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Abstract

Pain catastrophizing, a coping style characterized by excessively negative thoughts and emotions in relation to pain, is one
of the psychological factors that most markedly predicts variability in the perception of pain; however, only little is known
about the underlying neurobiology. The aim of this study was to test for associations between psychological variables, such
as pain catastrophizing, anxiety and depression, and selected polymorphisms in genes related to monoaminergic
neurotransmission, in particular serotonin pathway genes. Three hundred seventy-nine healthy participants completed a set
of psychological questionnaires: the Pain Catastrophizing Scale (PCS), the State-Trait Anxiety Inventory and Beck’s
Depression Inventory, and were genotyped for 15 single nucleotide polymorphisms (SNPs) in nine genes. The SNP
rs1176744 located in the serotonin receptor 3B gene (5-HTR3B) was found to be associated with pain catastrophizing scores:
both the global score and the subscales of magnification and helplessness. This is the first study to show an association
between 5-HTR3B and PCS scores, thus suggesting a role of the serotonin pathway in pain catastrophizing. Since 5-HTR3B
has previously been associated with descending pain modulation pathways, future studies will be of great interest to
elucidate the molecular pathways involved in the relation between serotonin, its receptors and pain catastrophizing.

Citation: Horjales-Araujo E, Demontis D, Lund EK, Finnerup NB, Børglum AD, et al. (2013) Polymorphism in Serotonin Receptor 3B Is Associated with Pain
Catastrophizing. PLoS ONE 8(11): e78889. doi:10.1371/journal.pone.0078889

Editor: Chunyu Liu, University of Illinois at Chicago, United States of America

Received March 21, 2013; Accepted September 16, 2013; Published November 11, 2013

Copyright: � 2013 Horjales-Araujo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The study has received economic support from MindLab, Center for Functionally Integrative Neuroscience (CFIN), Aarhus University Hospital and from
the Faculty of Health Sciences, Aarhus University, Aarhus, Denmark. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: emilia.horjales@ki.au.dk

Introduction

Psychological variables such as pain catastrophizing, anxiety

and depression are known to influence the perception of pain [1–

7]. Recently, both psychological traits and states and pain

conditions have been correlated with neurotransmitter systems,

and it has been suggested that interindividual differences in the

expression of psychological factors and pain perception are based

on genetic variations [8–10].

Pain catastrophizing along with anxiety and depression is one of

the psychological factors that most markedly predict variability in

the perception of pain as well as in the development of chronic

pain conditions [11–13]. Pain catastrophizing has broadly been

defined as ‘‘an exaggerated negative mental set or orientation

brought to bear during actual or anticipated pain experience’’, and

it is related to attentional bias and hypervigilance [11,14]. Pain

catastrophizing is characterized by a tendency to magnify the

threat value of a stimulus by rumination (i.e. a relative inability to

inhibit pain-related thoughts) and by a tendency to feel helpless in

the context of the stimulus [11,12,15]. Conceptually and

empirically, pain catastrophizing is closely related to anxiety and

depression, [12]. High levels of pain catastrophizing have been

associated with increased pain intensity and increased activity in

pain-related areas of the brain [16,17], and also with increased

temporal summation [18,19] and an altered response to opioid

treatment [20]. Despite the well-known clinical relevance of pain

catastrophizing, the neurobiological underpinnings of the phe-

nomenon have just begun to be specified [13]. So far, only one

study has examined possible associations between genetic variation

and pain catastrophizing [13].

Serotonin (5-HT) is a neurotransmitter implicated with a wide

range of behaviors such as mood and nociception. Serotonergic

genes have been extensively studied in relation to pain, anxiety

and depression [21–25]. However, to date there are no published

studies of genetic variations of serotonin-related genes in relation

to pain catastrophizing.

The serotonin transporter (5-HTT) plays a critical role in

determining the duration and intensity of 5-HT communication

with receptors and targets, for review see [26]. The 5-HTT is

coded by a single gene (SLC6A4) [27]. A 43 base-pair insertion/

deletion (referred to as the short ‘‘S’’ and long ‘‘L’’ variant) in the

promoter region of the gene in combination with the single

nucleotide polymorphism (SNP) rs2553 (A/G) has been shown to

alter the degree of gene expression [28,29]. The combination of

these two polymorphisms is referred to as ‘‘tri-allelic’’ 5-HTTLPR

and permits a functional division of individuals into ‘‘high’’ (LA/
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LA), ‘‘intermediate’’ (LA/LG; SA/LA) or ‘‘low’’ (SA/SA; LG/SA)

expression of the serotonin transporter protein [28].

Expression of low levels of 5-HTT has been associated with

neuroticism and anxiety traits [30–32]. It has also been suggested

that individuals with low expression of the protein have a

predisposition for depression [33], eating disorders [34], affective

disorders [35] and obsessive-compulsive disorder [36], among

others. In addition, Beevers and colleagues, by using a measure of

biased attention, were the first to report that carriers of the S-allele

showed a bias toward negative stimuli [37,38]; similar results are

also reported in more recent studies [39,40]. In addition, Fox and

colleagues reported strong evidence for a positive bias in the LL

group such that vigilance for positive material was observed in

addition to clear avoidance of negative material, a pattern that was

completely absent in the S-allele carriers [41]. Altogether, these

studies suggest that subjects with low 5-HTT expression are more

likely to focus on negative stimuli than high expression subjects.

Attentional threat bias has been implicated in the etiology and

maintenance of anxiety [42–44], which strengthens the association

between S-carriers and anxiety traits. Thus, it is logic to speculate

that S-carriers by focusing on a negative stimulus (e.g. pain) would

be more prone to rumination and magnification of such a stimulus

and hence to pain catastrophizing.

In recent studies, we [45] and others [46] have found that the

tri-allelic polymorphism is correlated with the ability to modulate

pain. Thus, participants with the genetic variants associated with

high 5-HTT expression experienced increased pain intensity

during negative pictures and decreased pain intensity during

positive pictures when compared with the pain experienced during

neutral pictures. These results were not observed in the genotype

group corresponding to the low expression of the protein, probably

because of the attentional bias to the painful negative stimuli.

Serotonin neurotransmission might also be affected by poly-

morphisms in other genes, potentially affecting behavior and

personality traits. For instance, it has been suggested that

polymorphisms in the serotonin receptor 2A (5-HT2A) are

associated with low anxiety traits and novelty-seeking behavior

[47,48]. Another example is the serotonin receptor 3 (5-HT3);

variations in this gene have been reported to be associated with

bipolar disorder [49] and harm-avoidance behavior in women

[50]. Moreover, there is now substantial anatomical and functional

evidence for the participation of 5-HT3 receptors in spinal

nociceptive processing [51]. Since pain catastrophizing is highly

associated with processing of noxious stimuli, it is of interest to see

if there are associations between genetic variations in these genes

and pain catastrophizing [13].

Monoamine oxidase (MAO) is flavin-containing mitochondrial

enzymes catalyzing the oxidative deamination of neurotransmit-

ters and biogenic amides in the brain and peripheral tissues [52].

Based on substrate selectivity and inhibitor selectivity, two forms of

MAO have been designated: MAO-A and MAO-B [53,54], which

correspond to two distinct genes. Typically, MAO-A catalyzes the

oxidation of serotonin (5-HT), whereas MAO-B acts on 2-

phenylethylamine and benzylamine [52,55]. Due to the important

role of MAO in monoamine neurotransmission, two SNPs in

MAO-A and two in MAO-B were included in this study.

The aim of this study was to investigate if the psychological

factors that most markedly predict pain variability (pain

catastrophizing, depression and anxiety) were associated with

SNPs in genes related to the serotonin pathway. The SNPs

included in this study have previously been reported to be

associated with pain perception as well as anxiety and depression

[30,46,56–73].

Methods

Participants
As part of a previous study [45], a DNA bank of 380 healthy

individuals of Scandinavian descent between 18 and 39 years of

age were recruited at Aarhus University. Individuals were

excluded from the study if they had any chronic pain condition

(based on the IASP definition of chronic pain), were smokers,

pregnant, used medication on a regular basis (except for

contraceptives), or if they had any known psychological, cardio-

vascular or neurological disorder.

All participants gave written informed consent upon having

received detailed information on the study and received a bottle of

wine in compensation for their participation. The study was

conducted according to the Declaration of Helsinki and was

approved by the local ethical committee (20110165) and the

Danish Data Protection Agency (2011-41-6562).

Study Design
Upon entry in the study, participants completed the following

psychological questionnaires: the Pain Catastrophizing Scale

(PCS), Beck Depression Inventory (BDI) and the Spielberger

State-Trait Anxiety Inventory I and II (STAI), using SurveyXact

(Rambøll Management Consulting, Denmark). Afterwards the

participants were asked to give a saliva sample.

DNA Analysis
DNA was extracted from saliva collected using an OC-100 kit

(DNA Genotek Inc, Ontario, Canada). To determine the triallelic

5-HTTLPR genotype, PCR reactions were carried out in a total

volume of 25 ml using the GoTaqH Hot Start Polymerase

(Promega, Wisconsin, USA) and 80 ng of genomic template.

The forward primer sequence was 59-CTCTGAATGCCAG-

CACCTAACCC-39 and the reverse 59-GATTCTGGTGC-

CACCTAGACGC-39. Samples were amplified (Gene Amp,

PCR System 9700, Applied Biosystems, California, USA) by 2-

step PCR consisting of an activation step of 2 min at 94uC,
followed by 35 cycles of 30 s denaturation at 93uC, and an

annealing and elongation step for 1 min at 62uC, followed by a

final elongation step of 10 min at 72uC. The L-allele and the S-

allele of the 5-HTTLPR yield a product of 529 bp and 486 bp,

respectively.

Fragments were visualized with UV after 45 min of separation

at 80 V on a 2.5% agarose gel. In order to ensure that the primers

amplified the right DNA region, two random samples were

selected, and the PCR product was purified (Jet Quick PCR

product purification, Genomed, Löhne, Germany) and Sanger

sequenced by Eurofins MWG Operon (Ebersberg, Germany).

To determine the rs25531 genotype, 10 ml of the PCR product

was digested for 2 h at 37uC with 1 ml MSP1 (New England

Biolabs, Ipswich, MA, USA) and 1 ml buffer per sample. The

enzyme cuts at a 59-C/CGC-39sequence, resulting in fragments of

different lengths, which determined the triallelic genotype (see

Table 1). The digested fragments were visualized by UV light after

2 h of separation at 100 V on a 4% agarose gel.

The 15 genotyped SNPs were selected from 86 papers

investigating genetic association with pain and psychological traits.

The included SNPs have previously been significantly (P,0.05)

associated with either pain (rs6313, rs3788862, rs2283729,

rs1799836, rs2066713 and rs3813034) or personality traits that

have been reported to alter pain perception (rs1364043, rs130058,

rs1923886, rs6313, rs7997012, rs518147, rs1176744, rs10917509,

rs1042173, rs4325622 and rs3813034), or have been reported to

be closely associated with pain catastrophizing (e.g. anxiety and

Association of rs1176744 with Pain Catastrophizing
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neuroticism) (rs1364043, rs6313, rs7997012, rs1176744,

rs10917509, rs4325622 and rs3813034). The populations analyzed

in the previous studies were Caucasians with the exception of two

studies based on Chinese population. SNP genotyping (see Table 1)

was carried out using the Sequenom MassARRAY Genotyping

platform (Sequenom, San Diego, CA, USA) following the

procedure described in [74]. Primer sequences and assay

conditions are available from the authors upon request. Only

SNPs that preserved the Hardy-Weinberg equilibrium were

included in the analysis.

Pain Catastrophizing
Pain catastrophizing was assessed by means of the Danish

version of the PCS, which measures thoughts and feelings when

experiencing pain [14]. In agreement with the standard instruction

for the PCS, participants were told ‘‘we are interested in the

thoughts and feelings you have when you are in pain’’ [14]. The

scale has 13 items, and it includes three subscales: ‘‘helplessness’’,

‘‘magnification’’ and ‘‘rumination’’. The PCS has previously been

used in healthy volunteers with (e.g. [20]) or without pain (e.g.

[75]) as well as in chronic pain patients (e.g. [19]). The Danish

version of the PCS has previously shown a high reliability

(Cronbach’s Alpha:0.956) [19].

Anxiety
Anxiety was measured with the Danish version of the STAI for

adults [76]. The STAI assesses emotional, cognitive and behav-

ioral aspects of anxiety. Form Y is the most frequently used version

and has 20 items for assessing trait anxiety (STAI I) and 20 items

for assessing state anxiety (STAI II). The Danish version of the

STAI has previously shown a reasonable reliability (Cronbach’s

Alpha: 0.803) [19].

Depression
Depression was assessed with the Danish version of the BDI

(second edition) [77], which consists of 21 items assessing

psychological and physiological aspects of depression. The Danish

version of the BDI has previously shown a high reliability

(Cronbach’s Alpha: 0.935) [19,78].

Statistical Analysis
Tests for deviations from the Hardy-Weinberg equilibrium and

allelic association analyses were obtained using the statistical

software PLINK (v1.07 http://pngu.mgh.harvard.edu/purcell/

plink/). Allelic association analyses were conducted using linear

regression applying an additive model (for nonparametric

regression method). A significance level of P,0.05 was adopted

for all association analyses. Correlations between the three

psychological parameters (pain catastrophizing, anxiety and

depression) were tested, and they were all significantly correlated

(see Table S1). Since the psychological tests are not independent,

corrections for multiple comparisons were done only for the 15

SNPs and the tri-allelic polymorphism by Bonferroni test (adjusted

a=0.002).

To detect the power of the sample size to find a true association

under the study constraints, the software PGA was used [79].

Power analyses were performed by using 15 independent tests, a

false-positive rate of 0.05, a disease prevalence of 0.01, a control to

case ratio of two and various settings for the relative risk (1.50,

1.60, 1.70), assuming a codominant model with one degree of

freedom, and various settings for the disease allele frequency (0.2,

0.3, 0.4), assuming complete LD between the genotyped marker

and the causative SNPs. The power to detect association with a

sample size of 379 cases ranged from 29 to 69%.

Results

Three hundred and eighty participants completed the study.

The extracted DNA from one male participant had poor quality

and was excluded from genotyping. A total of 379 participants

were genotyped. Individuals with a genotyping call rate below 0.7

were excluded (31 participants), thus 348 participants (175 males

and 173 females, 24.564.5 years, with no age difference between

Table 1. Genetic polymorphisms genotyped in this study.

Polymorphism (dbSNP
database number) Gene Physical Position Chromosome Position Reference

rs1364043 5-HTR1A 39UTR 5 63250851 [57,110]

rs130058 5-HTR1B 59UTR 6 78173281 [58]

rs1923886 5-HTR2A intronic 13 47423291 [59]

rs6313 5-HTR2A exonic(synon) 13 47469940 [48,61,111]

rs7997012 5-HTR2A intronic 13 47411985 [62,63,112]

rs518147 5-HTR2c 59UTR 11 113818582 [113]

rs1176744 5-HTR3B exonic(missense) 11 113803028 [63,114,115]

rs10917509 5-HTR6 59UTR 1 19992066 [64]

rs3788862 MAO A intronic X 43517364 [67]

rs2283729 MAO B intronic X 43678042 [67]

rs1799836 MAO B intronic X 43627999 [98]

rs1042173 SLC6A4 39UTR 17 28525011 [116]

tri-allelic 5-HTTLPR SLC6A4 Promoter 17 <28564374 [31–34,46,117]

rs2066713 SLC6A4 intronic 17 28551665 [67,71,118]

rs4325622 SLC6A4 intronic 17 28526475 [119]

rs3813034 SLC6A4 39UTR 17 28524804 [72,120]

doi:10.1371/journal.pone.0078889.t001
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genders) were included in the analysis. Quality control of the SNPs

with call rate .0.9 was left for further analyses. No SNPs

demonstrated significant deviation from the Hardy-Weinberg

equilibrium, and the minor allele frequency (MAF) found was

14%, and all MAFs were .0.1%. Nice cluster plots were observed

for all SNPs. Genotyping consistency rate of the tri-allelic

polymorphism was 98%.

All associations of polymorphisms with pain catastrophizing

(PCS), depression (BDI) and anxiety (STAI) scores are presented in

Table 2. The significant associations preserved after Bonferroni

corrections for multiple comparisons are described below.

Pain Catastrophizing
The G-allele of rs1176744 was negatively correlated with the

global score of the PCS (P= 0.001) and with the subcategories of

magnification (P= 0.001) and helplessness (P = 0.001) (Table 2).

Also, the minor allele of rs1042173 (G-allele) was negatively

related with rumination, whereas rs130058 (T-allele) was positively

(P = 0.002) correlated with the rumination subscores of the PCS.

Anxiety. The minor allele of rs1176744 in the 5-HTR3B

showed a positive correlation with both state anxiety (P = 0.0002)

and trait anxiety (P = 0.001) scores (Table 2).

Depression. There were no SNPs correlated with BDI scores

(Table 2).

Discussion

Pain catastrophizing, along with anxiety and depression, has

been suggested as one of the strongest predictors of pain-related

outcomes, showing positive associations with pain report, pain

behaviors, analgesic use, length of hospital stay, length of

rehabilitation and pain-related disability [1–7,80].

The present study aimed to investigate possible associations

between pain catastrophizing, anxiety and depression (psycholog-

ical variables of relevance for pain perception) and SNPs, mainly

in the serotonin (5-HT) pathway. To our knowledge, this is the first

study to show an association of rs1176744 in the serotonin

receptor 3B (5-HTR3B) with PCS scores.

The 5-HTR3 is the only serotonin receptor that is a ligand-

gated ion channel. The binding of the neurotransmitter serotonin

to the 5-HT3 receptor opens the channel, which in turn leads to

an excitatory response in neurons. Presynaptic 5-HT3 receptors

are considered to mediate or modulate neurotransmitter release

(including, e.g., GABA and dopamine) [81,82], whereas postsyn-

aptic receptors are responsible for the fast excitatory response to 5-

HT.

The Rs1176744 polymorphism results in a tyrosine/serine

substitution in 5-HTR3B. On a functional level, the tyrosine-allele

(Tyr-allele) results in a decreased maximum response to 5-HT due

to a sevenfold decrease in single channel mean open time

compared to the serine-allele (Ser-allele) [83–85]. It has been

suggested that the effect of this polymorphism on the 5-HT3B
receptor may have an impact on personality traits by affecting

serotonin and dopamine signaling [82,86], which has been

predicted by in silico analyses to be ‘‘possibly damaging’’ [86].

In agreement with this finding, the Tyr-allele of rs11767 has

previously been found to be overrepresented in patients with

major depression [86].

We found a correlation between the T-allele of the SNP

(tyrosine in the protein) and higher PCS scores, both the global

score and the subscales concerning magnification and helplessness.

This is of interest because there are previous reports suggesting a

role of spinal 5-HT3 receptors mediating both nociception and

antinociception [87–93]. Although this diversity of results may

arise from differential activation of descending serotonergic

systems and by the subfamilies of 5-HT3 receptors studied by

individual groups, our results increase the evidence for a role of 5-

Table 2. Minor allele association with personality trait scores.

Polymorphism (dbSNP
database number) gene MA MAF [%] PCS PCS R PCS M PCS H BDI STAI I STAI II

rs1364043 5-HTR1A G 22.82 0.46 22.77 0.89 20.15 0.36 0.90 0.53

rs130058 5-HTR1B T 26.8 20.01 4.91 20.16 20.10 0.15 20.18 20.21

rs1923886 5-HTR2A C 49.5 0.01 21.04 21.20 20.21 0.24 20.87 20.97

rs6313 5-HTR2A T 39.0 0.30 1.44 0.46 0.25 0.55 0.48 1.03

rs7997012 5-HTR2A A 45.1 20.08 20.87 20.21 20.03 0.44 20.21 0.25

rs518147 5-HTR2c G 36.9 20.12 21.14 20.07 0.07 20.32 20.10 0.10

rs1176744 5-HTR3B G 33.1 20.85 24.24 22.02 20.38 20.55 2.01 1.65

rs10917509 5-HTR6 T 33.9 20.09 1.06 20.89 20.03 20.25 20.87 0.12

rs3788862 MAO A A 30.2 0.18 2.07 20.06 0.11 0.35 20.05 0.52

rs1799836 MAO B A 48.5 20.09 0.86 0.06 0.05 20.13 0.05 20.60

rs2283729 MAO B A 33.0 0.32 20.43 20.11 0.21 0.46 20.09 0.92

rs1042173 SLC6A4 G 44.8 20.25 24.14 0.10 20.10 0.76 20.15 0.19

rs2066713 SLC6A4 T 38.1 20.00 2.02 20.87 20.11 20.35 20.85 0.11

rs4325622 SLC6A4 C 44.7 20.17 23.57 0.23 0.20 0.07 0.23 0.17

rs3813034 SLC6A4 C 44.9 20.19 23.51 0.05 20.05 0.10 0.05 0.06

tri-allelic 5-HTTLPR SLC6A4 SA 19.9 20.20 22.07 20.9 20.17 0.33 0.9 1.10

Regression coefficient (slopes of the regression) between the minor allele and the psychological trait. MA, minor allele; MAF, observed minor allele frequencies. In bold,
significant associations after regression analysis using additive model and preserved after Bonferroni correction for multiple comparisons. PCS, pain catastrophizing
scale; PCS R, pain catastrophizing rumination; PCS M, pain catastrophizing magnification; PCS H, pain catastrophizing helplessness. BDI, Beck’s Depression Inventory;
STAI, State-Trait Anxiety Inventory I (state) and II (trait).
doi:10.1371/journal.pone.0078889.t002
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HT3 in pain modulation. Further studies focusing on the relation

between spinal 5-HT3 and pain catastrophizing are needed.

Previous studies have reported an association between alter-

ations in the serotonin system and attentional threat bias [39,40].

Since there are no studies that have analyzed the possible

association between the rs1176744 polymorphism and attentional

bias, a further study is required in order to analyze if the

correlation between the Tyr-allele and the higher PCS scores is

due to an attentional bias toward the pain experience.

Interestingly, we also found that the Tyr-allele was negatively

associated with anxiety scores measured with STAI I and STAI II.

Although this may sound contradictory at first, it is also in

accordance with previous publications that have suggested that 5-

HT enhances conditioned anxiety by acting in the forebrain [94–

96], for review see [97]. Accordingly, it is likely that the Tyr-allele,

by diminishing the 5-HT response, decreases the level of anxiety as

reflected in lower scores on STAI I and STAI II.

MAO plays an important role in monoamine neurotransmis-

sion; however, rs1799836 and rs2283729 in MAO-B did not show

any correlation with pain catastrophizing or personality trait.

Although Dlugos and colleagues [98] found that intronic MAO-B

SNPs (rs10521432 and rs6651806) were associated with the

personality trait of negative emotionality in healthy humans, in

agreement with our results, they did not find any association

between emotionality and rs1799836. Several lines of evidence

indicate that MAO, in particular MAO-A, plays an important role

in human behavior and physiology [99]. First, low platelet MAO

activity has been linked to vulnerability for depression, suicidality

and substance abuse disorders [100–103]. Second, MAO inhib-

itors are used to treat depression [104–106]. The SNP rs2283729

was positively related with agreeableness, which reflects a tendency

to be friendly and compassionate [107,108]. This is in agreement

with a previous study showing that other polymorphisms affecting

MAO have been positively related with agreeableness [109].

Some methodological problems in this study need to be

considered. The study did not test if pain catastrophizing per se,

i.e. independently of anxiety and depression, was related to specific

polymorphisms. In so far as there was a correlation between pain

catastrophizing, anxiety and depression, it cannot be precluded

that anxiety and depression also contributed to the findings. Also,

the study only included around 350 participants, so the absence of

significant correlations between some of the SNPs and psycholog-

ical outcomes could be the result of the low sample size. In

addition, due to the low number of participants, the effect of

possible haplotypes had to be excluded from the study in order to

avoid underpowered groups. It is also important to remember that

participants with a diagnosis of psychological disorder (e.g.

depression) were excluded from participation in the study;

therefore it is possible that this bias is reflected in the absence of

a significant correlation between genetic variations and psycho-

logical outcomes such as depression.

Finally, the study was carried out only using participants born in

Scandinavia and with Scandinavian descent. Due to the possible

differences in allele frequency in other ethnicities, correlations

deviating from the ones observed here could be found in samples

with different ethnicity. Thus, the results presented in this article

should be replicated in larger samples including groups with

different ethnic origin.

In this study, we found an association between the SNP

rs1176744 in the serotonin receptor 3B (5-HTR3B) and PCS

scores, suggesting a role of the serotonin pathway in pain

catastrophizing. Further studies are needed to investigate the

molecular process behind the interaction between serotonin and

pain catastrophizing; in addition it should be examined whether

the interaction of polymorphisms in the serotonin pathways

enhance or reduce this association.

Supporting Information

Table S1 Regression coefficient (slopes) of the correla-
tion between psychological traits. *P,0.05: **P,0.005;

***P,0.001. PCS, pain catastrophizing scale; BDI, Beck’s

Depression Inventory; STAI, State-Trait Anxiety Inventory I

(state) and II (trait).
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