicator equation can be cast as a Bayesian filter; exactly along

he lines of the above argument: see Frank (2012 ), Geisler and

iehl (2003 ) and Ramírez and Marshall (2017 ) for further

iscussion. 

In our simulations, and more generally, we have made some

ild assumptions about the external or environmental states that

ontextualise self-organisation at the highest scale considered. This

peaks to an important conceptual point; namely, that a partition-

ng of systemic states into Markov blankets at any scale is always

ontextualised by the scale above. In other words, there must be a

ermissive context in which self-organisation unfolds at, generally,

aster timescales in the level below ( Schwabl, 2002 ; Jeffery et al.,

019 ). Strictly speaking, this implies an infinite regress; in the

ense that we can only talk about Markov blankets at one scale of

elf-organisation by assuming some attracting set at a higher scale.

ndeed, this recursion can be formalised in terms of the renor-

alisation group that emerges from grouping and course graining

i.e., reduction) operators on the Markov blankets ( Friston, 2019 ).

he renormalisation group formulation implies that the time con-
tants of self-organisation at larger scales necessarily increases,

hen moving from one scale to the next. 

Practically, this means that one can assume that the external

tates that encompass the formation of Markov blankets at the

ighest scale under consideration are changing slowly in relation

o lower scales. The picture that emerges here is that the same

asic (Bayesian or variational) mechanics emerge in a scale-free

ashion at different levels; from the quantum through to the level

f molecular biology; from the scale of cells through to organs,

rom phenotypes through to species; all the way up to a cosmo-

ogical scale. Although this might sound fanciful, this perspective

as some currency in relation to the differences between quantum,

tatistical and classical mechanics. These differences rests largely

pon the suppression of random fluctuations as one progresses

rom the small to the large. We have chosen to illustrate coupling

etween just two levels; namely, the mesoscopic level of cells and

ell assembly in biology. 

One might ask why we have focused on the free energy prin-

iple, as opposed to other formal descriptions of self-organisation

 Haken, 1978 ; Kauffman, 1993 ; Kelso, 1995 ; Nicolis and Pri-

ogine, 1977 ); for example, phase transitions in spin models

 Vatansever and Fytas, 2018 ), attractor landscapes in random

oolean networks ( Gershenson, 2012 ) or Turing style pattern for-

ation via reaction diffusion systems ( Halatek et al., 2018 ). Our

otivation for casting self-organisation as a variational principle

as threefold: first, the free energy principle provides an integra-

ive formalism that should apply to all the above. In other words,

t regards pattern formation and self organisation – as manifest

n reaction diffusion systems and other nonequilibrium steady-

tate dynamics – as realisations of the same principle. This is

elf-organisation to a random attractor ( Crauel and Flandoli, 1994 ;

riston and Ao, 2012 ). When this attracting set possesses a Markov

lanket the free energy principle must apply ( Friston 2013 ). This

eans that one can interpret any form of self-organisation – to an

ttracting set – in terms of a gradient flow on variational free en-

rgy and, implicitly, self-evidencing ( Hohwy 2016 , Ramstead, Bad-

ock et al. 2017). This is important because most existing ap-

roaches to the dynamics of self-organisation try to reverse engi-

eer an energy functional (or Lyapunov function), given some dy-

amics or equations of motion. The free energy principle allows

ne to invert the problem and write down the dynamics as a gra-

ient flow on a free energy functional that is specified in terms of

 generative model ( Friston et al., 2014 ). Crucially, the prior beliefs

f this generative model determine the attracting set. By explicitly

riting down a Markov blanket in these priors, we obtain a system

hose organisation is the most general and essential possible, im-

licitly in any self-organising system behaving accordingly to the

ree energy principle. Finally, using the notion of random dynam-

cal systems ( Arnold and Crauel, 1991 ; Crauel and Flandoli, 1994 ),

he free energy principle allows one to articulate questions about

and simulate) self-organisation at multiple scales. Here, we have

ocused on the link between just two scales; however, by induc-

ion, the conclusions from this paper could be generalised to mul-

iple levels – at least in principle. This hierarchical aspect would

e challenging to simulate using conventional approaches to pat-

ern formation. 

As noted in the introduction, our aim was to provide a nu-

erical analysis of the minimal conditions under which hierarchi-

al self-organisation emerges – and show that the minimisation

f variational free energy provides a sufficient account, under the

ight sort of generative model . Crucially, this does not mean that any

ree energy minimising ensemble will show this kind of hierarchi-

al self organisation. Our agenda was not to suggest all systems

elf-organise hierarchically; rather, we wanted to explain the ex-

stence of the hierarchical structures seen in biology, in terms of

ariational principles. 
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Practically, the behaviour illustrated in the above simulations

depends sensitively on priors in the generative model and initial

conditions. In more details, setting prior beliefs that specify an at-

tractor in state space (endowed with a Markov blanket) is not triv-

ial, and growth in the size of the system further complicates the

task. This is reminiscent of the emergence – at later evolution-

ary stages – of bigger or more complex organisms. Furthermore,

these simulations show the final stage of self-organisation, where

the system finds itself in the vicinity of the attractor; initialising

the system too far from this attracting point (e.g., by adding ex-

tra perturbation to location) can prevent the system from elabo-

rating a bounded structure (i.e. existing). This, in turn, speaks to

the difference between these (minimal and general) simulations

and the complexity of (specific) biological systems, endowed with

a plethora of control and feedback mechanisms, which underwrite

robustness to perturbations. This sensitivity to prior parameters

and initial states leads to some interesting questions. For exam-

ple, questions about the rate at which the structures stabilises –

and how this depends upon the parameters (c.f., rate spatial decay

constants) that constitute each cell’s priors. How do the initial val-

ues (e.g., position) affect self-organisation? These questions raise

an interesting issue: is there anything special about a hierarchi-

cal structure that would explain its prevalence in biotic systems.

One speculation here might be that a hierarchical (self-similar) ar-

chitecture of Markov blankets might be a free energy minimising

solution on a longer time scale, such as evolution. This should be

possible to address via simulated (pharmacological) lesion exper-

iments that block the formation of higher-order Markov blankets.

One can then measure the free energy with and without hierarchi-

cal self-organisation and consider the implications for natural se-

lection. In variational formulations, natural selection is treated as a

form of Bayesian model selection, based upon model evidence or

variational free energy ( Campbell, 2016 ; Frank, 2012 ). We hope to

pursue this in subsequent work. 

9. Conclusion 

This work suggests that Markov blankets are a fundamental

characteristic of biological systems. Their presence is necessary for

life – as they underwrite an existential separation of the system

from its environment, while preserving its interactions. The hier-

archical organisation of complex systems – like living organisms –

implies that the self-similar organisation of Markov blankets may

be evident at any level of biological structure. From the point of

view of dynamical systems, Markov blankets are attractors, attract-

ing fast microscopic dynamics, while underwriting the emergence

of macroscopic (order) parameters. This circular causality nicely

captures the self-organisation of biological systems, which evolve

autonomously with a morphology (Markov blanket) that is neces-

sarily predisposed to a selective coupling with external states. The

natural place – where these attractors might be specified – is the

genetic code. Clearly, this is rather speculative; however, it is pos-

sible that the astonishing diversity of flora and fauna we witness

might reflect the fact that, in a world where signals are spatially

dependent, Markov blankets are synonymous with existence. 

Additional information 

Simulations: The simulations reported in this paper can

be reproduced using the open access academic software SPM

( http://www.fil.ion.ucl.ac.uk/spm/software/ ). The key routines

are DEM_cells.m and DEM_cells_cells.m that illustrate self-

organisation of a single ensemble and ensemble of ensembles

respectively. 

DEM_cells.m: This demo illustrates self-organisation in an en-

semble of (sixteen) cells using the same principles described in
EM_morphogenesis , but using a simpler generative model. Over-

ll, the dynamics of these simulations show how one can pre-

cribe a point attractor for each constituent of an ensemble that

ndows the ensemble with a point attractor to which it converges.

n this example, we consider the special case where the point at-

ractor is itself a Markov blanket. In other words, cells come to

cquire dependencies, in terms of intracellular signalling, that con-

orm to a simple Markov blanket with intrinsic or internal cells,

urrounded by active cells that are, in turn, surrounded by sen-

ory cells. This organisation rests upon intracellular signals and

ctive inference using generalised (second-order) variational filter-

ng. In brief, the hidden causes driving action (migration and sig-

alling) are expectations about cell type. These expectations are

ptimised using sensory signals; namely, the signals generated by

ther cells. By equipping each cell with prior beliefs about what it

ould sense if it was a particular cell type (i.e., internal, active or

ensory), they act (i.e., move and signal) to behave and infer their

ole in an ensemble of cells that itself has a Markov blanket. In a

EM_cells_cells.m , we use this first-order scheme to simulate the

ierarchical emergence of Markov blankets; i.e., ensembles of cells

hat can be one of three types at the local level; independently of

heir time at the global level. 

DEM_cells_cells.m: This demo is a hierarchical extension of

EM_cells.m , where we have 16 ensembles comprising 16 cells.

ach cell has a generative model (i.e., prior beliefs) about its pos-

ible local and global cell types (i.e., internal, active or sensory).

iven posterior beliefs about what sort of self it is at the local and

lobal level, it can then predict the local and global intracellular

ignals it would expect to receive. The ensemble of ensembles then

onverges to a point attractor; where the ensemble has a Markov

lanket and each element of the ensemble comprises a cell – that

s itself a Markov blanket. The focus of this simulation is how the

ocal level couples to the global level and vice versa. For simplic-

ty (and computational expediency) we only model one ensemble

t the local level and assume that the remaining ensembles con-

orm to the same (local) dynamics. This is effectively a mean field

pproximation, where expectations of a cell in the first ensemble

bout its global type are coupled to the corresponding expectations

nd the ensemble level, and vice versa. The results of this simula-

ion are provided in the form of a movie and graphs. 
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