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This paper presents a novel method for the generation of myocardial wall surface meshes from segmented 3D MR images, which
typically have strongly anisotropic voxels. The method maps a premeshed sphere to the surface of the segmented object. The
mapping is defined by the gradient field of the solution of the Laplace equation between the sphere and the surface of the object.
The same algorithm is independently used to generate the surface meshes of the epicardium and endocardium of the four cardiac
chambers. The generated meshes are smooth despite the strong voxel anisotropy, which is not the case for the marching cubes and
related methods. While the proposed method generates more regular mesh triangles than the marching cubes and allows for a
complete control of the number of triangles, the generated meshes are still close to the ones obtained by the marching cubes. The
method was tested on 3D short-axis cardiac MR images with strongly anisotropic voxels in the long-axis direction. For the five
tested subjects, the average in-slice distance between the meshes generated by the proposed method and by the marching cubes
was 0.4 mm.
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1. Introduction

Surface models of the epicardium and endocardium of the
heart chambers are used in a number of biomedical applica-
tions for visualization [1], virtual reality [2], segmentation
[3, 4], motion analysis [5, 6], shape analysis [7, 8], and
modeling [9, 10] purposes. A typical approach to generate
subject specific models is to apply a surface construction
algorithm to segmented cardiac magnetic resonance (MR)
or computed tomography (CT) images. Cardiac MRI is a
widely used modality to image the heart. However, due
to the tradeoff between image quality and temporal and
spatial resolution, voxels in cardiac MR images are strongly
anisotropic. Typically, the in-plane resolution is a few times
higher than the out-of-plane resolution for clinically used
cardiac MRI. While a number of mesh generation methods
exist [11, 12], to the best of our knowledge, there is no
surface mesh generation method designed for images with
strongly anisotropic voxels. The most widely used method
for surface mesh generation from images is the marching

cubes method [13]. If the marching cubes method is applied
to an image with strongly anisotropic voxels without any
additional processing, then the generated mesh has strongly
irregular triangles, pronounced terracing artifacts and the
number of triangles directly related to the number of voxels,
none of which is desirable (Figure 1). Terracing artifacts are
a consequence of marching cubes mesh closely following
sharp voxel boundaries (instead of smoothly fitting them),
they appear as “stairs” or “terraces” and in Figure 1 they
are visible as dark and light red vertical stripes. Once
the marching cubes mesh is generated, one can apply a
number of techniques to improve the mesh quality, including
mesh smoothing [14], simplification [15], and optimization
[16]. A combination of these techniques was used in [17].
An alternative way to use the marching cubes is to first
construct an implicit surface from the segmented image,
and then apply the marching cubes to the scalar field (the
implicit surface is the zero level set of the scalar field) on
a uniformly sampled image domain [18]. This way one
can control the size of the mesh triangles (determined by
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FIGURE 1: A left ventricular surface model generated by applying
the marching cubes algorithm to a segmented cardiac MR image
with 1.44 mm in-plane resolution and 8.0 mm slice thickness. The
irregular triangles are a consequence of the voxel anisotropy. The
surface mesh has pronounced terracing artifacts, and the number
of triangles is directly related to the number of voxels in the image.

the sampling interval) as well as make them more regular
(consequence of the uniform sampling), but they can still be
badly shaped and the terracing artifacts remain. To alleviate
these problems, Peird et al. [18] used a number of mesh
optimization techniques. Instead of using the discrete image,
one can interpolate image intensities, for example by means
of trilinear interpolation, before constructing a surface mesh
[19]. However, in the case of strongly anisotropic voxels, this
approach would still result in terracing artifacts, although
somewhat smoothed. Lotjonen et al. [20] also used the
marching cubes as the starting point of their mesh generation
method, which, if the mesh is decimated enough, generates
close-to-regular triangles. The method of Gibson [21], while
significantly reducing terracing artifacts, shares with the
marching cubes the problem of irregular triangles in the case
of anisotropic voxels. Another group of methods constructs
surface meshes from 2D contours of the segmented image
structures [22-25]. They suffer from the same problem: if the
voxels of the underlying image are anisotropic the resulting
triangles are irregular. We also note related work in which
researchers used a structured volumetric mesh of the left
ventricle for myocardial motion recovery [26-29].

In this paper we present a method for generation
of myocardial wall surface meshes from segmented MRI.
The meshes are smooth and have prespecified number of
triangles and close-to-regular triangles despite the highly
anisotropic voxels. Since the marching cubes are the most
widely used method, either as a stand-alone method or as
a part of other methods, we compare the proposed method
to the marching cubes.

2. Methods

2.1. Approach. The presented method is designed for surface
mesh generation of the endocardium of the four cardiac
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chambers and of the endocardium from segmented cardiac
MRI. The four endocardial surfaces are, if the valves are
ignored, topologically equivalent to a sphere. We also assume
that the segmentation of the entire heart does not include
other structures, which makes its outer surface topologically
equivalent to a sphere. The main idea is to generate a
triangulated mesh on a sphere and then map it independently
to the five surfaces. For each segmented object we construct
its surface in implicit form and then map the mesh from
the sphere to the surface using the gradient field of the
solution of the Laplace equation between the surface and the
sphere. Each step of the method is explained in the following
sections, and Figure 2 summarizes the method.

2.2. Sphere Triangulation. It can be shown that a sphere
cannot be triangulated with an arbitrary number of equi-
lateral triangles. In fact, there are only three configurations
of a triangulated sphere with equilateral triangles: regular
tetrahedron (4 equilateral triangles), regular octahedron (8
equilateral triangles), and regular icosahedron (20 equilateral
triangles) [30]. A triangulation of a sphere with any other
number of triangles cannot have all the triangles equilateral.
There are a number of ways to approximately uniformly
sample a sphere and construct the corresponding triangu-
lation [31, 32]. Here we use the method of minimizing
the electrostatic energy of equally charged particles on a
sphere [33, 34]. Once the points are approximately uniformly
distributed on a sphere, we construct a triangular mesh by
using the Delaunay triangulation [35]. This method allows
for the construction of a close-to-regular triangular mesh on
a sphere with an arbitrary number of vertices V, which is
related to the number of triangles T as 2V — T = 4. This
relationship follows from the Euler’s formula for polyhedra
[30].

2.3. Solution of the Laplace Equation. In order to construct
the surface mesh, we define a homeomorphic mapping from
the sphere to the surface and apply it to the mesh on the
sphere. There are infinitely many ways to construct such a
mapping, and here we define a scalar field u between the
sphere and the surface (we make the sphere larger than the
object and center it at the barycenter of the object), and
then any point from the sphere is mapped to the surface by
following Vu, the gradient of u. In order for the mapping
to be homeomorphic, the gradient flow has to be divergence
free, that is, div Vu = 0, which leads to the familiar Laplace
equation

Au = 0. (1)

We look for the solution of the Laplace equation that is equal
to 0 at the sphere and 1 at the object surface. The Laplace
operator is rotation invariant, and a solution to the Laplace
equation has no local extrema, which makes it a suitable
means to transport the mesh from the sphere to the surface
of the object. If the sphere has a radius of R, then the external
boundary condition can be specified as

u(r)|rj-r = 0. (2)
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FIGURE 2: Mesh generation summary. The input image (a) is segmented into the object and background, resulting in a binary image (b).
A sphere enclosing the object is centered at the object barycenter (c). The sphere is uniformly sampled with the number of points equal to
the number of singularities. The binary image is resampled with isotropic voxels and the Laplace equation is numerically solved between
the sphere (boundary condition of 0) and the object (boundary condition of 1). The solution of the Laplace equation is encoded in the
gray levels in (c) and (d). The binary object is eroded, and the points are propagated from the sphere to the eroded object in the direction
of the gradient of the Laplace equation solution to define the singularity locations, shown as red squares in (d) and (e). Boundary points,
specified as midpoints for each pair of neighboring voxel, where one voxel is in the object and the other is in the background, are shown
as red dots in (e). The singularity locations as well as the boundary points are used to specify the analytic solution of the Laplace equation.
The boundary points are propagated in the negative gradient direction of the solution of the Laplace equation from the object boundary
to the sphere (f). Their values of the underlying solution of the Laplace equation are interpolated at the sphere to the define the stopping
function. The number of degrees of freedom of the stopping function is defined by the number of control points, which are shown as blue
circles in (g). An approximately uniform mesh is generated on the sphere. The vertices of the mesh on the sphere, shown as black crosses in
(g), are propagated from the sphere in the direction of the gradient of the solution of the Laplace equation until the value of the underlying
solution of the Laplace equation is equal to the corresponding value of the stopping function. The propagated mesh nodes define the final

mesh, shown in (h). Figures (a)—(h) are two dimensional for illustration purposes, while the method is three dimensional.

The internal boundary condition is discussed in Section 2.4.
We use the method of fundamental solutions to solve the
Laplace equation. The solution is continuous (as opposed
to discrete) and it is represented as a linear combination
of functions, each satisfying the Laplace equation and the
external boundary condition and each having a singularity
within the sphere (see appendix)

M
u(r) = > cufs, (1), 3)
m=1

where s,,, m = 1,..., M, are the locations of M singularities
and ¢, the corresponding coefficients. It is straightforward
to show that u from (3) satisfies the Laplace equation (1) and
the external boundary condition (2).

2.4. Internal Boundary Condition. While expression (3) and
the external boundary condition are in the continuous form,
the internal boundary is discrete, defined by the object
segmentation map. The strongly anisotropic voxels are the

main reason for irregular triangles and terracing effects
present in the meshes generated by methods based on the
marching cubes. For this reason, we represent the internal
boundary in the continuous form as a level set of u from (3).
First, we define the set of boundary points r,, n = 1,...,N.
For each pair of neighboring voxels from the segmentation
map that have different labels (i.e., one voxel belongs to
the object and one does not) the midpoint between the
two voxels is a boundary point. Then, we determine the
parameters (singularity locations and coefficient values) of
u such that its level set of 1 fits the boundary points in the
least squares sense, that is, we minimize

1Y .
0 =33 [u(r) ~ 11" (4)
n=1

We require all the singularities to be located within the
object. Each singularity has the corresponding singularity
outside the sphere (see appendix). Scalar field u is well
defined in the domain (between the object surface and the



sphere) since there are no singularities. However, there is no
closed form solution that involves the optimal locations of
the singularities. To avoid numerical optimization which is
prone to local extrema, we preset the singularity locations,
and then find the optimal coefficients c,, that minimize (4).
While a closed form solution for the optimal coefficients
can easily be obtained, in the general case some of the
optimal coefficients can have positive and some negative
values. However, around each singularity with a negative
coefficient there will be a region with negative values of u
(u will tend to —oo at such singularities). These “islands”
of negative values may be fully contained within the object
but they also may protrude into the domain between the
object surface and the sphere, affecting the 1 level set in
an undesired way. To prevent this from happening, one
can constrain the optimization to have only positive values
for c,,. However, there is no closed form solution of this
problem. To avoid numerical optimization which is prone
to local extrema, we resort to an alternative approach. We
approximately uniformly place the singularities inside the
object relatively close to the object surface (see Section 2.6),
and assume that all the coefficients have the same value, that
is, ¢m = ¢. The optimal value of ¢ is obtained from

90

g = 0) (5)

which has a closed form solution

Sl dy
Sy d2

(6)

Cc =

where d,, = Zﬁf:l fm (). It can be shown that ¢ > 0, that
is, there will be no singularities with negative coefficients,
which could lead to undesired mesh shapes. However, since
the same coefficient is used for all the singularities, the fitting
of the implicit surface (level set 1 of u) to the boundary points
is not as accurate as in the case of singularities with nonequal
coefficients. To increase the accuracy of the fitting, we use a
stopping function (see Section 2.7).

2.5. Mesh Propagation from the Sphere to the Surface. To
map the mesh from the sphere to the object surface, we
propagate each mesh vertex along the gradient of u; that is,
the trajectory r(t) of a given vertex v on the sphere is

dr(t)
TR Vu(r(t)), )
r(0) = v,

where t is the parameter of the trajectory. We use the fourth-
order Runge-Kutta method [36] to integrate the trajectory
numerically. Since u is a continuous and exact solution
of the Laplace equation, the only propagation error comes
from the numerical integration error of the Runge-Kutta
method. If the Laplace equation was solved approximately,
the nonexactness of the solution would be translated into
additional propagation error.
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2.6. Placement of Singularities. To uniformly place the sin-
gularities inside the object relatively close to the object
surface, we first approximately uniformly sample the sphere
(as explained in Section 2.2) with the number of points
equal to the number of singularities. Then, we resample the
segmentation map to obtain isotropic voxels and erode the
segmented object two times. In the next step, we numerically
solve the Laplace equation between the sphere (with a
boundary condition of 0) and the surface of the eroded
object (with a boundary condition of 1) by using a relaxation
method [36]. We utilize the isotropic voxels as the grid on
which we solve the Laplace equation. Finally, we propagate
the points from the sphere to the eroded object in the
direction of the gradient of the solution of the Laplace
equation to obtain the singularity locations.

2.7. Stopping Function. To increase the accuracy of the fitting
of the object surface to the boundary points, instead of
propagating the mesh from the sphere to the level set of 1,
we define a “stopping” function on the sphere, which for
every point on the sphere determines the value of u that point
will be propagated to (that value would be 1 if the mesh was
propagated to the level set of 1).

To represent the stopping function we use pseudothin
plate spline model on the sphere proposed by Wahba [37]

K
b(P) = a0+ > oy (p - dr), (8)

where P is a unit vector representing a point on the sphere,
K is the number of control points, qx are unit vectors
defining the control points on the sphere, ay,...,ax are
scalar coefficients, and v is defined in [37] for m = 4. We set
the control points gy by approximately uniformly sampling a
sphere (as explained in Section 2.2) with K points.

At this point the singularity locations as well as coefficient
c are set; that is, the scalar field u is completely defined. At
each boundary point r, we record the value of the scalar
field u(r,). Let p, denote the unit vector of the point on the
sphere obtained by propagating the boundary point r, to the
sphere by following the negative gradient of u. We determine
ap,...,ak by requiring b(p) at points p, to approximate
values u(r,,) in the least squares sense, that is, by minimizing

N

[b(pn) — u(r,)]”. (9)

n=1

The closed form solution is

o u(ry)
o _ u(rz)

= (6¢'6) 6| |, (10)
(073 u(ry)
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where
1 y(p-q) v(p1 - qx)
1 y(p2-qi) v (P2 - k)
= R
1 y(py - Qi) v (P - qx)

Coefficient ¢ is computed such that (4) is minimized,
which means that the values u(r,) are close to 1. Coefficients
ao,...,ak are computed such that (9) is minimized, which
means that b(p,) is close to u(r,), which in turn is close to 1.
Since typically points p, relatively densely cover the sphere,
the stopping function b(p) is close to 1 everywhere on the
sphere.

We propagate the mesh vertices from the sphere to the
object surface according to (7). For a given mesh vertex v
on the sphere, the corresponding unit vector is v/|v| and
the value of the stopping function for that vertex is b(v/|v]|).
Over the course of propagation the underlying value of the
scalar field u(r(¢)) grows and when it reaches b(v/|v|) the
propagation stops.

Instead of using the value of 1 to stop all the vertices, we
increase the accuracy of the fitting of the boundary points
by using the stopping function. The more control points the
more accurate the fitting, and the fewer control points the
smoother the final surface.

2.8. In-Slice Distance Calculation. To quantify the closeness
of the meshes generated by the marching cubes and the
proposed method we compute the in-slice distance between
the respective mesh cross-sections in a given slice (results
given in Section 3.4). To measure the in-slice distance we
densely sample the two cross-sections. For a given point (p;)
in the first set of samples we find the closest point (p,) in
the second set of samples and then for p, we find the closest
point (p3) in the first set of samples. If p3 is the same as p;
then we say that p; and p, form a pair of corresponding
points in the two cross-sections. We find all the pairs of
corresponding points in the two cross-sections and compute
their distances, from which we compute the average distance
and standard deviation.

3. Results

3.1. Test Images. The method was tested using anatomical
cardiac MRI scans of five healthy volunteers. The scans were
acquired using steady-state free-precession short axis cine
imaging with a 1.5T clinical MRI scanner (Intera, Philips
Medical Systems, Best, The Netherlands). The scans had 12-
17 contiguous short axis slices with 256 X 256 pixels, 8 mm
slice thickness, 1.44 mm in-plane resolution and a 20 cm field
of view. A flip angle of 65°, TR of 3.4 milliseconds, and TE
of 1.7 milliseconds were used. The four cardiac chambers as
well as the entire heart were manually segmented in all five
scans.

Consecutive mesh distance (mm)
(3]

0 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Number of singularities

FIGURE 3: Average distance between consecutive meshes as a
function of the number of singularities.

3.2. Method Parameters. The presented method has three
parameters: the number of singularities (M), the number of
control points (K), and the number of mesh vertices (V).
Note that M and K affect the shape of the continuous implicit
surface, while V affects the triangulation of the continuous
implicit surface.

In this section we analyze the effect of the parameter
values on the resulting mesh. The studies were done on the
right ventricle of one of the subjects, since the right ventricle
is more curved than the other three chambers and is the only
chamber that has both convex and concave regions.

In the first study we generated a sequence of surface
meshes by increasing the number of singularities. Then we
computed the average distance between consecutive meshes
in the sequence to quantify the change the mesh undergoes
as M is increased (Figure 3).

In the second study we generated a sequence of surface
meshes by increasing the number of control points. Then we
computed the average distance between consecutive meshes
in the sequence to quantify the change the mesh undergoes
as K is increased (Figure 4).

In the third study we generated a sequence of surface
meshes by increasing the number of mesh vertices. Then we
computed the average distance between consecutive meshes
in the sequence to quantify the change the mesh undergoes
as V is increased (Figure 5).

3.3. Mesh Quality. To measure the mesh quality, we use
a triangle quality index suggested in [18], which can be
evaluated as
8(p—a)(p-b)(p—c) a+b+c
- . p= . (12
Q abc P 3 (12
where a, b, and ¢ are the lengths of the three sides of the
triangle. It can be shown that 0 < Q < 1 for any triangle, Q =
1 for an equilateral triangle, Q is close to zero for irregular
triangles, and Q = 0 for a zero-area triangle. Triangles with
Q > .5 are considered to be of reasonably good quality.
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FIGURE 4: Average distance between consecutive meshes as a
function of the number of control points.
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FIGURE 5: Average distance between consecutive meshes as a
function of the number of mesh vertices.

We generated a sequence of surface meshes by increasing
the number of mesh vertices. Then we computed the average
quality index for each mesh in the sequence (Figure 6). One
can see that the quality index is practically independent of the
number of mesh vertices and that it is relatively high (Q =
.85).

It should be noted that the average Q cannot be 1. This
is true even for the sphere, since it cannot be triangulated
with an arbitrary number of equilateral triangles. Figure 7
shows the mesh on the sphere and the corresponding right
ventricular mesh for four different numbers of mesh vertices
and reports the corresponding Q values.

3.4. Comparison to the Marching Cubes. The method was
tested on the endocardial surfaces of the four cardiac
chambers as well as on the epicardial surface of the entire
heart for five subjects. The numbers of singularities, control
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FIGURE 6: Average triangle quality index as a function of the number
of mesh vertices.

TaBLE 1: The average in-slice distance (D) between the surface
meshes generated by the marching cubes and the proposed method
is given for each mesh. The in-plane resolution was 1.44 mm X
1.44 mm. The numbers of singularities (M), control points (K), and
mesh vertices (V) used to generate the meshes with the proposed
method are also reported.

M K \% D [mm)]
LV endocardium 227 204 1180 0.4 .07
RV endocardium 246 225 1220 0.3 .05
LA endocardium 62 66 748 0.5 +.06
RA endocardium 57 58 684 0.4 +.05
Epicardium 422 406 2472 0.3 +.05

points, and mesh vertices used for the test are reported in
Table 1. Figures 8 and 9 show the endocardial and epicardial
surface meshes for one of the subjects.

Since the marching cubes are the most widely used
method, either as a stand-alone method or as a part of
other methods, we compared the endocardial and epicardial
surface meshes of the five subjects generated by the proposed
method to the corresponding surface meshes generated by
the marching cubes. The comparison was done in the short-
axis slices since the in-plane resolution was 5 times higher
than the out-of-plane resolution. Figure 10 shows cross-
sections of segmented blood pools and the corresponding
contours from endocardial meshes obtained by the marching
cubes and the proposed method. Table 1 provides the average
in-slice distance between the surface meshes generated by
the marching cubes and the proposed method. The averages
were computed over all the short-axis slices of each cardiac
chamber for the five subjects.

4. Discussion

The presented method can be used for the surface mesh
generation of any object that is topologically equivalent to
a sphere. While the method can be extended to control
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Ficure 7: Each row shows a mesh on the sphere and the
corresponding right ventricular mesh obtained by propagating the
mesh from the sphere to the right ventricular surface. The numbers
of mesh vertices for the four rows are 200, 500, 1000, and 5000.
The corresponding mean + std (min, max) Q values for the mesh
on the sphere are 0.93 + 0.07(0.75, 1), 0.94 + 0.06(0.78,1), 0.93 +
0.07(0.77,1), and 0.95 + 0.05(0.76, 1), and for the right ventricular
mesh are 0.85 = 0.07(0.68,0.99), 0.84 + 0.06(0.62,0.99), 0.86 =
0.06(0.65,0.99), and 0.85 + 0.07(0.63,0.99).

the triangle size based on the surface curvature, there is no
need for such an approach in the case of myocardial wall
surfaces since they are not highly curved. The method, unlike

FiGgure 8: Endocardium surface meshes generated by the proposed
method for the left ventricle (red), right ventricle (green), left
atrium (blue), and right atrium (yellow).

FiGUre 9: Epicardium surface mesh generated by the proposed
method for the entire myocardium.

other mesh generation methods, allows for a direct control
of the number of triangles and vertices in the mesh, which is
particularly useful in modeling (e.g., FEM) applications.

The method can be used for the generation of surfaces
that are not closed. For example acquired cardiac MRI might
not contain slices going through the apex and the base,
in such case the corresponding endocardial and epicardial
surfaces are not closed. In such cases one can segment
the acquired slices, generate the mesh using the proposed
method and then clip the bottom and top part of the mesh.
This was done for the two atria in Figure 8 and for the
epicardium in Figure 9.

In the examples presented in this paper we generated
triangulated surface meshes. However, the method is inde-
pendent of the type of the mesh; that is, it can be used with
any mesh elements as long as the sphere can be meshed with
such elements. Once the sphere is meshed, the vertices of the
mesh are propagated from the sphere to the surface of the
segmented object in the way explained in Section 2.5.
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(c) (d) (e)

FiGure 10: Contours of endocardial meshes generated by the marching cubes (yellow) and the proposed method (red) in short-axis sections
for (a) left ventricle, (b) right ventricle, (c) left atrium, and (d) right atrium, and in a long-axis section for (e) left ventricle. The endocardial
boundaries are defined by the blood pool segmentation shown in the binary images.

Figures 3 and 4 show that the method converges as the
number of singularities or the number of control points
is increased, which is a desirable behaviour. It means that
beyond certain number of singularities and control points
the method behaves the same. By comparing Figures 3 and
4 one can see that the two parameters have very similar
behaviour, and this is why we used similar values for the two
parameters (Table 1) when we compared our method to the
marching cubes (Section 3.4). The two parameters have the
same effect: they control the smoothness of the underlying
continuous surface. The higher their values the smoother
the surface, and the lower their values the better the surface
fits the boundary points. For these reasons, one can use the
same value for the two parameters and treat them as one
parameter.

While the number of singularities and the number of
control points control the smoothness of the underlying
implicit continuous surface, the number of mesh vertices
affects the triangulation of the continuous surface. From
Figure 5 one can see that the method converges as the num-
ber of vertices is increased, which is a desirable behaviour.

The reason why the graphs in Figures 3, 4, and 5
do not exactly go to zero is the numerical errors in the
implementation of the method resulting in submillimeter
differences in the final location of the mesh vertices. We use
a continuous and exact solution of the Laplace equation,
since an approximate solution would increase the numerical
errors.

The constant and relatively high value of the triangle
quality index in Figure 6 shows that the mesh has close-to-
regular triangles for a range of numbers of vertices. The same
conclusion can be made from Figure 7.

The proposed method generates meshes that are very
close to the ones obtained by the marching cubes (Figure 10).
While the differences in the short axis planes between the
meshes generated by the two methods were submillimeter
(Table 1), the meshes generated by the proposed method
had about five times fewer triangles than the corresponding
meshes generated by the marching cubes. However, unlike
the meshes generated by the marching cubes (Figure 1), the
meshes generated by the proposed method (Figures 8 and 9)
are smooth and have close-to-regular triangles.

The proposed method can be used with segmented
images that have anisotropic voxels. The segmentation
boundary points are not strictly interpolated. Instead, they
are approximated with an implicit surface that fits them in
the least square sense. The surface smoothness versus the
goodness of fit is controlled by the number of singularities
and number of control points, which can take the same value.
If the implicit surface is smooth then the resulting mesh is
also smooth. Thus, there is no need for artificial smoothing
of the mesh that may shrink or affect the mesh in some other
undesired way.

The entire method has been designed to completely avoid
numerical optimization and consequently the problem of
local extrema.

In the proposed method the segmentation boundary
points are approximated with an implicit surface, which is
then triangulated by propagating a regular mesh from a
sphere to the surface. There are other ways to construct
continuous surfaces that interpolate or approximate a given
set of points (e.g., [38]). However, our representation allows
for an exact continuous solution of the Laplace equation,
while other surface models would require a numerical
solution, which in turn would increase the mesh propagation
error. Instead of propagating a regular mesh from the sphere
to the surface, one can use a method for direct triangulation
of implicit surfaces (e.g., [39—41]). These methods are more
general than our method since they can deal with an
arbitrary topology. They march triangles over the surface
and use heuristics to close the triangulation. Unlike these
methods, the proposed method, while restricted only to
spherical topology, does not need a heuristics to close the
triangulation and it can generate meshes with a prespecified
number of triangles.

We note that harmonic functions have already been used
to represent shapes [42] and that there are other ways to map
a sphere to the surface or vice versa (e.g., [43]).

In the myocardial motion analysis community research-
ers used a structured volumetric mesh of the left ven-
tricle [26-29]. The model was defined in the prolate
spheroidal coordinate system, and its epicardial and endo-
cardial surfaces were fit to left ventricular wall boundary
points extracted from cardiac MRI. The obtained continuous
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smooth model was meshed by mapping a premeshed ellip-
soid to the model. A disadvantage of this approach is that
the size and regularity of the mesh elements is not uniform;
rather, it depends on the distance of the mesh elements from
the pole of the prolate spheroidal coordinate system. Our
proposed approach is similar to theirs in that we also fit
a continuous smooth model to boundary points extracted
from images and then map a premeshed sphere to the model.
However, our model does not have poles or any other special
points and all the mesh elements are uniform in size and
regularity.

5. Conclusion

We have developed a novel method for the construction
of endocardial and epicardial surface meshes from 3D
segmented cardiac MR images with a prespecified number
of vertices and triangles. Even when the voxels are strongly
anisotropic, the resulting meshes are smooth and have close-
to-regular triangles while closely following the segmentation.

Appendix

Harmonic Function with a Spherical Isolevel
and Single Singularity

This section describes the solution to the Laplace equation
over a spherical domain that has a single singularity some-
where within the domain and that is equal to a constant on
the boundary of the domain. Let the sphere center be the
coordinate system origin, R denote the radius of the sphere,
s the location of the singularity, and r the independent
variable. The solution f;(r) needs to satisty the following:

yf}}fs(l‘) = oo, (A1)
fs(®)jr=r =0, (A.2)
Afs=0. (A.3)

The fundamental solution of the Laplace equation in 3D
is 1/|r| and it represents a singularity at the origin. The
fundamental solution centered at s, that is, function 1/|r —s|,
satisfies (A.1) and (A.3), but it does not satisfy the boundary
condition (A.2). It turns out that the sum of two shifted
fundamental solutions, one centered at s and one centered at
sR2/|s|? and multiplied by —R/[s|, satisfies (A.1), (A.2), and
(A.3). Note that the second singularity is outside the sphere,
that is, there is only one singularity within the spherical
domain. The solution is

1 R 1
Ir—s| Isl |r—sR¥/|s|*|’

fs(x) (A.4)

or, alternatively

1 R
Jo(r) = 2 2 2012 ’
\/Irl —2rs + |s] \/Isl |r|© — 2R%rs + R*

(A.5)

It is straightforward to show that (A.5) satisfies (A.1), (A.2),
and (A.3). Also, fs(r) > 0 when [r| <R, fs(r) = 0 when |r| =
R, and fi(r) < 0 when [r| > R. In (A.2) it is assumed that f
is zero at the domain boundary. The zero can be replaced by
a constant C by simply adding C to f;. The gradient of f; is

afs
v U

_ s—r . R(Islzr—st)

3/2
(Irl2 —2rs+ |s|2)

32
(|s|2|r|2 — 2R2rs + R4)
(A.6)

Expression (A.6) is used in the evaluation of Vu in (7).
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