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Objective. Preterm birth (PTB) was one of the leading causes of neonatal death. Predicting PTB in the first trimester and second
trimester will help improve pregnancy outcomes. 3e aim of this study is to propose a prediction model based on machine
learning algorithms for PTB.Method. Data for this study were reviewed from 2008 to 2018, and all the participants included were
selected from a hospital in China. Six algorisms, including Naive Bayesian (NBM), support vector machine (SVM), random forest
tree (RF), artificial neural networks (ANN), K-means, and logistic regression, were used to predict PTB. 3e receiver operating
characteristic curve (ROC), accuracy, sensitivity, and specificity were used to assess the performance of the model. Results. A total
of 9550 pregnant women were included in the study, of which 4775 women had PTB. A total of 4775 people were randomly
selected as controls. Based on 27weeks of gestation, the area under the curve (AUC) and the accuracy of the RF model were the
highest compared with other algorithms (accuracy: 0.816; AUC� 0.885, 95% confidence interval (CI): 0.873–0.897). Meanwhile,
there was positive association between the accuracy and AUC of the RFmodel and gestational age. Age, magnesium, fundal height,
serum inorganic phosphorus, mean platelet volume, waist size, total cholesterol, triglycerides, globulins, and total bilirubin were
the main influence factors of PTB. Conclusion. 3e results indicated that the prediction model based on the RF algorithm had a
potential value to predict preterm birth in the early stage of pregnancy. 3e important analysis of the RF model suggested that
intervention for main factors of PTB in the early stages of pregnancy would reduce the risk of PTB.

1. Introduction

Preterm birth (PTB) is defined as births before 37 completed
weeks of gestation [1]. 3e PTB studied in this study was for
28–37 weeks of gestational age. Based on gestational age at
delivery, PTB can be subdivided into very early preterm (<28
weeks), early preterm (28–31weeks), moderate preterm
(31–33 weeks), and late preterm (33–37 weeks) [2]. 3e
global estimated prevalence of PTB was 11.1% (95% con-
fidence interval [CI]: 9.1%–13.4%) [3]. 3e majority of PTB
occurred in low- and middle-income countries [2], and the
incidence of PTB in China was 6.9% in 2014 [4]. Although

the incidence of premature birth was relatively low in China,
PTB had a considerable impact on the health of pregnant
women and children. Evidence shows that PTB was the most
common cause of neonatal death and the second most
frequent cause of death in children aged <5 years [5]. Further
studies found that gestational age at delivery was inversely
associated with the risk of neonatal morbidity and mortality
[6], and about 35.00% of deaths among newborns were
caused by complications of PTB [7]. Preterm neonates who
survived were vulnerable to diseases, including pulmonary
hypertension [8], retinopathy [9], visual and hearing im-
pairments [10], and mental health problem [11]. Moreover,
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PTB not only caused death and diseases in the newborn, but
also caused anxiety and depression in postpartum women
[12]. Previous study showed that early screening of preterm
birth pregnant women could reduce the incidence of pre-
term birth [13]. 3erefore, a prediction model was needed to
predict PTB.

Currently, numerous studies have attempted to predict
preterm birth in pregnant women. Several studies supported
that sonographic measurement of cervical length (CL) could
be used for the prediction of PTB in the first trimester of
pregnancy [14, 15], but other studies did not demonstrate
the capability of CL in the screening of PTB [16, 17]. Fetal
fibronectin had extensively used to predict PTB, but the
sensitivity and positive predictive value of fetal fibronectin
were low [18, 19]. In recent years, machine learning algo-
rithms have been widely used in medicine with a better
performance [20]. Compared with the logistic regression
algorithm, the advantages of the machine learning were the
ability to process higher-dimensional data and self-learn
capacity [21]. Studies have shown that the use of machine
learning algorithms improved the predictive accuracy of the
prediction model for PTB [22, 23]. 3ere are also some
prediction models based on machine learning algorithms
that have poor prediction accuracy. Weber et al. established
a machine learning prediction model for preterm birth using
demographic, maternal, and residency characteristics, but
the predictive performance of the model was poor [24],
which may be caused by inaccurate geographic information.

Inconsistent predictive power of machine learning in
preterm birth. In this study, we try to use a new method to
preprocess predictors. At the same time, we compared the
predictive power of 6 machine learning algorithms in PTB.

2. Materials and Methods

2.1. Participants. Data for this study were reviewed from
2008 to 2018. All the participants included in this study were
collected from Haidian Maternal & Child Health Hospital.
3e inclusion criteria of the PTB group were as follows: (1)
signed informed consent; (2) gestational age between 28 and
37 weeks; and (3) maternal age older than 18 years. 3e
exclusion criteria of the PTB group are as follows: (1) missing
maternal age; (2) missing gestational age; and (3) chronic
diseases such as diabetes, hypertension, and heart disease.
Controls were selected from hospitals in the same period in a
1 :1 ratio. 3e inclusion criteria of controls were as follows:
(1) signed informed consent; (2) gestational age ≥37 weeks;
and (3) maternal age ≥18 years. Exclusion criteria are as
follows: (1) missingmaternal age; (2) missing gestational age;
(3) and chronic diseases such as diabetes, hypertension, and
heart disease.3e flowchart of the study is shown in Figure 1.

2.2. Feature Processing. Demographic factors (i.e., age),
physical examination, blood test (red blood cells (RBC),
white blood cell count (WBC), and plateletcrit (PCT)), urine
test strip (urine pH, urine WBC, and glycosuria), and gy-
necological examination (bacterial vaginosis (BV), cleaning
degree of vagina (CDV), and vaginal yeast infection (VYI))

were collected in our study. All participants had at least five
antenatal check-ups before 27 weeks of gestation. For
avoiding the overfitting of the model, variables that were
measured multiple times were represented using the mean
and mode, depending on the type of variable. With the
increase in the gestational age, variables were more influence
on the outcome. 3erefore, we gave more weight to the later
data. 3e equation is defined as

var20mean � average varweek1, varweek2, . . . , varweek20􏼐 􏼑, (1)

vari
mean � average vari−2

mean, varweeki−1
, varweeki

􏼐 􏼑,

i � 22, 24, 26, 27weeks of gestation.
(2)

As shown in Figure 2, the variable processing process at
each time point is determined by the values of the previous
time point and the current time point. 3e dataset was
divided into five datasets (20 weeks, 22 weeks, 24 weeks, 26
weeks, and 27 weeks of gestation dataset), according to the
time of prenatal examination.

2.3. Machine Learning Algorithms. In this study, six algor-
isms, including Naive Bayesian (NBM), support vector
machine (SVM), random forest tree (RF), artificial neural
networks (ANN), K-means, and logistic regression, were
used to predict PTB (Figure 3).

2.4. OutcomeMeasure. In this study, 4 metrics were used to
measure the predictive performance of the model: accuracy,
area under the receiver operating characteristic curve
(AUC), sensitivity, and specificity. 3e accuracy is the
proportion of correct predictions among the total number of
cases examined (1). Sensitivity refers to the test’s ability to
correctly detect true positive (2). Specificity relates to the
test’s ability to correctly detect true negative (4). AUC is a
comprehensive measure of the sensitivity and specificity of
the model:

accuracy �
TP + TN

TP + TN + FP + FN
, (3)

sensitivity �
TP

TP + FN
, (4)

specificity �
TN

TN + FP
. (5)

TP� true positive; FP � false positive; TN� true negative;
FN � false negative.

2.5. Statistical Analysis. 3e Kolmogorov–Smirnov test was
used to test the normality of continuous variable. If the
variable satisfies normal distribution, the mean± standard
deviation was used to describe the continuous variable.
Categorical variables were shown as numbers and per-
centages. Because our data were collected from electronic
medical records, there were missing values in the dataset.
3erefore, we excluded cases and variables that were missing
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more than 10%. For categorical variables, mode was used to
fill, and for continuous variables, mean was used to fill.
Comparison between the outcome groups was made by the
chi-square test or Fisher’s exact test for categorical variables
and by the t-test or Wilcoxon test for continuous variables.

3e dataset was randomly divided into a training set
(70%) and a test set (30%). 3e training set was used to train
the model, and the test set was used to evaluate the model.
Four indicators, the area under the curve (AUC), accuracy,
sensitivity, and specificity, were used to measure the

performance of the model. 3e importance of a variable was
assessed by the decreased accuracy of the model after re-
moving the variable. 3e higher the decreased accuracy of
the model, the more important the variable. All statistical
analyses were performed in R software (version 3.5.1) using
the “e1071” (Naive Bayesian algorithm and support vector
machine), “randomForest” (random forest tree), and
“kknn” (K-means) packages. For all analyses, if the two-
tailed P value <0.05, the result was considered statistically
significant.

weeks of gestation

20 22 24 26 27

var20
mean = average (varweek1,varweek2, . . .,varweek20)

var22
mean = average (var20

mean,varweek21, varweek22)

var24
mean = average (var22

mean,varweek23, varweek24)

var26
mean = average (var24

mean,varweek25, varweek26)

var27
mean = average (var26

mean,varweek27)

Figure 2: Preprocessing of variables. varweeki
is the measurement result of the variable in week i; var20mean is the composite indicator

representing the variable 20 weeks ago.

Haidian Maternal & Child Health Hospital (2008-2018)

4775 PTB4775 controls

Inclusion criteria
signed informed consent
37 weeks > gestational age 
≥ 28 weeks 
Maternal age >= 18 years 
old

Exclusion criteria
Missing maternal age
Missing gestational age
Chronic diseases such as 
diabetes, hypertension and 
heart disease

A total of 9550 pregnant women were 
included in the final analysis

Training dataset (70%) Testing dataset (30%)

Inclusion criteria
signed informed consent
gestational age ≥ 37 weeks 
Maternal age >= 18 years 
old

Exclusion criteria
Missing maternal age
Missing gestational age
Chronic diseases such as 
diabetes, hypertension and 
heart disease

Model evaluation
Accuracy
AUC 
Sensitivity
Specificity

Feature processing

1 : 1

Models
NBM
SVM
RF
ANN
K-means
Logistic 
regression

Figure 1: Workflow of this study.
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Figure 3: Classifiers used in this study. (1) Naive Bayesian (NBM): Naive Bayes calculates the posterior probability P(B|A) from P(A), P(B)

and P(B|A); P(B|A) is the posterior probability of class B and P(A) is the prior probability of predictor A and P(B) is the prior probability
of class, and P(B|A) is the probability of the predictor for the particular class. (2) Support Vector Machine (SVM); SVM outputs a
hyperplane (wTx + b � 0) that best separates the classes and has the largest separation of geometrical separations. (3) Logistic regression:
3e principle of logistic regression is to use a logistic function to map the results of linear regression between 0 and 1; X is the input features,
and β is the weight of the features. P(Y � 1) is the predicted probability of class 1. (4) Artificial Neural Networks (ANN): An artificial neural
network consists of an input layer, a hidden layer, and an output layer, and its core component is an artificial neuron. Each neuron is
summed by several other neurons multiplied by weights; xi is the input features. (5) K-means: 3e K-Means algorithm minimizes the
squared error for cluster Ci; x is the unclassified sample, and Ci is the clusters, and ui is the mean vector of clusters Ci. (6) Random Forest
Tree (RF): Random forest is an algorithm that integrates multiple decision trees through the Bagging idea of ensemble learning. 3e
principle of random forest bagging is to vote the classification results of several weak classifiers to form a strong classifier.
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2.6. Statement of Ethics. Ethics approval of this research was
approved by the Institutional Research Review Board at
National Research Institute for Family Planning and per-
formed in accordance with the ethical standards laid down in
the 1964 Declaration of Helsinki and its later amendments.

3. Results

3.1. Characteristics of Pregnant Women and Newborns. A
total 9550 of pregnant women (PTB: 4775, control: 4775)
were included in our study. 3e mean ages of the PTB group
were lower than those of the control group (PTB:
29.94± 5.39), control: 30.72± 4.00, P< 0.001). 3e gestation
of pregnant women was 251.19± 11.51 days in the case group
and 274.66± 7.15 days in the control group (P< 0.001). 3e
gravidity and parity of pregnant women in the PTB group
were lower than those in the control group (all P< 0.001).
3e weight and height of newborns in the control group
were higher than those in the PTB group (all P< 0.001). 3e
Apgar scores (1, 5, and 10 minutes) of newborns in the
control group were higher than those in the case group (all
P< 0.001). 3e characteristics of pregnant women and
newborns were summarized in Table 1.

3.2. Prenatal Testing of Pregnant Women before 27 Weeks of
Gestation. In the biochemical analysis, albumin, aspartate
transaminase (AST), total serum iron (TSI), magnesium
(Mg), and triglycerides (TG) levels were higher in the PTB
group than those in the control group (all P< 0.05).
Meanwhile, the plasma glucose (fasting) is lower in the
PTB group than that in the control group (all P< 0.05).
Total biliary acid (TBA) and urea levels were higher in the
PTB group than those in the control group (all P< 0.05).
Platelet, intermediate cell, lymphocyte (LY), monocytes
(MO), neutrophil granulocytes (NE), red blood cell dis-
tribution width-SD (RDW-SD), and WBC levels were
higher in the PTB group than those in the control group.

Mean cell hemoglobin (MCH), mean corpuscular he-
moglobin concentration (MCHC), and platelet distribu-
tion width (PDW) were lower in the PTB group than those
in the control group. Waist size, fundal height, SBP, and
DBP were higher in the PTB group than those in the
control group. Fetal heart rate (FHR) in the PTB group
was slower than that in the control group. Urine PH was
higher in the PTB group than those in the control group.
Pregnant women with blood type B were found to be more
common in the case group than in the control group
(Table 2). 3e results of prenatal testing at several other
time points (20, 22, 24, and 26 weeks of gestation) were
described in Supplementary Tables S1–S4.

3.3. Performance ofPredictionModels. Six algorithms (NBM,
SVM, RF, ANN, K-means, and logistic regression) were used
to build the model based on five datasets (20, 22, 24, 26, and
27 weeks of gestation).

Table 3 depicts the performance of the six types of
models. 3e results showed that the AUC and the accuracy
of the RF model based on 27 weeks of gestation were the
highest compared with other algorithms (accuracy: 0.816;
AUC � 0.885, 95% (confidence interval) CI: 0.873–0.897).
3e sensitivity and specificity of the RF model based on
27weeks of gestation were 0.751 and 0.882. Meanwhile,
there was positive association between the accuracy and
AUC of the RF model and gestational age (Figure 4). 3e
sensitivity of the NBM model based on 24weeks of ges-
tation was 0.837, but the specificity was only 0.515. 3e
specificity of the NBM model based on 26weeks of ges-
tation was 0.946, but the sensitivity was only 0.328. 3e
receiver operating characteristic (ROC) curve of the models
is shown in Figure 5.

3e importance analysis of the RF model found that the
top 10 most important variables were age, magnesium,
fundal height, serum inorganic phosphorus, mean platelet
volume, waist size, total cholesterol (TC), TG, globulins, and

Table 1: Characteristics of mother and newborn between PTB and control group.

Variables Control (4775) Case (4775) t/chi P

Age, years 30.72± 4.00 29.94± 5.39 8.00 <0.001
Gestation, days 274.66± 7.15 251.19± 11.51 119.70 <0.001

Gravidity
1 3437 (0.72) 3644 (0.76) 25.08 <0.001
2–3 1240 (0.26) 1063 (0.22) 25.08 <0.001
>3 98 (0.02) 68 (0.01) 25.08 <0.001

Parity 1 4006 (0.84) 4176 (0.87) 24.37 <0.001
>2 769 (0.16) 599 (0.13) 24.37 <0.001

Multiple birth No 4763 (1.00) 4284 (0.90) 479.50 <0.001
Yes 12 (0.00) 491 (0.10) 479.50 <0.001

Birth gender Male 2464 (0.52) 2659 (0.56) 15.85 <0.001
Female 2311 (0.48) 2116 (0.44) 15.85 <0.001

Birth weight, g 3410.68± 402.05 2691.13± 544.90 73.43 <0.001
Birth height, cm 50.38± 1.25 47.85± 2.82 56.81 <0.001
Apgar scores (1min) 9.95± 0.71 9.70± 1.37 11.19 <0.001
Apgar scores (5min) 10.00± 0.66 9.82± 1.20 8.97 <0.001
Apgar scores (10min) 9.95± 0.54 9.77± 1.32 8.68 <0.001
PTB: preterm birth.
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Table 2: Prenatal testing of pregnant women before 27 weeks of gestation between PTB and control group.

Variables Control (4775) Case (4775) t/chi P

Physical examination

Waist size, cm 82.68± 14.19 83.30± 13.74 −2.17 0.030
Fundal height, cm 20.57± 3.62 20.90± 3.84 −4.33 <0.001

SBP, mmHg 112.09± 10.26 113.34± 10.44 −5.86 <0.001
DBP, mmHg 69.47± 7.72 70.71± 16.09 −4.82 <0.001

FHR, times/min 145.50± 3.05 146.46± 17.27 −3.78 <0.001
Weight, kg 63.16± 9.15 63.04± 9.39 0.60 0.549

Edema No 4759 (1.00) 4747 (0.99) 2.76 0.096
Yes 16 (0.00) 28 (0.01)

Blood test

BG

A 1238 (0.26) 1063 (0.22) 128.27 <0.001
B 1571 (0.33) 2106 (0.44)
AB 484 (0.10) 417 (0.09)
O 1482 (0.31) 1189 (0.25)

Blood RH Ne 24 (0.01) 15 (0.00) 1.65 0.199
Po 4751 (0.99) 4760 (1.00)

ALB, g/L 41.24± 3.46 41.45± 2.75 −3.20 0.001
ALT, U/L 20.65± 14.05 21.02± 13.69 −1.28 0.199
AST, U/L 20.91± 7.81 22.14± 7.72 −7.74 <0.001

Glu, mmol/L 4.57 [4.25, 4.93] 4.56 [4.23, 4.72] <0.001
Ca, mmol/L 2.30± 0.14 2.31± 0.12 −1.36 0.174
Cr, umol/L 50.86± 7.61 51.17± 8.25 −1.92 0.055
DB, umol/L 1.72 [1.10, 2.30] 1.74 [1.43, 1.90] 0.594
TSI, umol/L 17.44± 3.33 17.60± 2.63 −2.61 0.009
GLOB, g/L 27.28± 3.32 27.24± 2.43 0.73 0.466
Mg, mmol/L 0.87± 0.13 0.88± 0.09 −4.43 <0.001
IP, mmol/L 1.25± 0.15 1.25± 0.12 −1.61 0.108
TBA, umol/L 3.83 [2.90, 5.10] 4.90 [3.32, 5.01] <0.001
TB, umol/L 11.28± 3.53 11.18± 2.64 1.67 0.095

CHOL, mmol/L 4.78± 0.73 4.80± 0.38 −1.66 0.096
TP, g/L 68.76± 4.84 68.78± 3.55 −0.22 0.829

TG, mmol/L 1.52± 0.54 1.58± 0.41 −6.57 <0.001
Urea, mmol/L 2.80 [2.38, 3.28] 2.84 [2.40, 3.10] 0.002
UA, umol/L 199.75± 40.26 198.22± 39.37 1.88 0.060
BA, 10e9/L 0.01± 0.03 0.01± 0.05 −1.01 0.314
Plt, 10e9/L 220.31± 48.25 224.52± 48.60 −4.25 <0.001
EOS, 10e9/L 0.09± 0.09 0.09± 0.07 0.43 0.665
Hb, g/L 117.98± 8.56 117.69± 8.59 1.62 0.105

MID, 10e9/L 0.55± 0.10 0.56± 0.12 −4.51 <0.001
LY, 10e9/L 1.72± 0.40 1.75± 0.41 −2.92 0.004
MCH, pg 31.49± 1.91 31.33± 1.85 4.15 <0.001

MCHC, g/L 344.87± 10.25 343.39± 10.52 6.95 <0.001
MCV, fL 91.31± 4.72 91.24± 4.50 0.76 0.445

MO, 10e9/L 0.53± 0.14 0.54± 0.14 −4.33 <0.001
MPV, fL 8.58± 1.10 8.60± 1.09 −1.07 0.283

NE, 10e9/L 7.23± 1.69 7.36± 1.72 −3.60 <0.001
P-LCR, % 0.23± 0.05 0.23± 0.05 5.83 <0.001
HCT, % 0.34± 0.02 0.35± 0.25 −1.18 0.238
PCT, % 0.19± 0.04 0.19± 0.03 −0.23 0.819
PDW, % 15.16± 2.25 14.83± 2.51 6.75 <0.001

RDW-CV, % 0.16± 0.51 0.16± 0.35 0.81 0.416
RDW-SD, fL 42.84± 2.46 43.45± 2.12 −13.07 <0.001
RBC, 10e12L 3.76± 0.31 3.77± 0.32 −1.51 0.131
WBC, 10e9/L 9.58± 1.93 9.74± 1.97 −3.93 <0.001
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Table 2: Continued.

Variables Control (4775) Case (4775) t/chi P

Urine test strip

Urine pH 6.67± 0.46 6.73± 0.46 −6.77 <0.001
USG 1.02± 0.01 1.02± 0.01 4.96 <0.001

BIL Ne 4737 (0.99) 4749 (0.99) 1.90 0.168
Po 38 (0.01) 26 (0.01)

Glycosuria Ne 3780 (0.79) 3820 (0.80) 0.98 0.322
Po 995 (0.21) 955 (0.20)

KET Ne 4593 (0.96) 4589 (0.96) 0.03 0.873
Po 182 (0.04) 186 (0.04)

Nitrituria Ne 4728 (0.99) 4740 (0.99) 1.49 0.222
Po 47 (0.01) 35 (0.01)

Blood Ne 4322 (0.91) 4397 (0.92) 7.22 0.007
Po 453 (0.09) 378 (0.08)

Proteinuria Ne 4729 (0.99) 4698 (0.98) 7.41 0.006
Po 46 (0.01) 77 (0.02)

Bilirubinuria Ne 4758 (1.00) 4755 (1.00) 0.11 0.742
Po 17 (0.00) 20 (0.00)

Urine WBC Ne 3490 (0.73) 3475 (0.73) 0.10 0.747
Po 1285 (0.27) 1300 (0.27)

Gynecological examination

BV Ne 4678 (0.98) 4719 (0.99) 10.63 0.001
Po 97 (0.02) 56 (0.01)

CDV

1 854 (0.18) 975 (0.20) 60.20 <0.001
2 2904 (0.61) 3066 (0.64)
3 845 (0.18) 590 (0.12)
4 172 (0.04) 144 (0.03)

VYI Ne 4499 (0.94) 4549 (0.95) 5.05 0.025
Po 276 (0.06) 226 (0.05)

ALB: serum albumin; ALT: alanine transaminase; AST: aspartate transaminase; BA: basophil granulocytes; BG: blood group; BIL: urine bilirubin; Blood RH:
blood RH; BV: bacterial vaginosis; Ca: total calcium; CDV: cleaning degree of vagina,3e higher the value, the worse the cleanliness; CHOL: total cholesterol;
Cr: creatinine; DB: direct bilirubin; DBP: diastolic blood pressure; EOS: eosinophil granulocytes; FHR: fetal heart rate; GLOB: globulins; Glu: plasma glucose
(fasting); Hb: hemoglobin; HCT: hematocrit; IP: serum inorganic phosphorus; KET: urine ketone bodies; LY: lymphocytes; MCH: mean cell hemoglobin;
MCHC: mean corpuscular hemoglobin concentration; MCV: mean cell volume; Mg: magnesium; MID: intermediate cell; MO: monocytes; MPV: mean
platelet volume; NE: neutrophil granulocytes; PCT: plateletcrit; PDW: platelet distribution width; P-LCR: mean platelet volume; Plt: platelet count; RBC: red
blood cells; RDW-CV: red blood cell distribution width-CV; RDW-SD: red blood cell distribution width-CV; SBP: systolic blood pressure; TB: total bilirubin;
TBA: total biliary acid; TG: triglycerides; TP: total protein; TSI: total serum iron; UA: uric acid; Urea: urea; Urine WBC: urine white blood cell; USG: urine
specific gravity; VYI: vaginal yeast infection; WBC: white blood cell count; PTB: preterm birth. Variables that are not normally distributed were expressed as
p50 [p25, p75].

Table 3: 3e performance of models in the test set.

Models Accuracy AUC (95% CI) Sensitivity Specificity

Dataset 1

SVM 0.720 0.791 (0.771–0.811) 0.710 0.731
RF 0.777 0.861 (0.841–0.871) 0.720 0.840

NBM 0.677 0.741 (0.721–0.761) 0.705 0.646
ANN 0.634 0.691 (0.671–0.711) 0.687 0.576

K-means 0.611 0.681 (0.661–0.701) 0.794 0.412
Log 0.610 0.701 (0.681–0.721) 0.378 0.861

Dataset 2

SVM 0.721 0.791 (0.781–0.811) 0.722 0.721
RF 0.794 0.871 (0.851–0.881) 0.756 0.832

NBM 0.682 0.771 (0.751–0.791) 0.785 0.581
ANN 0.666 0.731 (0.711–0.751) 0.595 0.738

K-means 0.602 0.681 (0.671–0.701) 0.811 0.393
Log 0.606 0.701 (0.681–0.721) 0.364 0.847

Dataset 3

SVM 0.719 0.801 (0.781–0.811) 0.695 0.743
RF 0.806 0.881 (0.871–0.901) 0.765 0.846

NBM 0.674 0.791 (0.771–0.811) 0.837 0.515
ANN 0.733 0.801 (0.791–0.821) 0.741 0.726

K-means 0.612 0.711 (0.691–0.731) 0.824 0.405
Log 0.633 0.701 (0.681–0.721) 0.421 0.839
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Table 3: Continued.

Models Accuracy AUC (95% CI) Sensitivity Specificity

Dataset 4

SVM 0.719 0.791 (0.781–0.811) 0.678 0.763
RF 0.807 0.881 (0.871–0.891) 0.743 0.875

NBM 0.626 0.741 (0.721–0.761) 0.328 0.946
ANN 0.732 0.811 (0.801–0.831) 0.730 0.734

K-means 0.626 0.721 (0.701–0.741) 0.801 0.436
Log 0.611 0.701 (0.691–0.721) 0.361 0.880

Dataset 5

SVM 0.729 0.801 (0.781–0.811) 0.685 0.773
RF 0.816 0.891 (0.871–0.901) 0.751 0.882

NBM 0.622 0.741 (0.721–0.761) 0.315 0.937
ANN 0.747 0.811 (0.801–0.831) 0.730 0.763

K-means 0.609 0.701 (0.681–0.721) 0.780 0.434
Log 0.623 0.691 (0.671–0.711) 0.391 0.861

NBM: Naive Bayesian; SVM: Support Vector Machine; RF: Random Forest Tree; ANN: Artificial Neural Networks; Log: Logistic regression; Dataset 1:
20weeks gestation; Dataset 2: 22weeks gestation; Dataset 3: 24 weeks gestation; Dataset 4: 26 weeks gestation; Dataset 5: 27 weeks gestation. AUC: the area
under the curve; CI: confidence interval.
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Figure 4: AUC (a) and accuracy (b) of models in different gestation times. (NBM: Naive Bayesian; SVM: Support Vector Machine; RF:
Random Forest Tree; ANN: Artificial Neural Networks; Log: logistic regression; AUC: the area under the curve).

8 Journal of Healthcare Engineering



total bilirubin (TB) (Table 4). According to the importance
of variables, we gradually increase the number of predictors,
and the results show that the AUC of the model also in-
creases gradually. 3e AUC of the model is stable when the
number of predictors increases to 15 (Figure 6).

4. Discussion

In this study, six algorithms were used to establish the
prediction model of premature birth in the early stage of
gestation. 3e overall prediction effect of the RF model was
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Figure 5: 3e ROC curve of the models. (a) Based on 20 weeks of gestation. (b) Based on 22 weeks of gestation. (c) Based on 24weeks of
gestation. (d) Based on 26 weeks of gestation. (e) Based on 27 weeks of gestation.
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better than that of other models. We also found that the
predictive power of the RFmodel increased with the increase
of gestational age. Age, magnesium, fundal height, serum
inorganic phosphorus, mean platelet volume, waist size, TC,
TG, globulins, and TB were found to be the main influencing
factors of preterm birth.

In our study, we used the data from the production
inspection to build the model based on the machine
learning algorithm. 3e prediction performance of the
model was relatively good, and the cost of the model was
low. Ramkumar et al. using multivariate adaptive re-
gression splines established a prediction model based on
biomarkers (including IL-1RA, TNF-α, angiopoietin 2,
TNFRI, IL-5, MIP1α, IL-1β, and TGF-α), resulting in a
high AUC (train set: 0.82–0.98, test set: 0.66–0.86) [25].
Teresa et al. used cervical length at admission, gesta-
tional age, amniotic fluid glucose, and interleukin-6 to
establish a prediction model, resulting in a high AUC
(0.86, 95% CI: 0.77–0.95) [26]. 3uy et al. found that
nine cell-free RNA could be used to predict gestational
age and preterm delivery, and the AUCs of preterm
delivery were 0.86 in the discovery cohort and 0.81 in the
validation cohort [27]. In these studies, the prediction
performance of the preterm birth model was better, but
another clinical test was needed and expensive. Kamala
et al. used a combination of neighborhood socioeco-
nomic status and individual status to predict preterm
birth, but the AUC (0.75) of the model was relatively low
[28]. Liu et al. found that cervical elastography could be
used as a predictive indicator, and the AUC of the model
was 0.73 [29]. 3e above studies used a traditional bi-
ological algorithm, such as logistic regression, to build
the model, but the predictive power of the model is
relatively low.

In this study, the results of the numerical experiments
show that the AUC of SVM, RF, and ANN models were
higher than logistic, NBM, and k-means. 3e possible reason
for the low AUC of the NBM model is that the NBM model
assumes that features are independent of each other, which is
often not true in practice. For logistic regression and k-means
algorithms, they were susceptible to outliers and noise that
reduce prediction accuracy. For the other 3 machine algo-
rithms, the AUC value of the RF model was the highest. 3e
RFmodel is an ensemble learningmethod, which constructs a
multitude of decision trees at training time and then sets up
the trees to give the classification [30]. 3is ensemble strategy
makes several weak classifiers form a strong classifier to
improve the predictive ability of the model. In a recent study,
the RF algorithm had also achieved a good predictive effect in
fatty liver disease [31], suggesting that the RF algorithm had
advantages in the processing of clinical electronic medical
records. Moreover, we found that the prediction performance
of RF was the best at 27 weeks of gestation.3is may be due to
alternation of biochemical indexes in pregnant women as
delivery approached. 3e AUC of the model based on ran-
dom forest in 20 weeks of gestation was 0.855 (95% CI:
0.841–0.869), suggesting that interventions could be per-
formed before these biochemical indicators change.

In the importance analysis of the RF model, we found that
age was the greatest effect on preterm birth. A case-control
study showed that premature delivery was associated with
greater maternal age [32]. We also found that serum mag-
nesium had a great influence on the results of the model. A

Table 4: 3e top 20 importance variables of RF model.

Variables Decreased
accuracy

Age (physical examination) 0.0251
Magnesium (blood test) 0.0098
Fundal height (physical examination) 0.0077
Serum inorganic phosphorus (blood test) 0.0038
Mean platelet volume (blood test) 0.0038
Waist size (physical examination) 0.0038
Total cholesterol (blood test) 0.0035
Triglycerides (blood test) 0.0031
Globulins (blood test) 0.0024
Total bilirubin (blood test) 0.0024
Neutrophil granulocytes (blood test) 0.0024
Red blood cell distribution width-SD (blood test) 0.0024
Bacterial vaginosis (gynecological examination) 0.0021
Urine bilirubin (urine test strip) 0.0021
Urine white blood cell (urine test strip) 0.0021
Diastolic blood pressure (physical examination) 0.0014
Blood group (blood test) 0.0014
Parity (physical examination) 0.0014
Eosinophil granulocytes (blood test) 0.0010
White blood cell count (blood test) 0.0010
RF: Random Forest tree.
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Figure 6: 3e AUC of the model increases with the number of
predictors. (NBM: Naive Bayesian; SVM: Support Vector Machine;
RF: Random Forest Tree; ANN: Artificial Neural Networks; Log:
logistic regression; AUC: the area under the curve).
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double-blind study suggested that magnesium supplementa-
tion during pregnancy is associatedwith a reduction in preterm
delivery [33].Maternal fundal height was found to be a valuable
predictor for PTB in our study. Previous study used maternal
fundal height to predict fetal weight [34], suggesting that fundal
height was a good predictor for PTB. 3e measurement of
fundal height is susceptible to measurement personnel, which
may limit its clinical use. Della Rosa et al. used 9 most in-
formative predictors to build a preterm birth predictionmodel,
and theAUCof themodel reached 0.812 [35]. Our results show
that using only 15 predictions can achieve better model pre-
dictions. Considering the cost effect, this result has important
implications for guiding clinical practice.

3ere were some limitations in our study. First, our
dataset, collection from electronic medical records, and lack
of some data such as smoking, drinking, family income,
method of conception, medication, and fetal fibronectin. 3e
absence of these factors may underperform our model.
Second, previous studies found that the conception method
has an important effect on preterm birth [36, 37], but it was
not included in our model, which may affect the prediction
accuracy of our model. 3ird, controls of the study were
matched 1 :1 from contemporaneous hospitals, which may
overestimate the performance of the model and may limit the
use of the model to a normal proportion of the population.

5. Conclusions

Our results indicated that the prediction model based on the
RF algorithm had a potential value to predict preterm birth
early stage of pregnancy. 3e RF model also found the main
influence factors of PTB, suggesting that intervention in the
early stages of pregnancy could decrease the risk of preterm
birth.
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