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Abstract: Oleanolic acid (OA), a bioactive ingredient of Panax ginseng, exhibits neuroprotective
pharmacological effects. However, the protective role of OA in cerebral ischemia and involved
mechanisms remain unclear. This study attempted to explore the therapeutic effects of OA both
in vitro and in vivo. OA attenuated cytotoxicity and overproduction of intracellular reactive oxygen
species (ROS) by regulation of glycogen synthase kinase-3β (GSK-3β)/heme oxygenase-1 (HO-1)
signal in oxygen-glucose deprivation/reoxygenation (OGD/R)-exposed SH-SY5Y cells. Additionally,
OA administration significantly reduced the area of cerebral infarction and the neurological scores
in the rat models of cerebral ischemia with middle cerebral artery occlusion (MCAO). The OA
administration group showed a higher percentage of Nissl+ and NeuN+ cells, along with lower
TUNEL+ ratios in the infarct area of MCAO rats. Moreover, OA administration reduced ROS
production while it suppressed the GSK-3β activation and upregulated the HO-1 expression in
infarcted tissue. Our results illustrated that OA significantly counteracted cerebral ischemia-mediated
injury through antioxidant effects induced by the regulation of the GSK-3β/HO-1 signaling pathway,
implicating OA as a promising neuroprotective drug for the therapy of ischemic stroke.

Keywords: oleanolic acid; cerebral ischemia/reperfusion; antioxidant properties; GSK-3β/HO-1
pathway

1. Introduction

Ischemic stroke accounts for ~80% of all cases of stroke, which ranks as the second
leading cause of death globally [1]. Despite the significant pharmaceutical advances that
have been made in recent years, clinically effective drugs for the treatment of ischemic
strokes are still lacking [2].

Traditional Chinese medicine (TCM) is considered a huge source of novel drugs and
compounds for therapy in neurological diseases [3]. Ginseng (Panax ginseng), a popular herb
used in TCM, has been confirmed to play a protective role in cerebral ischemia in vivo [4].
Among the bioactive ingredients of ginseng, the triterpenoid oleanolic acid (OA) has
exhibited favorable pharmacological properties—including neuroprotective, anticancer,
and anti-inflammatory activities [5].

The accumulation of reactive oxygen species (ROS) after an ischemic stroke leads to
oxidative stress in the brain, which is one of the fundamental mechanisms underlying
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neuronal damage caused by ischemic stroke. Hence, antioxidative stress is a potential target
in the ischemic stroke therapy [6]. It was reported that OA alleviated cerebral ischemic dam-
age via the modulation of endogenous antioxidants [7], and ameliorated inflammation and
apoptosis in PC12 cells induced by oxygen-glucose deprivation/reperfusion (OGD/R) [8].
Thus, OA has been proffered as an effective neuroprotective compound for the treatment
of cerebral ischemia via antioxidation [9]; however, a detailed mechanistic understanding
of OA’s antioxidation effect on ischemia stroke treatment is still lacking.

Numerous pathways are associated with the regulation of oxidative stress. Heme
oxygenase-1 (HO-1) has been reported as the most effective antioxidant-response element
(ARE) in the human body, indicating that HO-1 might be a promising therapeutic tar-
get in ischemic stroke. Edaravone, marketed in Japan for ischemic stroke treatment, is a
free-radical scavenger that functions through the HO-1 pathway [10]. Additionally, glyco-
gen synthase kinase-3β (GSK-3β) is a crucial regulator of HO-1 in controlling oxidative
stress [11]. Accumulating evidence has demonstrated that suppression of GSK-3β activity
results in overexpression of the HO-1 protein, subsequently ameliorating ischemic stroke-
mediated neuronal injury [12,13]. OA was found to improve synaptic connection and
neurodegeneration in a mouse model of cerebral ischemia via upregulation of HO-1 [14].
Interestingly, a previous study also demonstrated that pre-treatment with OA protect hep-
atic ischemia-reperfusion injury through inhibition of GSK-3β [15]. These reports suggest
that OA might exert antioxidative effects in ischemic stroke by regulating the GSK-3β/HO-1
pathway, but the supporting evidence is still needed.

Therefore, this study was performed to examine the therapeutic benefits and potential
mechanism of OA-mediated amelioration of ischemic brain injury both in vitro and in vivo.
OA administration was found to protect neuronal cells against OGD/R damage, as well as
alleviate ischemia injury by attenuating oxidative stress in a rat model of middle cerebral
artery occlusion (MCAO). These effects might result from regulation of the GSK-3β/HO-1
pathway. The present findings not only provide a novel understanding of the anti-ischemic
effects of OA, but also reveal a potential application of OA in treating ischemic stroke.

2. Results
2.1. OA-Mediated Suppression of OGD/R-Induced Toxicity in SH-SY5Y Cells

We monitored the neuroprotective effects of OA in OGD/R-induced SH-SY5Y cell
model of ischemic injury. The cytotoxicity of OA on SH-SY5Y cells was first analyzed,
and the cell viability was significantly decreased after OA induction at 80 µM (Figure 1A).
Therefore, the dosages of OA used in the in vitro pharmacological study were 10, 20,
and 40 µM. As expected, OGD/R induction significantly decreased the viability of SH-
SY5Y cells. However, pretreatment with OA significantly suppressed this effect in a dose-
dependent manner (Figure 1B). Next, OGD/R-induced ROS production was monitored in
SH-SY5Y cells. ODG/R treatment significantly upregulated ROS accumulation than the no-
treatment group. OA pretreatment significantly suppressed the elevated ROS production
in SH-SY5Y cells in a dose-dependent manner (Figure 1C).

2.2. OA Regulates GSK-3β/HO-1 Pathway in OGD/R-Induced SH-SY5Y Cells

Furthermore, the GSK-3β/HO-1 signaling pathway was analyzed using Western
blot assays. OGD/R treatment dramatically decreased the ratio of p-GSK-3β(Ser9)/GSK-
3β and the expression level of HO-1 in SH-SY5Y cells. As expected, pretreatment with
OA significantly ameliorated these effects dose-dependently (Figure 1D,E). These results
suggested that pretreatment with OA can suppress OGD/R-induced SH-SY5Y cell injury
by regulating the GSK-3β/HO-1 signaling pathway.
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Figure 1. OA suppressed OGD/R-induced toxicity in SH-SY5Y cells via GSK-3β/HO-1 pathway. (A) Cell viability of OA 
on SH-SY5Y cells. (B) Cell viability of OA and (C) relative ROS production on OGD/R-exposed SH-SY5Y cells with or 
without OA treatment. (D) Representative protein bands and (E) quantitative analysis of the p-GSK-3β(Ser9)/GSK-3β ratio 
and HO-1 protein expression levels in OGD/R-exposed SH-SY5Y cells with or without OA treatment. Data are shown as 
the mean ± standard deviation (S.D.). ** p < 0.01 versus the control group; # p < 0.05 and ## p < 0.01 versus the OGD/R group. 
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Figure 1. OA suppressed OGD/R-induced toxicity in SH-SY5Y cells via GSK-3β/HO-1 pathway.
(A) Cell viability of OA on SH-SY5Y cells. (B) Cell viability of OA and (C) relative ROS production
on OGD/R-exposed SH-SY5Y cells with or without OA treatment. (D) Representative protein bands
and (E) quantitative analysis of the p-GSK-3β(Ser9)/GSK-3β ratio and HO-1 protein expression
levels in OGD/R-exposed SH-SY5Y cells with or without OA treatment. Data are shown as the
mean ± standard deviation (S.D.). ** p < 0.01 versus the control group; # p < 0.05 and ## p < 0.01
versus the OGD/R group.

2.3. OA Administration Attenuated Neurological Deficits and Cerebral Infarction in MCAO Rats

The protective effects of OA on MCAO rats are presented as reductions in neurological
deficits and total infarcted area. As shown in Figure 2A, the Zea-Longa scores of the
MCAO group rats were significantly increased compared with those of the rats in the
sham group, indicating significant MCAO-induced impairment of neurological function.
As expected, compared with the MCAO group, OA administration significantly reduced
the Zea-Longa score in a dose-dependent manner. In parallel, the volumes of infarcted
areas were monitored by TTC staining. As shown in Figure 2B, the MCAO group showed
extensive infarcted tissue (pale area) at 6 days post reperfusion. However, no infarcted
area was seen in the brains of rats in the sham group (Figure 2B). Quantitative analysis was
conducted for comparing the infarct volume (Figure 2C). The infarct volume of the brains
in the MCAO group were dramatically increased compared to those in the sham group
which had no infarct volume. As respected, OA-treated MCAO rats had significantly and
dose-dependently reduced infarct volumes compared to untreated MCAO rats (Figure 2C).
These results indicated that OA significantly ameliorated ischemic brain injury in rats with
MCAO-induced cerebral ischemia.

2.4. OA Administration Reduced Neuronal Damage in MCAO Rats

Neuronal damage in MCAO rats was monitored by Nissl staining and immunofluores-
cent staining of NeuN in the infarcted areas. Nissl staining revealed a significant reduction
in the proportion of Nissl+ cells in the infarcted areas of the rats in the MCAO group
compared to the sham group, indicating neuronal degradation in the former. However,
the proportion of Nissl+ cells was significantly upregulated in OA-treated MCAO rats
compared to untreated MCAO rats in a dose-dependent manner (Figure 3A,B). Consis-
tently, immunofluorescent NeuN staining revealed that the proportion of NeuN+ cells
in the infarct areas was dramatically decreased in the MCAO group compared to the
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sham group. This reduction was markedly ameliorated following OA administration in a
dose-dependent manner (Figure 3C,D). These findings suggested that OA administration
significantly and dose-dependently ameliorated neuronal damage in infarcted regions in
MCAO rats.
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Figure 3. OA administration reduced neuronal damage in MCAO rats. (A) Representative images of
Nissl staining and (B) quantitative analysis of the proportion of Nissl+ cells in the infarcted area in
MCAO rats with or without OA administration. (C) Representative images of NeuN immunofluores-
cent staining and (D) quantitative analysis of the proportion of NeuN+ cells in the infarcted area in
MCAO rats with or without OA administration. Data are shown as the mean ± S.D. Scale bars: 1 mm
and 50 µm. ** p < 0.01 versus the sham + vehicle group; ## p < 0.01 versus the MCAO + vehicle group.
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2.5. OA Administration Reduced Cellular Apoptosis in MCAO Rats

TUNEL staining was performed to monitor cellular apoptosis in the MCAO rats. The
proportion of TUNEL+ cells in the infarcted regions was significantly upregulated in the
MCAO group compared to the sham group. As expected, this increase was abolished in
OA-treated MCAO rats compared to untreated MCAO rats in a dose-dependent manner. In
particular, compared with the untreated MCAO group, the percentage of TUNEL+ cells in
cerebral infarct tissue significantly decreased in MCAO rats after treatment with 20 mg/kg
OA (Figure 4A,B).
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of TUNEL staining and (B) quantitative analysis of the proportion of TUNEL+ cells in the infarcted
area in MCAO rats with or without OA administration. (C) Relative ROS production in MCAO
rats with or without OA administration. Data are shown as the mean ± S.D. Scale bars: 1 mm
and 50 µm. ** p < 0.01 versus the sham + vehicle group; # p < 0.05 and ## p < 0.01 versus the
MCAO + vehicle group.

Furthermore, the MCAO group showed significantly upregulated ROS levels in cere-
bral infarct tissue compared to the sham group. As expected, OA administration signifi-
cantly and dose-dependently prevented this increase in ROS production (Figure 4C). The
results strongly indicated that OA administration could inhibit MCAO-induced neuron
apoptosis and oxidative stress in infarcted regions.

2.6. OA Administration Regulated GSK-3β/HO-1 Signaling Pathway

The role of the GSK-3β/HO-1 pathway in OA-mediated neuroprotection in MCAO
rats was examined using Western blot assays. The ratio of p-GSK-3β(Ser9)/GSK-3β and
the HO-1 protein expression levels were not significantly changed in the infarcted tissue
of MCAO rats compared to sham rats (Figure 5A–C). However, compared with untreated
MCAO rats, OA-treated rats (both 10 and 20 mg/kg OA) showed a significantly increased
p-GSK-3β(Ser9)/GSK-3β ratio (Figure 5B), as well as an increase in the expression of HO-1
protein (Figure 5C), in a dose-dependent manner. These results indicated that GSK-3β/HO-
1 signaling was crucial for neuroprotection in MCAO rats following OA administration.
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Figure 5. OA administration regulated GSK-3β/HO-1 signaling pathway. (A) Representative protein
bands and quantitative analysis of the (B) p-GSK-3β(Ser9)/GSK-3β ratio and (C) HO-1 protein
expression levels, as assessed by Western blots, in the infarcted tissue of MCAO rats with or without
OA administration. Data are shown as the mean ± S.D. # p < 0.05 and ## p < 0.01 versus the
MCAO + vehicle group.

3. Discussion

The burden of stroke worldwide is expected to increase further as a result of the
increasing aging population [16]. To date, pharmacological interventions to promote stroke
rehabilitation have been studied in clinical and preclinical settings. However, most of
these interventions have failed due to the ambiguous efficacy and safety in humans with
stroke [17]. Therefore, it is crucial to identify novel neuroprotective agents to both prevent
and treat ischemic stroke.

Multifarious therapeutic strategies have been developed for ischemic stroke treatment.
Thrombolysis is one of the most effective treatments, but it has been shown to increase the
risk of symptomatic intracranial hemorrhage [18]. Recently, cellular therapies—including
induced pluripotent stem cells or neural stem cells—have been shown to have the potential
to contribute neuronal cells’ viability following ischemic injury. However, such therapies are
still under development and may increase the risk of tumorigenesis [19]. Pharmacotherapy
is preferred for the patients with ischemic stroke. Considering the central role of oxidative
stress in stroke pathogenesis, antioxidative agents—especially natural compounds—have
been considered to be a potentially effective therapeutic strategy for ischemic stroke [20].

Ginseng (Panax ginseng) and its components are known to possess significant antiox-
idant effects and may help prevent and treat several diseases—including cancer, cardio-
vascular, and nervous system disorders [21]. OA, a natural pentacyclic triterpenoid, is a
bioactive ingredient of ginseng that can penetrate the blood–brain barrier [22]. Several stud-
ies have demonstrated that OA significantly ameliorated cognitive declines in the mouse
model of Alzheimer’s disease at 10 mg/kg and in the rat model of Alzheimer’s disease
at 21.6 mg/kg [23,24]. Earlier research also reported that OA improved depressant-like
behaviors in mice at the dosage of 10 and 20 mg/kg [25]. Noteworthy, it was reported that
the liver injury was observed and the bodyweight was significantly lost in adult C57BL/6
mice after OA administration at 90 mg/kg or above for 5 days [26]. These studies suggested
that OA produced significantly neuropharmacological properties at around 10–20 mg/kg
and might exhibit potentially toxic effects at a higher dosage. In the present study, the dose
selection of OA, 10 and 20 mg/kg, was based on selecting the optimal dose of OA that
balances the effects and risks. The results of our study demonstrated that OA significantly
reduced the neurological deficit of MCAO rats at 10 and 20 mg/kg.

Accumulating evidence has revealed that the GSK-3β/HO-1 pathway modulates
oxidative stress levels in the progression and treatment of ischemic stroke [27,28]. An
earlier study suggested that oleanolic triterpenoid affected cell migration via inhibition of
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GSK-3β activity [29], and an in silico study also hypothesized that OA may exert wound-
healing activity by inhibiting GSK-3β [30]. Consistently, the present study showed that OA
administration can significantly inhibit GSK-3β activation and consequently increase HO-1
expression, resulting in a reduction in the pathological alterations induced in the MCAO rat
model, as well as protect neuronal cells against OGD/R-induced damage. However, it is
worth mentioning that GSK-3β is essential for brain development, neuronal plasticity, and
other normal human functions [31]. The safety and feasibility of using GSK-3β regulators,
such as OA, for treating ischemic stroke should be carefully monitored in the future.

Several recent studies investigated the antioxidant activity of OA in different disease
models. For example, OA was found to reduce oxidative stress in silicotic rats by modulat-
ing the Akt/NF-κB pathway [32]. Moreover, OA suppressed oxidative stress by regulating
the stanniocalcin-1 pathway in a cell model of Alzheimer’s disease treatment [33], as well
as repressed oxidative stress via the SIRT3/NF-κB axis in an in vitro osteoarthritis cell
model [34]. These studies indicate that such OA-mediated antioxidant effects are broadly
applicable, and that the underlying mechanisms are complex. As such, the involvement
of other mechanisms, in addition to the GSK-3β/HO-1 pathway-mediated effects, during
OA-mediated treatment of ischemic stroke is unclear and warrants further investigation. As
the population ages, neurodegenerative diseases—including stroke—have been identified
as one of the greatest public health problems. Although there are currently no effective
treatments for neurodegenerative diseases, antioxidants are considered as a promising
approach to slow the progression of and treat these disorders [35]. The present study offers
insight into the development of natural compounds, such as OA, as novel treatments of
neurodegeneration diseases.

4. Materials and Methods
4.1. Cell Culture and the OGD/R Model

SH-SY5Y cells, purchased from ATCC, have been extensively used in studies of cere-
bral ischemia. SH-SY5Y cells were cultured in DMEM supplemented with 10% fetal bovine
serum (FBS) and 1% penicillin/streptomycin at 37 ◦C in a 5% CO2 humidified incubator.
Cells were incubated with different OA concentrations (10, 20, and 40 µM) for 12 h prior
to induction of OGD/R and then cultured in glucose-free medium without FBS under
hypoxic conditions as described above for 4 h. Then, the cells were incubated in a normoxic
incubator with normal culture medium for reoxygenation.

4.2. MTT Assay

OA (≥98%, HPLC grade) was purchased from Must Bio-Technology Co., Ltd. (Chengdu,
China). The MTT assay was carried out for a cell viability test. After treatment with OA
and OGD/R, MTT solution (5 mg/mL) was added and incubated for another 4 h. Then,
the solution was replaced by dimethyl sulfoxide (DMSO) to dissolve the formazan crystals.
Absorbance was monitored at 570/630 nm (excitation/emission) with a microplate reader.
Relative cell viability was expressed as the absorbance of each well content relative to the
corresponding untreated well content.

4.3. Measurement of ROS in Cells

Intracellular ROS production was analyzed by a fluorescent (5,6)-chloromethyl-2′,7′-
dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA) probe (Invitrogen, Carls-
bad, CA, USA) according to the manufacturer’s instructions. The fluorescence intensity
was measured using a microplate reader at 495/525 nm (excitation/emission).

4.4. Western Blot Assay

Proteins were extracted from the infarcted tissue and cultured cells using RIPA buffer.
The proteins were separated by SDS-PAGE and transferred to PVDF membranes using
the Bio-Rad transfer system (Bio-Rad Laboratories, Hercules, CA, USA). The membranes
were blocked with 5% fat-free milk and incubated with corresponding primary antibodies
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at 4 ◦C overnight, including GSK-3β antibody (Cat.: 9315S, Cell Signaling Technology,
Danvers, MA, USA), p-GSK-3β (Ser9) antibody (Cat.: 5558S, Cell Signaling Technology),
HO-1 antibody (Cat.: 86806S, Cell Signaling Technology), and β-actin antibody (Cat.: A5316,
Sigma-Aldrich, St. Louis, MO, USA). After washing, the membranes were incubated with
secondary antibodies. The blots were visualized using a chemiluminescence kit (Millipore,
Burlington, CA, USA) and evaluated using the ChemiDoc Touch imaging system (Bio-Rad
Laboratories). Relative band intensities were quantified using ImageJ (NIH, Bethesda,
MD, USA).

4.5. Animals and OA Administration

Healthy male Sprague-Dawley rats (200–220 g weight) were purchased from Viton
Lihua Experimental Animal Technology Co., Ltd. (Beijing, China). All rats were housed in
a 12 h light/dark cycle and humidity- and temperature-controlled environment with ad
libitum access to food and water.

Experimental protocols were approved by the Department of Health, the Government
of Hong Kong Special Administrative Region. The rats were randomly grouped as follows
(n = 10 per group): sham + vehicle, MCAO + vehicle, MCAO + OA (10 mg/kg), and MCAO
+ OA (20 mg/kg). OA was prepared in saline solution with 2% Tween-80. Drug admin-
istration was carried out 3 days pre-MCAO and 6 days post-MCAO via intraperitoneal
injection once daily. Rats in sham and untreated MCAO groups were given the equivalent
volume of vehicle. The OA doses were selected according to previous reports [23–26].

4.6. MCAO Procedure

MCAO was induced after the third administration of OA as described in our previous
report [36]. Briefly, rats were anesthetized by 3% isoflurane inhalation (1.5 L/min). The
arterial sheath was carefully separated without injuring the vagus nerve, followed by
separation of the common carotid artery (CCA), external carotid artery (ECA), and internal
carotid artery (ICA) with a midline incision. The CCA and ECA were ligated, and a silicon-
coated monofilament suture was inserted into the ECA and advanced through the ICA to
block blood flow and occlude the middle cerebral artery (MCA). The monofilament was
withdrawn to restore blood circulation after 1.5 h occlusion and allows reperfusion. Sham
rats were subjected to the same surgical processes but without MCAO.

4.7. Neurological Deficit Assessment and Brain Tissue Collection

Neurological function was analyzed 6 days after reperfusion using the Zea-Longa
score, as described previously [36]. The Zea-Longa score ranges from 0 to 4 (0: no obvious
impairment; 1: inextensibility of the contralateral forepaw; 2: circling to the contralateral
side; 3: leaning to the contralateral side; 4: disability to walk spontaneously).

After assessing neurological status, all rats were perfused with phosphate-buffered
saline under anesthesia prior to the collection of brain tissues. Five whole brains were
collected from each group for TTC staining. Another five brains were divided into anterior
and posterior hemispheres. The anterior hemispheres were used for histopathological stain-
ing, while the posterior hemispheres were stored at−80 ◦C and used for ROS measurement
and Western blot assays.

4.8. TTC Staining

The extent of the infarcts was monitored by TTC staining. The whole brains (n = 5)
were sliced into coronal sections and stained with a 2% TTC (Sigma-Aldrich) solution at
37 ◦C for 20 min, followed by fixation with 10% formaldehyde. The volumes of infarcted
areas (pale) and non-infarcted areas (red/pink color) were quantified by using Image J
software. The infarcted volume was calculated as the percentage of the infarcted area
relative to the total hemisphere area.
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4.9. Nissl and Immunofluorescent Staining

Neuronal loss in the infarcted area was assessed by Nissl and immunofluorescent
NeuN staining. Brain hemispheres (n = 5) were fixed in 10% formaldehyde solution, em-
bedded in paraffin, and micro-sectioned into coronal sections. The sections were stained
using Nissl staining solution (Beyotime, Beijing, China) as per the manufacturer’s instruc-
tions. For immunofluorescent NeuN staining, coronal brain sections were incubated with
an anti-NeuN antibody at 4 ◦C overnight, followed by incubation with FITC-conjugated
secondary antibody. DAPI was used to stain the cell nuclei. Three images in the infarct
area were randomly selected from each brain. The relative Nissl+ cell numbers and pro-
portion of NeuN+/DAPI+ cells in the infarcted region were calculated. All images were
captured using a Pannoramic DESK scanner and analyzed using the CaseViewer software
(3DHISTECH, Budapest, Hungary).

4.10. TUNEL Staining

Neuronal cell apoptosis was monitored by TUNEL staining using an in-situ Cell
Death Detecting kit (Roche Diagnostics GmbH, Mannheim, Germany), as previously de-
scribed [13]. Cell nuclei were counterstained with DAPI. Three images in the infarct area
were randomly selected from each brain. The proportion of TUNEL+/DAPI+ cells in the
infarcted region was calculated. All images were captured using a Pannoramic DESK
scanner and analyzed using the CaseViewer software.

4.11. ROS Quantification in Tissue

Infarcted tissue homogenate (n = 5) was centrifuged, and the supernatant was used
to quantify ROS using a ROS assay kit (Nanjing Jiancheng Bioengineering Institute, Nan-
jing, China) as per the manufacturer’s instructions. ROS production was monitored us-
ing a microplate reader (Perkin Elmer, Eden Prairie, MN, USA), and relative ROS levels
were calculated.

4.12. Statistical Analyses

The data were presented as the means ± S.D. Statistical analyses were assessed with
one-way ANOVA using SPSS (Version 24.0). The statistical significance level was set at
p < 0.05.

5. Conclusions

In conclusion, this study demonstrated that OA administration can prevent stroke-
associated pathological changes by inducing antioxidative effects via regulating the GSK-
3β/HO-1 pathway both in vitro and in vivo. Beyond ischemic stroke, natural antioxidative
compounds that regulate the GSK-3β/HO-1 signaling pathway may hold significant poten-
tial in the treatment of aging-related neurodegenerative diseases.
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