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Abstract Chromatin accessibility discriminates stem from mature cell populations, enabling the

identification of primitive stem-like cells in primary tumors, such as glioblastoma (GBM) where self-

renewing cells driving cancer progression and recurrence are prime targets for therapeutic

intervention. We show, using single-cell chromatin accessibility, that primary human GBMs harbor a

heterogeneous self-renewing population whose diversity is captured in patient-derived

glioblastoma stem cells (GSCs). In-depth characterization of chromatin accessibility in GSCs

identifies three GSC states: Reactive, Constructive, and Invasive, each governed by uniquely

essential transcription factors and present within GBMs in varying proportions. Orthotopic

xenografts reveal that GSC states associate with survival, and identify an invasive GSC signature
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predictive of low patient survival, in line with the higher invasive properties of Invasive state GSCs

compared to Reactive and Constructive GSCs as shown by in vitro and in vivo assays. Our

chromatin-driven characterization of GSC states improves prognostic precision and identifies

dependencies to guide combination therapies.

Introduction
Glioblastoma (GBM) is a lethal form of brain cancer with standard surgery and radiation giving a

median survival of only 12.6 months (Carlsson et al., 2014). The addition of temozolomide chemo-

therapy provides only an additional 2.5 months in the small subset of responsive

patients (Stupp et al., 2005). Despite extensive characterization and stratification of the bulk pri-

mary tumors, no targeted therapies have been successfully developed (Carlsson et al., 2014;

von Neubeck et al., 2015). GBM tumors are rooted in self-renewing tumor-initiating cells commonly

referred to as glioblastoma stem cells (GSCs) (Venere et al., 2011) that drive disease progression in

vivo (Chen et al., 2012; Gallo et al., 2015) and display resistance to chemo- and radiotherapy lead-

ing to disease recurrence (Bao et al., 2006). The promise of therapeutically targeting self-renewing

tumor-initiating cancer cells depends on our capacity to capture the full range of heterogeneity

within this population from individual tumors. Intratumoral heterogeneity within primary GBM has

recently been documented through single-cell RNA-seq experiments and revealed a continuum

between four cellular states (Neftel et al., 2019): neural-progenitor-like (NPC), oligodendrocyte-pro-

genitor-like (OPC), astrocyte-like (AC), and mesenchymal-like (MES) (Neftel et al., 2019). A subse-

quent study (Wang et al., 2019) using single-cell gene-centric enrichment analysis placed GBM cells

along a single axis of variation from proneural to mesenchymal transcriptional profiles, with cells

expressing stem-associated genes lying at the extremes of this axis. Hence, primary GBM consists of

distinct states, across which stem-like cells appear to be found. Whether these stem-like cells found

across GBM states represent functionally distinct GSC populations with tumor-initiating properties

and unique dependencies remains to be established to guide therapeutic progress. To address this

issue, we combined single-cell technologies to define GSC composition in primary GBM with func-

tional assays to reveal the unique dependencies across GSCs, reflective of invasive, constructive, and

reactive states that relate to patient outcome.

Results
Chromatin accessibility readily discriminates stem from mature cell populations (Stergachis et al.,

2013), which can be resolved at the single-cell level through single-cell ATAC-

seq (Buenrostro et al., 2018; Corces et al., 2016), taking into account non-gene centric features,

such as accessibility of noncoding elements and total amount of accessible DNA sequences. Apply-

ing single-cell chromatin accessibility profiling (scATAC-seq) across four primary adult GBM tumors

(3797 cells), wild type for both IDH1 and IDH2, revealed seven to nine accessibility modules in each

tumor based on unsupervised clustering (Figure 1A). We assigned cells to each of the four scRNA-

seq-derived cellular states (Neftel et al., 2019) based on individual cells’ chromatin accessibility

enrichment scores for the promoter regions of each state’s signature genes. Across the four tumors,

35–55.2% of the cells were significantly enriched for at least one state’s signature genes (Figure 1—

figure supplement 1A). The MES state reported from scRNA-seq (Neftel et al., 2019) dominates

the identity of two or more modules reported from chromatin accessibility in every tumor

(Figure 1B,C, Figure 1—figure supplement 1B). In contrast, the NPC and OPC states are mixed

within the same module defined based on chromatin accessibility, dominating over the other states

typically in at least two modules. Cells assigned to the AC state did not preferentially cluster within a

single module reported from chromatin accessibility (Figure 1B,C, Figure 1—figure supplement

1B). Collectively, our results suggest that chromatin accessibility reflects a greater stratification of

the MES state and detects similarities between the OPC and NPC states and heterogeneity within

the AC state.

To identify putative cancer stem cells within each primary tumor, we next focused on the level of

chromatin accessibility at promoters of 19 transcription factors previously associated with self-

renewal and tumor-propagating capacity in GBM (Suvà et al., 2014; Figure 1D). Individual cells
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Figure 1. The diverse glioblastoma (GBM) cancer stem cell pool. (A) UMAP (Uniform Manifold Approximation and Projection) representation of

chromatin accessibility across four primary GBM. (B) UMAPs with tumor cells assigned to cellular states. (C) UMAP modules are grouped by dominant

cellular state. (D) UMAPs with cancer stem cells highlighted based on the enrichment of GBM cancer stem transcription factor promoters. (E)

Distribution of cancer stem cells across the modules dominated by each cellular state.

Figure 1 continued on next page
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scoring as putative cancer stem cells were not restricted to a unique module defined by chromatin

accessibility but were distributed across a subset of modules, suggesting heterogeneity across can-

cer stem cells in primary GBM, in agreement with reports relying on single GBM cell

labeling (Corces et al., 2016; Gallo et al., 2015; Lan et al., 2017; Liau et al., 2017; Meyer et al.,

2015; Miller et al., 2017; Orzan et al., 2017; Park et al., 2017; Rheinbay et al., 2013;

Stergachis et al., 2013; Suvà et al., 2014), assessing the heterogeneity of self-renewing tumor-initi-

ating cells. Putative cancer stem cells identified in primary GBM through scATAC-seq were found in

modules ascribed to every one of the four cellular states defined by gene expression (Neftel et al.,

2019), predominantly within NPC and OPC containing modules and a smaller fraction (<10%) in

MES-specific modules across all four tumors (Figure 1E). This suggests that the core transcriptional

unit of cancer stem cells in primary GBM (Suvà et al., 2014) is not restricted to a unique population

defined by its global transcriptional or chromatin accessibility profile with the resolution achieved

with current single-cell technologies.

To further probe the heterogeneity in chromatin accessibility within the GBM cancer stem cell

pool, we derived GSC populations from 27 adult IDH wild-type GBM tumors (Pollard et al., 2009)

and profiled their chromatin accessibility by bulk ATAC-seq (Figure 2A). Each patient-derived GSC

showed a similar enrichment for accessible chromatin regions in promoters and 50UTRs, and deple-

tion in introns and distal intergenic regions (Figure 2B). Collectively, we uncovered 92% of the total

predicted regions of accessible chromatin (255,891 regions) within GSCs based on a saturation anal-

ysis using a self-starting non-linear regression model across the 27 samples (Figure 2C). We next

assessed the similarity between these GSCs and the putative cancer stem cells found by scATAC-

seq in the four primary GBMs. GSCs were identified within each tumor by calculating the enrichment

of accessible chromatin regions shared by a majority of GSCs (>14/27) in each tumor cell

(Figure 2D). On average, 11.3% of cells in each primary GBM were labeled as GSCs. Comparing the

distribution of GSCs across the seven to nine modules defined by scATAC-seq to that of the 19 tran-

scription factor-derived cancer stem cell signature demonstrates concordance between the two sig-

natures (Figure 2E). Moreover, the enrichment z-scores for both cancer stem signatures (i.e. stem

transcription factors signature and GSC chromatin accessibility signature) are significantly correlated

across cells in all four tumors (p�1.6�10�5) (Figure 2F). The overlap in cells significantly enriched for

either stem signatures across the four tumors is also significant (hypergeometric test p-val-

ue=8.8�10�8) Additionally, an average of 91.2% (85.1–100%) of the cells identified by either signa-

ture display the hallmark GBM copy number changes at chromosomes 7 and 10, confirming their

neoplastic status (Figure 2—figure supplement 1). Collectively, these results demonstrate that the

patient-derived GSC populations reflect the chromatin identity of putative cancer stem cells found in

primary brain tumors, highlighting the value of these GSCs as models to deepen our understanding

of individual cells within primary GBM with features found in self-renewing tumor-initiating cells.

Accordingly, spectral clustering of the 27 patient-derived GSC ATAC profiles identifies three distinct

states of self-renewing tumor-initiating cells (Figure 3A). Expression profiling of these 27 GSCs by

RNA-seq reveals GSCs significantly enriched for the signatures of each of the three TCGA GBM sub-

types (proneural, classical, and mesenchymal) (Wang et al., 2017; Figure 3B). However, the assign-

ment of the proneural, classical, and mesenchymal subtypes across GSCs did not match the three

clusters identified from ATAC-seq (Figure 3B). Conversely, clustering the GSCs by gene expression,

independently of their chromatin accessibility, did largely recapitulate the GSC states defined by

chromatin accessibility (Figure 3B). This suggests that the mismatch between the GSC cluster from

chromatin accessibility profiles and TCGA expression subtypes is not mainly due to differences

between chromatin accessibility and gene expression. Potential alternative causes for this observed

mismatch include the absence of a tumor microenvironment in the GSC populations or that given

the TCGA subtypes were determined from bulk GBM, they may not fully capture the nature of rarer

populations found within a tumor, such as the cancer stem cell populations.

Figure 1 continued

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The distribution of cell states across tumor cells.
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Gene set enrichment analysis with GSEA (Gene Set Enrichment Analysis) (Subramanian et al.,

2005) and g:profiler (Reimand et al., 2016) using genes exclusively enriched for both expression

and promoter chromatin accessibility in each subtype reported significantly enriched terms defining

the largest GSC state as a Reactive state, with terms related to immune cells and response

(Figure 3C, top panel). A second GSC state was enriched for Constructive gene sets involved in

brain, neuron, and glial cell development (Figure 3C, middle panel). The third and smallest GSC
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Figure 2. GSCs recapitulate the glioblastoma (GBM) cancer stem cell population. (A) Schematic representation of the GSC derivation process, from

patient tumor to GSC-enriched population. (B) Genomic feature enrichment of accessible chromatin peaks. (C) Saturation curve for the 27 GSCs. (D)

UMAPs with GSCs highlighted based on the enrichment of shared accessible regions across GSCs. (E) Proportion of UMAP modules assigned to cancer

stem cells and GSCs. (F) Correlation of z-scores for each signature for each cell in each primary GBM.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Identification of tumor cells through characteristic copy number changes.
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Figure 3. Three glioblastoma stem cell (GSC) states driven by chromatin accessibility. (A) Spectral clustering of ATAC-seq signal across peaks in 27

GSCs. (B) Spectral clustering of gene expression across GSCs and comparison to chromatin-derived GSC states. Enrichment of TCGA subtypes across

GSCs and comparison to GSC states as determined by ATAC. The GSEA (Gene Set Enrichment Analysis) gene sets each contained 50 genes and the

enrichment scores ranged from 0.16 to 0.73. (C) Gene set enrichment analysis in each GSC state. All displayed terms are significantly enriched (q-

Figure 3 continued on next page
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state presented an Invasive state characterized by terms relating to the extracellular matrix and

angiogenesis (Figure 3C, bottom panel). We next mapped copy number alterations (CNAs) across

the 27 GSCs by applying the molecular neuropathology classifier tool (Capper et al., 2018) to DNA

methylation data from the GSCs (Figure 3D). While common GBM CNAs, including EGFR gains and

CDKN2A/B loss, were observed, the CNA-based classification of GSCs failed to match the three

chromatin accessibility-derived states, suggesting the three GSC states are not defined by somatic

copy number events (Figure 3D). Further comparison of the accessible chromatin in each GSC state

reveals that only a small subset of accessible chromatin regions drives the three GSC states

(Figure 3E, Figure 3—figure supplement 1). Our ability to discriminate GSC state-specific regions

of accessible chromatin is reflective of the comprehensiveness of our cohort to saturate the detec-

tion of accessible regions to 93%, 88%, and 71% across the Reactive (n = 13), Constructive (n = 9),

and Invasive (n = 5) state GSCs, respectively (Figure 3F).

Considering that regions of accessible chromatin serve as binding sites for transcription factors

engaging in gene expression regulation, we next tested for DNA recognition motif family enrich-

ment across regions exclusively accessible in Reactive, Constructive, or Invasive GSC states

(Figure 4A, Figure 4—figure supplement 1A). The most enriched DNA recognition motif families in

each state were either depleted or showed low-level enrichment in the other states. Specifically, the

DNA recognition motifs for the interferon-regulatory factor (IRF) and Cys2-His2 zinc finger (C2H2 ZF)

transcription factor families were enriched in the Reactive state (Figure 4A, top panel). Regulatory

factor X (RFX) and basic helix-loop-helix (bHLH) DNA recognition motifs were enriched in the Con-

structive state (Figure 4A, middle panel), while the Forkhead motif family was enriched in the Inva-

sive state (Figure 4A, bottom panel). Genome-wide CRISPR/Cas9 essentiality screens (Figure 4—

figure supplement 1B) in three Reactive, two Constructive and one Invasive GSC (MacLeod et al.,

2019) revealed the preferential requirement for expressed transcription factors (Figure 4—figure

supplement 1C–E) recognizing the enriched DNA recognition motif in a state-specific manner

(Figure 4B). Specifically, the SP1 regulatory network is preferentially essential in the Reactive state

GSCs (Figure 4B, top panel), ASCL1, OLIG2, AHR, and NPAS3 are uniquely essential in the Con-

structive state GSCs (Figure 4B, middle panel) and FOXD1 is essential only in the Invasive state GSC

(Figure 4B, bottom panel). Notably, SP1 itself is exclusively essential in only one Reactive GSC

(G564). However, of the 36 transcription factors from the Reactive-enriched families (IRF and C2H2

ZF) that were essential in at least one Reactive GSC and not in any of the Constructive or Invasive

GSCs, 13 are directly regulated by SP1 (Figure 4—figure supplement 1C), thus suggesting that the

SP1 regulatory network as a whole, rather than SP1 on its own, is key in the Reactive GSC state.

Notably, all six transcription factors display significantly higher expression in GBM compared to nor-

mal brain (Tang et al., 2017; Figure 4—figure supplement 1F), further supporting their function as

key regulators of tumor initiation and development. An additional gene set enrichment analysis com-

bining genes exclusively essential to each state with the putative targets of the key transcription fac-

tors outlined above identifies additional enriched terms supporting the identities of the three GSC

states as Reactive, Constructive, and Invasive (Figure 4—figure supplement 1G).

Previous work suggests that GBM tumors harbor a heterogeneous population of

GSCs (Lan et al., 2017; Meyer et al., 2015; Patel et al., 2014). We therefore quantified the pres-

ence of Reactive, Constructive, and Invasive cancer stem cells in our four primary GBM based on

their scATAC-seq profiles. The Constructive state was dominant in every primary tumor, ranging

from 9 to 21% of all cells captured by scATAC-seq (Figure 4C). The Reactive and Invasive states

accounted for only 0–9% of all cells, in varying proportions from one tumor to another (Figure 4C).

Collectively, our results further support the heterogeneous nature of cancer stem cells that populate

primary tumors.

Figure 3 continued

value < 0.05). (D) Copy number alterations (CNAs) across GSCs identified from DNA methylation array data cluster GSCs into five subgroups. (E)

Number and percentage of peaks unique and shared in each GSC state. (F) Saturation analysis of each individual state.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Distinct chromatin accessibility profiles across glioblastoma stem cell states.

Guilhamon et al. eLife 2021;10:e64090. DOI: https://doi.org/10.7554/eLife.64090 7 of 20

Research article Cancer Biology

https://doi.org/10.7554/eLife.64090


While various classifications of GBMs and/or their constitutive bulk and stem tumor cells have

been reported, with some associating with patient survival (Neftel et al., 2019; Patel et al., 2014;

Cancer Genome Atlas Research Network et al., 2010; Wang et al., 2017; Yin et al., 2019;

Zuo et al., 2019), molecular signatures in adult GBM stratifying the poorer prognosis IDH wild-type

patients by survival are lacking. We performed intracranial xenografts of 37 IDH wild-type GSC pop-

ulations and classified the transplanted cells by their GSC state to perform a differential survival anal-

ysis (Figure 5A). The overall survival times of the transplanted mice grouped by GSC state were

significantly different (LogRank test p=0.041), with the Invasive state GSCs leading to the worst
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Figure 4. Functional diversity between glioblastoma stem cell (GSC) states and intra-tumor heterogeneity. (A) Motif family enrichment in each cluster;

log2(fold enrichment) > 0.5 threshold selected based on the distribution of values in each cluster (Figure 2—figure supplement 1). (B) Z-score

distribution of key essential genes in each cluster. Red line corresponds to the empirically determined threshold for essentiality in each tested line,

scaled, and adjusted to zero. Boxplot whiskers in this case extend to data extremes. Side barplots show the total count of the key cluster-specific

regulators found essential in each subtype. (C) UMAPs with GSCs from each state highlighted based on the enrichment of the top differentially

accessible regions in each GSC state.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. dentification and characterization of essential transcription factors across GSC states.
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Figure 5. Glioblastoma stem cell (GSC) invasiveness is associated with survival in glioblastoma (GBM). (A) Kaplan–Meier plot for orthotopic xenografts

grouped by GSC state. For each of the 37 GSCs used in the xenograft survival analysis, the median survival value was used from multiple mice injected

with cells from each GSC (average number of mice injected/GSC = 5). The dotted lines indicate median survival. The pairwise p-values are also

significant for Invasive vs Reactive (p=0.02) and Invasive vs Constructive (p=0.045) but not for Reactive vs Constructive (p=0.45). (B) Invaded area over

time normalized to t0 by three to four representative GSCs of each GSC state and human fetal neural stem cells (hfNSCs) used as controls. See

Figure 5—figure supplement 1A for individual GSC invasion. (C) Invasion images of representative hfNSCs and GSCs at t0, 6 hr, and 12 hr. Scale bar

is 150 mm. (D) TCGA samples ordered by increasing concordance with Invasive GSCs and grouped into three subgroups: <1, 1–1.65, >1.65. (E) Kaplan–

Meier plot for TCGA samples grouped by concordance with Invasive GSCs. The dotted line indicates median survival. When considering pairwise

comparisons, only the Invasive-high and Invasive-low subgroups were significantly different (p=0.0043). Further subgrouping of the TCGA samples into

Figure 5 continued on next page
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prognosis. Relative to the mice injected with Reactive state GSCs, mice with Constructive state

GSCs and Invasive state GSCs had hazard ratios of 1.3 (95% confidence interval [CI]: 0.57–2.97) and

3.5 (95% CI: 1.2–10.49), respectively.

In light of this finding, we sought to evaluate the invasive properties of the Invasive GSC state

population. To that end, we conducted an invasion assay (Restall et al., 2018) wherein neurospheres

from representative GSCs of each state (four Reactive, three Constructive, and three Invasive; three

independent biological replicates for each GSC) are embedded in a collagen matrix and invasion is

monitored in real time (Figure 5B,C, Figure 5—figure supplement 1A). GSCs of the Invasive state

invaded strikingly faster and further into the collagen matrix and overall displayed a three times

greater invasive ability than that of the Reactive and Constructive states. This invasiveness was fur-

ther confirmed in vivo through human-specific staining of mouse brains injected with Invasive-state

GSCs (Figure 5—figure supplement 1B–C).

Next, we investigated the prognostic value of the GSC states using the TCGA GBM cohort (IDH1

and IDH2 wild type, n = 144). When classified by dominant GSC state, TCGA tumors display the

same trend as the xenografts with Invasive state-dominated tumors showing the lowest survival (Fig-

ure 5—figure supplement 2A). However, with only two tumors classified as Invasive-dominant, the

difference in survival between the three patient groups was not statistically significant (p=0.3) (Fig-

ure 5—figure supplement 2A). We proceeded to rank the TCGA tumors solely by their concor-

dance to Invasive GSCs and classified the patient tumors into Invasive-low (z-score < 1), Invasive-mid

(z-score = 1–1.65), and Invasive-high (z-score � 1.65) groups (Figure 5D). With this stratification

method, median patient survival per group not only decreased with increasing Invasive GSC score,

but we also identified an Invasive-high subset of tumors with significantly lower survival (p=0.019,

HR (Hazard Ratio) = 2.8, 95% CI: [1.3–5.81]) (Figure 5E). This was further validated using an addi-

tional cohort of TCGA samples with microarray gene expression (Figure 5—figure supplement 2D–

E). These results show that cancer stem cell states defined based on the chromatin accessibility in

GSCs can identify transcriptional programs associated with poor prognosis and can serve as a signa-

ture to identify high-risk patients in IDH wild-type GBM.

Discussion
Defining the nature of self-renewing tumor-initiating cells in primary GBM is required to identify vul-

nerabilities for therapeutic intervention. Quantifying their heterogeneity within tumors can guide

treatment strategies and assist in predicting the course of disease progression. Here we show that

chromatin accessibility assays capture a heterogeneity across self-renewing tumor-initiating cells in

primary GBM that extends beyond their genetic diversity and underlies the heterogeneity in bulk

progeny (Meyer et al., 2015). This heterogeneity aligns with diversity in the three-dimensional

genome organization of GSCs (Johnston et al., 2019) and agrees with how the three-dimensional

genome organization instructs cis-regulatory plexuses underlying gene regulation (Bailey et al.,

2016; Kim et al., 2016; Sallari et al., 2017; Schmitt et al., 2016; Zheng and Xie, 2019). While the

chromatin accessibility signature derived from GSCs robustly identified cancer stem cells across the

four primary GBM tumors used in this study, a larger cohort will be required to establish whether

this signature is always sufficient to capture all cancer stem cells in primary GBMs.

We further reveal a specific cancer stem state that is significantly predictive of patient survival

and can be used as a signature to identify high-risk patients. Specifically, the Invasive GSC signature

draws from a population with enhanced ability to invade and spread compared to other GSC states.

Collectively, our results argue for distinct GSC populations whose composition in tumors impacts

survival.

Figure 5 continued

smaller intervals of concordance z-score yielded no benefit, preserving the Invasive-high subgroup as the only one with significantly poorer prognosis

(Figure 5—figure supplement 2B,C).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Invasive properties across glioblastome stem cell states.

Figure supplement 2. Assessment of Invasive GSC score classification.
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Our results also highlight dependencies unique to each cancer stem state. Specifically, the Reac-

tive GSC state-associated transcription factor SP1 and its regulatory partners are involved in cellular

differentiation and growth, apoptosis, response to DNA damage, chromatin

remodeling (O’Connor et al., 2016), stimulation of TERT expression in cancer stem cells (Liu et al.,

2016), and increased stemness and invasion in GBM (Lee et al., 2014). In contrast, the Constructive

GSC state relies on transcription factors including OLIG2, a known GSC marker (Trépant et al.,

2015); AHR involved in tumor microenvironment responses and metabolic

adaptation (Gabriely et al., 2017); NPAS3, a regulator of Notch signaling and

neurogenesis (Michaelson et al., 2017); and ASCL1, a critical regulator of GSC differentiation and

marker of sensitivity to Notch inhibition in GSCs (Park et al., 2017; Rajakulendran et al., 2019).

Finally, the Invasive GSC state relies on FOXD1, a pluripotency regulator and determinant of tumori-

genicity in GSCs regulating expression of the aldehyde dehydrogenase ALDH1A3, a functional

marker for invasive GSCs (Cheng et al., 2016; Koga et al., 2014). These results support developing

combination therapy using targeting agents against each GSC state, such as Notch

inhibitors (Park et al., 2017) and small molecule inhibitors of ALDH (Cheng et al., 2016), to eradi-

cate self-renewing tumor-initiating cells with the hope to cure GBM patients.

Materials and methods

Patient samples and cell culture
All tissue samples were obtained following informed consent from patients, and all experimental

procedures were performed in accordance with the Research Ethics Board at The Hospital for Sick

Children (Toronto, Canada), the University of Calgary Ethics Review Board, and the Health Research

Ethics Board of Alberta – Cancer Committee (HREBA). Approval to pathological data was obtained

from the respective institutional review boards. Patient tumor tissue samples were dissociated in arti-

ficial cerebrospinal fluid followed by treatment with enzyme cocktail at 37˚C. Patient tumor-derived

GSCs were grown as adherent monolayer cultures in serum-free medium (SFM) as previously

described (Pollard et al., 2009). Briefly, cells were grown adherently on culture plates coated with

poly-L-ornithine and laminin. Serum-free NS cell self-renewal media (NS media) consisted of Neuro-

cult NS-A Basal media, supplemented with 2 mmol/L L-glutamine, N2 and B27 supplements, 75 mg/

mL bovine serum albumin, 10 ng/mL recombinant human EGF (rhEGF), 10 ng/mL basic fibroblast

growth factor (bFGF), and 2 mg/mL heparin. A subset (22/37) of the GSCs used for orthotopic xeno-

grafts were grown as non-adherent spheres prior to single-cell dissociation and injection into the

mice. Briefly, SFM was used to initiate GSC cultures. Non-adherent spheres formed after 7–21 days

in culture and were expanded, then cryopreserved in 10% dimethyl sulfoxide (DMSO; Sigma-Aldrich)

in SFM until used in experiments.

ATAC-seq
ATAC-seq was used to profile the accessible chromatin landscape of 27 patient tumor-derived

GSCs. Fifty thousand cells were processed from each sample as previously

described (Buenrostro et al., 2013; Corces et al., 2017). The resulting libraries were sequenced

with 50 bp single-end reads, which were mapped to hg19. Reads were filtered to remove duplicates,

unmapped or poor-quality (Q < 30) reads, mitochondrial reads, chrY reads, and those overlapping

the ENCODE blacklist. Following alignment, accessible chromatin regions/peaks were called using

MACS2. Default parameters were used except for the following: –keep-dup all -B –nomodel –

SPMR -q 0.05 –slocal 6250 –llocal 6250. The signal intensity was calculated as the fold enrich-

ment of the signal per million reads in a sample over a modeled local background using the bdgcmp

function in MACS2. Spectral clustering implemented in the SNFtool package (Wang et al., 2014)

was run on the SNF-fused similarity matrix to obtain the groups corresponding to k = 2–12. Enrich-

ment for genomic features was calculated using CEAS (Shin et al., 2009). The GSC state labels for

each sample can be found in Supplementary file 1, and the coordinates of discriminating ATAC

regions for each GSC state are in Supplementary file 2.

A hypergeometric test was used to determine whether there was any sex bias within the three

GSC states. All tests resulted in p-value>0.05 except in the Invasive cluster where three out of five

patients are female, giving a p-value=0.047. Given the small size of the Invasive group and the
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impossibility of obtaining an even number of males and females in a group of 5, this result was not

considered to indicate sex bias within the cohort.

A given chromatin region was considered exclusive to one of the clusters if it was called as a peak

in any of the cluster’s samples using a q-value filter of 0.05 and was not called as a peak in any of

the other samples using a q-value filter of 0.2, in order to ensure stringency of exclusivity.

The ATAC-seq saturation analysis was performed by randomizing the order of samples and suc-

cessively calculating the number of additional peaks discovered with the addition of each new sam-

ple. This process was repeated 10,000 times and averaged. A self-starting non-linear regression

model was then fitted to the data to estimate the level of saturation reached.

For the xenograft survival analysis, 11/37 GSCs used overlap with the cohort of 27 described

above. The other 26/37 GSCs were profiled by ATAC-seq independently following the same proto-

col described above and assigned to a GSC state as described below. Similarly, samples G432,

G440, and G472 used in the essentiality gene analysis were profiled by ATAC-seq independently fol-

lowing the same protocol described above and assigned to a GSC state as follows: the signal

obtained from MACS2 for each sample was mapped to the peak catalog of the original cohort of 27

GSCs. Each sample was then allocated to a GSC state through unsupervised hierarchical clustering

with the original cohort of 27 GSCs.

Single-cell ATAC-seq
The four tumors used were G4218 (primary GBM, IDH wt, male, 64 years), G4250 (primary

GBM, IDH wt, male, 73 years), G4275 (primary GBM, IDH wt, female, 52 years), and G4349 (pri-

mary GBM, IDH wt, male, 62 years). Fragments of tumor were received fresh from the operating

room, and blunt dissected into individual fragments of approximately 0.3–0.7 cm3. Each frag-

ment was placed in 1 mL of freezing media (400 mL of NeuroCult NS-A Basal medium with pro-

liferation supplement (StemCell Technologies; #05751) containing 20 mg/mL rhEGF (Peprotech,

AF-100–15), 10 mg/mL bFGF (StemCell Technologies, #78003), and 2 mg/mL heparin (StemCell

Technologies, #07980); 500 mL of 25% bovine serum albumin (BSA) (Millipore-Sigma; A9647) in

Dulbecco’s modified Eagle’s medium, and 100 mL DMSO (Millipore-Sigma; D2650) in a 2 mL cry-

otube, and placed at �80 C in a CoolCell for at least 24 hr. Samples were then stored at �80C

until use. Cryopreserved primary GBM samples were washed at 1000 RPM for 5 min in phos-

phate-buffered saline (PBS) to remove DMSO, and then transferred to 1.5 mL tubes. Samples

were resuspended in cold ATAC resuspension buffer (10 mM Tris–HCl pH 7.4, 10 mM NaCl, 3

mM MgCl2, 0.1% NP-40, 0.1% Tween-20, 0.01% Digitonin, 1% BSA in PBS) on ice and dissoci-

ated using a wide-bore P1000 pipette tip and vortexing, followed by 10 min of incubation on

ice. Cells were spun down at 500 x g for 5 min at 4˚C, washed in the ATAC resuspension

buffer, spun down again, and resuspended in ATAC-Tween wash buffer (10 mM Tris–HCl pH

7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20, 1% BSA in PBS), then passed through a cell

strainer top FACS tube (Falcon; #38030) to remove debris. Nuclei quality and quantity was eval-

uated using trypan blue on an Invitrogen Countess II device in duplicate, and a subset of nuclei

was spun down in a fresh tube and resuspended in 10� sample dilution buffer. Nuclei were

then used for single-cell ATAC-seq library construction using the Chromium Single Cell ATAC

Solution v1.0 kit (10� Genomics) on a Chromium controller. Completed libraries were further

quality checked for fragment size and distribution using an Agilent TapeStation prior to

sequencing. Single-cell ATAC-seq samples were sequenced on a NextSeq 500 (Illumina) instru-

ment with 50 bp paired-end reads at the Centre for Health Genomics and Informatics (CHGI) at

the University of Calgary.

The raw sequencing data was demultiplexed using cellranger-atac mkfastq (Cell Ranger ATAC,

version 1.0.0, 10� Genomics). Single-cell ATAC-seq reads were aligned to the hg19 reference

genome (hg19, version 1.1.0, 10� Genomics) and quantified using cellranger-atac count function

with default parameters (Cell Ranger ATAC, version 1.1.0, 10� Genomics). The resulting data were

analyzed using the chromVAR (Schep et al., 2017) and Signac (Stuart et al., 2019) R packages

(v1.4.1). The number of accessibility modules in each sample was determined using the ElbowPlot

method implemented in Signac. Similarity between individual cells and GSC states was assessed

using the deviation scores calculated by chromVAR within the single-cell data for significantly differ-

entially accessible sets of peaks (fold change signal difference > 2 and Wilcoxon test q-value � 0.05)

between the states as determined by bulk ATAC-seq. Similarity between individual cells and the
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expression-derived cellular states was assessed using the deviation scores calculated by chromVAR

within the single-cell data for promoter regions of the signature genes of each of the cellular

states (Neftel et al., 2019). A twofold cut-off was used to determine the dominance of a UMAP

module by an individual or group of cellular states. Similarity between individual cells and the GBM

cancer stem cell signatures was assessed using the deviation scores calculated by chromVAR within

the single-cell data for either promoter regions of the 19 transcription factors identified as markers

of cancer stem cells in GBM (Suvà et al., 2014) or accessible chromatin regions shared by a majority

of GSCs (>14/27). An average of 11.3% of cells in each tumor was identified as a GSC: G4218:

11.3%, G4250: 8.6%, G4275: 8.1%, G4349: 17.4%.

Copy number variants in single cells were determined using CONICSmat (Müller et al., 2018)

with default parameters using the gene activity matrix generated by Signac as input. We

focused on chr7 gains and chr10 losses as they are hallmark chromosomal changes in GBM and

found the following fractions of cells carrying these CNVs, on average across the four tumors:

76% of all cells, 88% of cells allocated to scRNA-seq cellular states (Neftel et al., 2019), 95%

of cancer stem cells based on the 19 gene signature, 91% of GSCs based on shared accessible

regions between 14/27 GSC populations, and 94% of GSCs identified based on the state-spe-

cific signatures.

DNA methylation arrays
Bisulfite conversion of DNA for methylation profiling was performed using the EZ DNA Methylation

kit (Zymo Research) on 500 ng genomic DNA from all 27 samples. Conversion efficiency was quanti-

tatively assessed by quantitative PCR (qPCR). The Illumina Infinium MethylationEPIC BeadChips were

processed as per manufacturer’s recommendations. The R package ChAMP v2.6.4 (Morris et al.,

2014) was used to process and analyze the data. For the copy number analysis, the raw IDAT files

were uploaded to the MNP tool (Capper et al., 2018), which directly compares the copy number

profile estimated from the probe intensities on the methylation array to the distribution observed

across thousands of brain tumors in its database.

RNA-seq
RNA was extracted from GSCs using the Qiagen RNeasy Plus kit. RNA sample quality was mea-

sured by Qubit (Life Technologies) for concentration and by Agilent Bioanalyzer for RNA integ-

rity. All samples had RIN above 9. Libraries were prepared using the TruSeq Stranded mRNA kit

(Illumina). Two hundred nanograms from each sample were purified for polyA tail containing

mRNA molecules using poly-T oligo attached magnetic beads, then fragmented post-purification.

The cleaved RNA fragments were copied into first strand cDNA using reverse transcriptase and

random primers. This is followed by second strand cDNA synthesis using RNase H and DNA

Polymerase I. A single ‘A’ base was added and adapter ligated followed by purification and

enrichment with PCR to create cDNA libraries. Final cDNA libraries were verified by the Agilent

Bioanalyzer for size and concentration quantified by qPCR. All libraries were pooled to a final

concentration of 1.8 nM, clustered, and sequenced on the Illumina NextSeq500 as a pair-end 75

cycle sequencing run using v2 reagents to achieve a minimum of ~40 million reads per sample.

Reads were aligned to hg19 using the STAR aligner v2.4.2a (Dobin et al., 2013), and transcripts

were quantified using RSEM v1.2.21 (Li and Dewey, 2011) or vst transformed using

DESeq2 (Anders and Huber, 2010).

Motif enrichment
Regions exclusively accessible in one of the GSC states and not the others were used as input

sequences for the motif enrichment, while the full ATAC-seq catalog served as the background set

when running HOMER v4.7 to detect enrichments of transcription factor binding motifs. Enriched

motifs were then grouped into families based on similarities in DNA-binding domains using the CIS-

BP database (Weirauch et al., 2014). Each family was assigned the fold-enrichment value of the

most enriched motif within the family.

The transcription factors whose motifs were found enriched in Reactive-exclusive accessible

regions were run together through GSEA (Subramanian et al., 2005), and the gene set correspond-

ing to genes potentially regulated by SP1 was identified as significantly enriched (GSEA gene set
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GGGCGGR_SP1_Q6). The expression levels of key transcription factors in tumor and normal samples

were analyzed and displayed using GEPIA (Tang et al., 2017).

Gene essentiality screen
Illumina sequencing reads from genome-wide TKOv1 CRISPR screens in patient-derived

GSCs (MacLeod et al., 2019) were mapped using MAGECK (Li et al., 2014) and analyzed using the

BAGEL algorithm with version two reference core essential genes/non-essential genes (Hart et al.,

2017; Hart et al., 2015). Resultant raw Bayes factor (BF) statistics were used to determine essential-

ity of transcription factor genes using a minimum BF of 3 and a 5% false discovery rate cut-off. For

visualization purposes only, the essentiality scores were scaled and the individual GSC essentiality

thresholds subtracted from each score to obtain a common threshold at 0 across GSCs. In the GSEA

analysis of essentiality genes, only those genes found essential only in a given GSC state were used,

giving sets of 12, 29, and 235 genes for the Reactive, Constructive, and Invasive GSC states,

respectively.

Orthotopic xenografts
All animal procedures were performed according to and approved by the Animal Care Commit-

tee of the Hospital for Sick Children or the University of Calgary. All attempts are made to mini-

mize the handling time during surgery and treatment so as not to unduly stress the animals.

Animals are observed daily after surgery to ensure there are no unexpected complications. For

intracranial xenografts, 100,000 GSC cells were stereotactically injected into the frontal cortex of

6–8 weeks old female NOD/SCID or C17/SCID mice. Mice were monitored and euthanized once

neurological symptoms were observed or at the experimental end point of 12 months.

Invasion assay
GSCs and human fetal neural stem cells (hfNSCs; used as controls) were seeded in flasks main-

tained vertically to limit adherence and incubated at 37˚C, 5% CO2 until the average neuro-

sphere size reached approximately 150 mm. Neurospheres were then collected and allowed to

settle by gravity to the bottom of a prechilled 1.5 mL conical tubes for 5 min on ice. Following

aspiration of the supernatant, spheres were re-suspended in 0.4 mg/mL type I collagen (Cultrex

Rat Collagen I, Trevigen, 3440–005) on ice. The suspended spheres were dispensed in prechilled

96-well plates (100 mL/well). The plates were maintained on ice for 5 min to allow spheres to

settle at the same level at the bottom of the well and then transferred to the incubator at 37˚C

for 15 min to allow polymerization of the collagen. Plates were then placed in an IncuCyte

(Essen Bioscience, Ann Arbor, MI), and invasion was monitored every hour for 12 hr. To quantify

invasion of the cells from the embedded spheres into the collagen matrix, the area of the

spheres at each time point was normalized to the area of the spheres at T0. Invasion experi-

ments were performed at least in triplicates for each GSC and hfNSC lines. For each replicate,

invasion was measured based on a minimum of three spheres.

Immunohistochemistry
Tissue samples were formalin fixed and paraffin embedded. Serial sections deparaffinized and

rehydrated through an alcohol gradient to water, and antigen retrieval in citrate buffer pH 6.0

was used for the human nucleolin antibody at 5.0 g/mL (ab13541) (Abcam, Cambridge, MA).

Endogenous peroxide activity and nonspecific binding were blocked with 3%(vol/vol) peroxide

and 2% (vol/vol) normal horse serum. Primary antibody and anti-mouse ImmPRESS-HRP second-

ary antibody were incubated for 1 hr and visualized using 3,30-diaminobenzidine (Vectorlabs, Bur-

lingame, CA). Normal horse serum or monoclonal IgM was used in control sections.

Survival analysis
Survival analysis on xenografts and TCGA data was performed using R packages

survival (Therneau, 2015) and survminer (‘Drawing Survival Curves using ‘ggplot2’ [R package

survminer, 2020]’, n.d.). The LogRank test was used in every analysis. See ATAC-seq section for

details on how each GSC used in the orthotopic xenografts was assigned to a GSC state. For

each of the 37 GSCs used in the xenograft survival analysis, the median survival value was used
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from multiple mice injected with each GSC. Each GSC was injected into one to six mice (mean

number of mice used = 5; only one GSC has a single replicate: G489, a Constructive state

GSC).

TCGA samples for this analysis were selected as follows: 144 IDH-wt adult GBM samples for

which RNA-seq, IDH mutation status, and survival information were available. TCGA samples were

assigned to individual GSC states in the following ways. (1) Using the unsupervised clustering of

RNA-seq data presented in Figure 3B, the 23/27 GSCs that displayed matched GSC state assign-

ments by RNA-seq and ATAC-seq were used in this analysis. (2) Genes preferentially enriched in

each GSC state were determined using DEseq2 (Anders and Huber, 2010) (q � 0.05 and fold

change � 2). (3) The mean log2(FPKM+1) value for each of these genes over all GSCs in each state

was calculated to obtain a single representative value for each gene in each of the three GSC states.

(4) The concordance index was then calculated between each TCGA sample and each GSC state,

and individual TCGA samples were assigned to the GSC state with the highest score. Similarly, to

assign TCGA samples to the three Invasive groups (Invasive-low, -mid, and -high), the concordance

to Invasive GSCs as calculated above was used. The z-score for each sample was then used to clas-

sify each TCGA sample into the three subgroups of Invasive-low (Invasive z-score < 1), Invasive-mid

(Invasive z-score = 1–1.65), and Invasive-high (Invasive z-score � 1.65). When changing the Invasive

z-score thresholds for grouping the TCGA samples, the most Invasive-high subgroup remains associ-

ated with the lowest survival (Figure 5—figure supplement 2B,C).

A further 158 samples that did not overlap with the RNA-seq set for which microarray expression

data, survival information, and IDH status were available were used in a validation set. Individual

samples were assigned to GSC clusters or C3 score classes as described above. The scores were

then combined with those of the RNA-seq set for the survival analysis shown in Figure 5—figure

supplement 2D–E.
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