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Background: In professional sports, injuries resulting in loss of playing time have serious implications for both the athlete and the
organization. Efforts to quantify injury probability utilizing machine learning have been met with renewed interest, and the
development of effective models has the potential to supplement the decision-making process of team physicians.

Purpose/Hypothesis: The purpose of this study was to (1) characterize the epidemiology of time-loss lower extremity muscle
strains (LEMSs) in the National Basketball Association (NBA) from 1999 to 2019 and (2) determine the validity of a machine-learning
model in predicting injury risk. It was hypothesized that time-loss LEMSs would be infrequent in this cohort and that a machine-
learning model would outperform conventional methods in the prediction of injury risk.

Study Design: Case-control study; Level of evidence, 3.

Methods: Performance data and rates of the 4 major muscle strain injury types (hamstring, quadriceps, calf, and groin) were
compiled from the 1999 to 2019 NBA seasons. Injuries included all publicly reported injuries that resulted in lost playing time.
Models to predict the occurrence of a LEMS were generated using random forest, extreme gradient boosting (XGBoost), neural
network, support vector machines, elastic net penalized logistic regression, and generalized logistic regression. Performance was
compared utilizing discrimination, calibration, decision curve analysis, and the Brier score.

Results: A total of 736 LEMSs resulting in lost playing time occurred among 2103 athletes. Important variables for predicting LEMS
included previous number of lower extremity injuries; age; recent history of injuries to the ankle, hamstring, or groin; and recent
history of concussion as well as 3-point attempt rate and free throw attempt rate. The XGBoost machine achieved the best
performance based on discrimination assessed via internal validation (area under the receiver operating characteristic curve,
0.840), calibration, and decision curve analysis.

Conclusion: Machine learning algorithms such as XGBoost outperformed logistic regression in the prediction of a LEMS that will
result in lost time. Several variables increased the risk of LEMS, including a history of various lower extremity injuries, recent
concussion, and total number of previous injuries.
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Injuries in professional athletes are detrimental to both the
team and the sport overall.33 Time missed from sport could
be detrimental from not only a competitive perspective but
also a financial one.33,41 Lower extremity muscle strains
(LEMSs) are some of the most common injuries in athletes.
One study on gastrocnemius-soleus complex injuries in
National Football League (NFL) athletes reported at least
2 weeks of missed playing time on average.41 In a summa-
tive report on time out of play for Major and Minor League
Baseball players, the authors reported that the most

common injuries were related to muscle strains or tears
(30%). In the same study, hamstring strains were the most
common injury in approximately 7% of the athletes and
resulted in a total of more than 46,000 days missed, with
a mean of 14.5 days missed per player. In addition, approx-
imately 3.6% of these injuries were season ending and 2.6%
recurred at least once more.1 Two additional LEMSs con-
sisted of the top 10 most common injuries in Major League
Baseball (MLB) players resulting in additional missed
days. While the combined incidence and outcomes of
LEMSs have not been well studied in National Basketball
Association (NBA) athletes, in a 17-year overview of inju-
ries in NBA athletes, Drakos et al6 identified hamstring
and adductor strains to be among the top 5 most frequently
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encountered injuries, with quadriceps and hip flexor
strains representing significant proportions.

Machine learning has become increasingly recognized
as a useful tool in medicine, including orthopaedic
surgery.19,29,34 By allowing for the creation of predictive
models that can improve accuracy, machine learning can
help guide decision making for not only physicians but also
the patients. In addition, machine learning has the distinct
advantage of performing well when handling complex rela-
tionships by allowing accurate prediction from many
inputs.12

Because of the frequency of LEMS in addition to the days
missed and common recurrence, it is important to deter-
mine the most important factors that can contribute to
LEMS. In addition, no current models exist delineating
important risk factors for LEMS in professional NBA ath-
letes. Therefore, the purpose of this study was to (1) create
accurate machine learning models for the prediction of
LEMS in NBA athletes and (2) compare the predictive per-
formance of these models with conventional logistic regres-
sion with the hypothesis that machine learning would allow
for the creation of customized risk-predictive tools with
higher discrimination than conventional logistic regres-
sion. We hypothesized that time-loss LEMSs would occur
infrequently in this elite athlete population and that a
machine-learning model would outperform traditional
methods in quantifying injury risk.

METHODS

Guidelines

This study was conducted in adherence with the Guidelines
for Developing and Reporting Machine Learning Predictive
Models in Biomedical Research as well as the Transparent
Reporting of a Multivariable Prediction Model for Individ-
ual Prognosis or Diagnosis guidelines.3,25 A detailed mod-
eling workflow is available in the Appendix, and definitions
of commonly encountered machine-learning terminology
are available in Appendix Table A1. This study was consid-
ered exempt from institutional review board approval.

Data Collection

NBA athlete data were publicly sourced from 3 online plat-
forms: www.prosportstransactions.com, www.basketball-

reference.com, and www.sportsforecaster.com. Injuries
included all publicly reported injuries resulting in loss of
playing time. Data were compiled for all players from the
1999 through 2019 NBA seasons (over a 20-year period).
Data collected included demographic characteristics, prior
injury documentation, and performance metrics.

Variables and Outcomes

The primary outcome of interest was risk of sustaining a
major muscle strain, which was defined as any muscle
strain that led to loss of playing time based on movement
to and from the injury list, as noted by the publicly avail-
able compilation of professional basketball transactions.
The major muscle strain injury types considered in the
model consisted of hamstring, quadriceps, calf, and groin
muscle strains. Demographic variables included age, career
length, and player position. Clinical variables included
recent injury history, defined as one of the following inju-
ries within 8 weeks of the case injury: groin, quadriceps,
hamstring, ankle, back injury, or concussion; remote injury
history, defined as any history of the injuries before the
case injury; and previous total count of lower extremity
injuries. Performance metrics were also included, including
basic and advanced statistics. Notable advanced statistics
included the 3-point attempt rate (percentage of player field
goal attempts that are for 3 points) as well as free throw
attempt rates (the ratio of a player’s free throw attempts to
field goal attempts). The full list of variables considered for
feature selection is provided in Appendix Table A2. There
were no missing data. All variables collected in the final
compilation were included in recursive feature elimination
(RFE) using a random forest algorithm, a technique dem-
onstrated to effectively isolate features correlated with the
desired outcome while eliminating variables with high col-
linearity within high-dimensional data.5,30

Modeling Training

After selection, modeling was performed using the selected
features with each of the following candidate machine
learning algorithms: elastic net penalized regression, ran-
dom forest, extreme gradient boosted (XGBoost) machine,
support vector machines, and logistic regression. Variables
significant on logistic regression were entered into a sim-
plified XGBoost for benchmarking.
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Models were trained using 10-fold cross-validation
repeated 3 times. The performance of this model was then
evaluated on the respective test set, and no data points
from the training set were included in the test set. The
model was then internally validated via 0.632 bootstrap-
ping with 1000 resample sets, because of this technique’s
ability to optimize evaluation of both model bias and
variance.11,38,39 The model was thus tested on all data
points available, and evaluation metrics were summarized
with standard distributions of values.

Model Selection

The optimal model was chosen based on area under the
receiver operating characteristic curve (AUC). Models
were compared by discrimination, calibration, and Brier
score values (Figure 1A). An AUC of 0.70 to 0.80 was con-
sidered acceptable, and an AUC of 0.80 to 0.90 was consid-
ered excellent.13 The mean square difference between
predicted probabilities of models and observed outcomes,
known as the Brier score, was calculated for each candidate
model. The Brier scores of candidate algorithms were then
assessed by comparison with the Brier score of the null
model, which is a model that assigns a class probability
equal to the sample prevalence of the outcome for every
prediction.

The final model was calibrated with the observed fre-
quencies within the test population and summarized in a
calibration plot (Figure 1B). Ideally, the model is calibrated
to a straight line, with an intercept of 0 and slope of 1
corresponding to perfect concordance of model predictions
to observed frequencies in the data.

Model Implementation

The benefit of implementing the predictive algorithm into
practice was assessed via decision curve analysis. These
curves plot the net benefit against the predicted probabili-
ties of each outcome, providing the cost-benefit ratio for
every probability threshold of classifying a prediction as
high risk. Additionally, curves demonstrating default

strategies of changing management for all or no patients
are included for comparative purposes.

Model Interpretability

Both global and local model interpretability and explana-
tions were provided. Global model interpretability is pro-
vided as a plot of the model’s input variables normalized
against the input considered to have the most contribution
to the model prediction and Shapley Additive Explanations
(SHAP), demonstrating how much each predictor contri-
butes, either positively or negatively, to the model output.24

Local explanations are provided using local-interpretable
model-agnostic explanations, in which variable contribu-
tions for individual model predictions are visually
depicted.8,35

Digital Application

The final model was incorporated into a web-based applica-
tion to illustrate possible future model integration. It
should be noted that this digital application remains exclu-
sively for research and educational purposes until rigorous
external validation has been conducted. In the digital appli-
cation, athlete demographic and performance data are
entered to generate outcome predictions with accompany-
ing explanations. All data analysis was performed in
R Version 4.0.2 using RStudio Version 1.2.5001.

RESULTS

Patient Characteristics

A total of 2103 NBA athletes were included in the study
over a 20-year period. The median career length was 6 years
(interquartile range, 2-9 years), with an almost even break-
down between designated positions (Table 1). Hamstring
(36.4%) and calf (36.1%) injuries were more prevalent com-
pared with quadriceps (11.5%) and groin (15.9%) injuries.
The incidence rate of LEMSs per athlete per season was
5.83%.

Multivariate Logistic Regression

After feature selection, the multivariate logistic regression
was utilized to generate models using the selected features
with odd ratios (ORs) of statistically significant contribu-
tors to LEMS. The most important risk factor for LEMS
was previous injury count (OR, 21.0; 95% CI, 2.5-72.5)
(Table 2). The next 5 most important risk factors for LEMS,
in order from most to least contributory, were recent quad-
riceps injury (OR, 4.31; 95% CI, 1.21-15.4), recent groin
injury (OR, 2.9; 95% CI, 2.88-2.91), free throw attempt rate
(OR, 2.76; 95% CI, 1.27-6), recent ankle injury (OR, 2.66;
95% CI, 2.65-2.68), and recent hamstring injury (OR, 2.39;
95% CI, 2.38-2.4) (Table 2). While significant, age and
games had a negligible effect in contributing to LEMS in
the logistic regression (OR, 1.01-1.03), and 3-point attempt
rate was protective of LEMS (OR, 0.46; 95% CI, 0.27-0.97).

Figure 1. (A) Discrimination and (B) calibration of the extreme
gradient boosted machine. AUC, area under the receiver
operating characteristic curve.
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Model Creation and Performance

After multivariate logistic regression, machine-learning
models were trained using the same variables identified
from RFE. After model optimization, candidate model per-
formances on internal validation were compared (Table 3).
The random forest and XGBoost models had higher AUCs
on internal validation data, 0.830 (95% CI, 0.829-0.831)
and 0.840 (95% CI, 0.831-0.845), respectively, although
XGBoost had a nonsignificantly higher Brier score. In this
data set, conventional logistic regression had a signifi-
cantly lower AUC on internal validation (0.818; 95% CI,
0.817-0.819) compared with the aforementioned models;
similarly, this was lower than the AUC yielded by the sim-
plified XGBoost model (0.832; 95% CI, 0.818-0.838). The
calibration slope of models ranged from 0.997 for neural
network to 1.003 for XGBoost, suggesting excellent

estimation for all models (Table 3). The Brier score of mod-
els ranged from 0.029 for random forest to 0.31 for multiple
models, indicating excellent accuracy. The XGBoost model
had the highest overall AUC, with comparable calibration
and Brier scores, and was therefore chosen as the best-
performing candidate algorithm (Figure 1).

Variable Importance

The global importance of input variables used for XGBoost
was assessed with previous lower extremity injury having a
near 100% relative influence, followed by games played,
free throw attempt rate and percentage, 3-point attempt
rate, and assist percentage (Figure 2A). SHAP values (Fig-
ure 2B) are average marginal contributions of selected fea-
tures across all possible coalitions and indicate the 3 most
common features to be total rebound percentage, previous
lower extremity injury count, and games played. As can be
interpreted, age and games played affect the model in a
positive direction. While there are a number of outliers in
which a high injury count does not contribute positively to
an increased probability of LEMS, the overall contribution
of previous injury count as indicated by the mean SHAP
value remains positive.

Decision Curve Analysis

Decision curve analysis was used to compare the net benefit
derived from the trained XGBoost model. For comparison
purposes, a decision curve was also plotted for a learned
multivariate logistic regression model trained using the
same parameters and inputs. The XGBoost model trained
on the complete feature set demonstrated greater net ben-
efit compared with logistic regression and other alterna-
tives (Figure 3).

Interpretation

An example of a patient-level evaluation and variable
importance explanation is provided in Figure 4. This
patient was assigned a probability of 0.007 (approximately
1%) for sustaining LEMS. Features that decreased the
patient’s risk for LEMS included lack of recent ankle
injury; concussion; or groin, hamstring, quadriceps, or back
injury (among others). Features that increased the
patient’s risk of injury were a recent back injury in addition
to 3-point shot percentage.

For each patient or professional basketball athlete, base-
line parameters can be collected or examined during the
encounter to generate predictions regarding risk of LEMS
in the athlete. These predictions can be utilized to inform
counseling, modify exercise regiments, or dictate rest peri-
ods for athletes at high risk for LEMS. The final model was
incorporated into a web-based application that generated
predictions for probabilities of LEMS. The application
(available at https://sportsmed.shinyapps.io/NBA_LE) is
accessible from desktop computers, tablet computers, and
smartphones. Default values are provided as placeholders in
the interface, and the model requires complete cases to gen-
erate predictions and explanations.

TABLE 1
Baseline Characteristic of the Study Population (N ¼

2103)a

Variable Value

Age, y 26 (23-29)
BMI, kg/m2 24.3 (20.1-26.5)
Career length, y 6 (2-9)
Position

Center 384 (18.2)
Power forward 429 (20.4)
Point guard 424 (20.2)
Small forward 389 (18.5)
Shooting guard 477 (22.7)

Injuries (n ¼ 736)
Quadriceps 85 (11.5)
Hamstring 268 (36.4)
Calf 266 (36.1)
Groin 117 (15.9)

aValues are presented as n (%) or median (interquartile range).
BMI, body mass index.

TABLE 2
Significant Contributors to Lower Extremity Muscle Strain

From Logistic Regression Modela

Variable OR (95% CI)

Previous injury count 21.0 (2.5-72.5)
Recent quadriceps injury 4.31 (1.21-15.4)
Recent groin injury 2.9 (2.88-2.91)
Free throw rate 2.76 (1.27-6)
Recent ankle injury 2.66 (2.65-2.68)
Recent hamstring injury 2.39 (2.38-2.4)
Recent concussion 2.34 (2.33-2.35)
Recent back injury 1.95 (1.94-1.96)
Age 1.03 (1.01-1.05)
Games played 1.01 (1.01-1.02)
3-point attempt rate 0.46 (0.27-0.79)

aOR, odds ratio.
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DISCUSSION

The principal findings of our study are that (1) the inci-
dence of LEMSs in the NBA over the study period was
5.83%, and a number of significant features in the predic-
tion of these injuries were identified; (2) the XGBoost algo-
rithms outperformed logistic regression with regard to
discrimination, calibration, and overall performance; and
(3) the clinical model was incorporated into an open-

access injury risk calculator for education and demonstra-
tion purposes.

Despite a number of studies evaluating injuries in the
NBA,20,36,37 there is a paucity of evidence regarding the
rate of LEMS. A study by Drakos et al6 found that ham-
string strains (n ¼ 413; 3.3%), defined as any that required
missed time, physician referral, or emergency care, were
among the most frequently encountered orthopaedic inju-
ries in the NBA across a 17-year study period; our study
reports a lower incidence (n ¼ 268) over 20 years, likely

TABLE 3
Model Assessment on Internal Validation Using 0.632 Bootstrapping With 1000 Resampled Data Sets (N ¼ 2103)a

Metric

AUC (95% CI)

Apparent Internal Validation Calibration Slope Calibration Intercept Brier Score

Elastic net 0.834 (0.791-0.877) 0.819 (0.818-0.820) 0.999 (0.998-1) 0.003 (0.001-0.005) 0.031 (0.027-0.034)
Random forest 0.905 (0.896-0.92) 0.830 (0.829-0.831) 1.001 (1-1.002) 0.002 (0.001-0.007) 0.029 (0.027-0.032)
XGBoost 0.906 (0.899-0.911) 0.840 (0.831-0.845) 1.003 (1.002-1.004) 0.002 (0.001-0.007) 0.03 (0.027-0.033)
SVM 0.881 (0.88-0.882) 0.787 (0.786-0.788) 0.999 (0.998-1) 0.007 (0.004-0.009) 0.031 (0.028-0.034)
Neural network 0.84 (0.839-0.841) 0.813 (0.812-0.814) 0.997 (0.996-0.998) 0.003 (0-0.005) 0.031 (0.028-0.034)
Logistic regression 0.835 (0.834-0.836) 0.818 (0.817-0.819) 0.998 (0.997-0.999) 0.008 (0.002-0.012) 0.031 (0.028-0.034)
Simple XGBoost 0.882 (0.880-0.882) 0.832 (0.818-0.838) 0.999 (0.998-1.000) 0.003 (0.002-0.004) 0.031 (0.027-0.033)

aNull model Brier score ¼ 0.063. AUC, area under the receiver operating characteristic curve; SVM, support vector machine; XGBoost,
extreme gradient boosted.Data in parentheses is 95% confidence intervals.

Figure 2. (A) Variable importance plot of the extreme gradient boosted (XGBoost) machine model. (B) Summary plot of Shapley
(SHAP) values of the XGBoost model. Specifically, the global SHAP values are plotted on the x-axis with variable contributions on
the y-axis. Numbers next to each input name indicate the mean global SHAP value, and gradient color indicates feature value. Each
point represents a row in the original data set. Three-point attempt rate ¼ percentage of player field goals that are for 3 points; free
throw attempt rate ¼ ratio of free throw attempts to field goal attempts. LE, lower extremity.
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given our accounting of only time-loss injuries. This likely
reflects a similar overall deflation of injury incidence in our
cohort among other body parts.

While similar investigations have been carried out in
professional soccer, baseball, and American football
athletes,21,28,32 few studies have previously investigated
the risk factors for characterizing the epidemiology of
LEMSs in professional basketball athletes. The input fea-
tures that were significant on both multivariate logistic
regression and global variable importance assessment
included the following: previous injury count; games
played; history of recent ankle, groin, hamstring, or back
injury; history of a concussion; free throw percentage; and
3-point shot percentage. The investigation by Orchard
et al32 identified a strong relationship between LEMS and
a recent history of same-site muscle strain. We similarly
utilized the definition of recent recurrence as within
8 weeks of the index injury as described by Fuller et al,7

because of the absence of such a consensus definition in the
NBA, and corroborated this finding among basketball ath-
letes. This relationship is intuitive, as premature return to
play can predispose athletes to reinjury. However, we did
not identify a relationship between nonrecent history of
any injuries with the risk of an index injury, which suggests
that injury risk for LEMSs may be equivalent between con-
trols and injured athletes beyond the 8-week window
within this cohort of elite athletes.

There has been a longstanding relationship between
ankle injuries and lower extremity biomechanics and pos-
tural stability.2,22,23 However, whether this relationship is
causative or correlative is more ambiguous. While a motion
analysis study by Leanderson et al22 identified a signifi-
cantly increased range of postural sway among Swedish
Division II basketball players with a history of lateral ankle
sprains compared with controls, a more recent

Figure 4. Example of individual patient-level explanation for the simplified extreme gradient boosted machine algorithm predic-
tions. This athlete had a predicted injury risk of 0.77% at this point during the season. The only feature to support the likelihood of
injury was a recent back injury.

Figure 3. Decision curve analysis comparing the complete
extreme gradient boosted (XGBoost) machine algorithm with the
complete logistic regression as well as a simplified model utiliz-
ing select parameters. The downsloping line marked by “All”
plots the net benefit from the default strategy of changing man-
agement for all patients, while the horizontal line marked “none”
represents the strategy of changing management for none of the
patients (net benefit is zero at all thresholds). The “All” line slopes
down because at a threshold of zero, false positives are given no
weight relative to true positives; as the threshold increases, false
positives gain increased weight relative to true positives and the
net benefit for the default strategy of changing management for
all patients decreases. LR, logistic regression.
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investigation by Lopezosa-Reca et al23 found that athletes
who had certain foot postures as described by the Foot Pos-
ture Index were more likely to experience lower extremity
injuries such as lateral ankle sprains and patellar tendino-
pathy. Our findings suggest that altered foot biomechanics
secondary to a recent ankle injury contribute at least par-
tially to the increased risk of lower extremity muscle inju-
ries, as nonrecent ankle injury was not found to be a
significant risk factor.

The relationship between concussion and lower extrem-
ity injury has been extensively studied in the sports medi-
cine literature,10,15,16 with a number of hypotheses for the
underlying mechanism, including resultant deficiencies in
dynamic balance, neuromuscular control, cognitive accu-
racy, and gait performance.4,14,27,31,40 This observation is
corroborated by our study, which identified a concussion
history as a significant risk factor in both the multivariate
logistic regression and the machine learning models.
Finally, an interesting protective correlation was identified
between 3-point attempt rate and risk of lower extremity
injury. One possible reason for this observation may lie in
the role of the 3-point attempt rate as a proxy of playing
style, as players who take a greater number of 3-point
attempts usually play a less physical perimeter game. Con-
versely, the free throw rate represents the ability of a
player to draw personal fouls from opponents and therefore
is a measure of physical play and a strong predictor of
injury risk.

On evaluation of the predictive models, both the com-
plete and simple XGBoost models outperformed the logistic
regression on both discrimination and the Brier score.
Investigators have previously developed machine learning
injury-prediction models for recreational athletes17 as well
as in professional sports, including the NFL,42 National
Hockey League,26 and MLB.18 These models utilized a
range of inputs, from performance metrics to video record-
ings and motion kinematics. The present study evaluated a
number of performance metrics as well as clinical injury
history, which may present more actionable findings for the
team physician. After external validation, prospective
deployment of the model can integrate the athlete’s injury
history in an 8-week window to provide a real-time snap-
shot of the athlete’s risk for experiencing a LEMS with
excellent fidelity and reliability. Additionally, with contem-
porary improvements in computational and sensor technol-
ogy, there has also been an increase in focus on the
potential of global positioning system tracking data in
real-time injury forecasting and prevention,9 and machine
learning technology is uniquely equipped to handle the
sheer overabundance of data available through the automa-
tion of structure and pattern recognition.12

Strengths and Limitations

The strengths of this study must be interpreted concur-
rently with a number of limitations. The first concerns the
quality of the data source. While we were able to capture
injury history and performance metrics that can serve as
proxies for playing style, data extracted from publicly avail-
able sources do not offer insight into postinjury

rehabilitation protocol or long-term management strategies
for recurrent injuries. Additionally, detailed clinical data
including physical examination and imaging findings were
unavailable. Within these limitations, it is notable that the
current machine learning algorithm reached an excellent
level of concordance and calibration and that a simplified
algorithm performed similarly to the complete logistic
regression model; it should be within expectation that pro-
spective incorporation of granular characteristics of the
injury and the return-to-play protocol can continue to aug-
ment the performance of the algorithm. Second, the sam-
pling remains limited to the population of elite athletes,
and generalizability to those competing at the recreational
or semiprofessional levels may remain questionable until
further external validation, as such use of the digital appli-
cation is for education and demonstration only. In this con-
text, an interesting future extension of this study may be a
matched-cohort comparison of LEMS injury risk between
professional and amateur athletes. Finally, the black box
phenomenon is an inherent flaw of certain machine learn-
ing algorithms wherein transparency into model behavior
is insufficient. For example, the complete model utilizes 25
inputs and can become extremely cumbersome for the user,
especially for physicians to whom the effects of specific per-
formance variables may not be clear from a clinical perspec-
tive. We have attempted to mitigate this by reducing the
dimensions of the training data to produce a simplified
model that is both clinically sound and easily deployable
without significantly sacrificing its effectiveness. In addi-
tion, the application features a built-in local agnostic model
explanation algorithm that can approximate the model
dependence on each input for a given prediction.

CONCLUSION

Machine-learning algorithms such as XGBoost outper-
formed logistic regression in the effective and reliable pre-
diction of a LEMS that will result in lost time. Factors
resulting in an increased risk of LEMS included history of
a back, quadriceps, hamstring, groin, or ankle injury; con-
cussion within the previous 8 weeks; and total count of
previous injuries.
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APPENDIX

DETAILED MACHINE-LEARNING MODELING
WORKFLOW

Missing Data

Features with missing data were imputed utilizing the Mis-
sForest multiple imputation method to reduce bias and
improve statistical robustness.4 If a variable was consid-
ered important and missing in more than 30% of the study
population, complete case analysis was performed after
exclusion of incomplete cases. The MissForest multiple
imputation method was used to impute remaining vari-
ables with less than 30% missing data5,13,14; variables were
assumed to be missing at random based on epidemiological
convention.8,10

Modeling

After imputation for missing data, highly collinear vari-
ables (defined as Spearman correlation coefficients >0.5
or those considered clinically confounding) were identified
and excluded. Notably, we did not explicitly exclude out-
come variables of one model as input features in other mod-
els; therefore, recurrence was considered an input feature
in the model for progression to surgery, and whether
patients underwent surgical treatment was considered an
input feature in the model for the development of symptom-
atic osteoarthritis.

The following 5 algorithms were developed on the train-
ing data set: (1) support vector machines, (2) elastic net
penalized logistic regression, (3) random forest, (4) multi-
layer perceptron, and (5) XGBoost. These algorithms have
been shown to develop robust predictive models for vari-
ous orthopaedic conditions.6 Each model was trained and
validated via 0.632 bootstrapping with 1000 resampled
data sets, also known as Monte Carlo cross-validation. In
brief, model evaluation consists of reiterative partitions of
the complete data set into train and test sets. For each
combination of train and test set, the model is trained on
the train set using 10-fold cross-validation repeated 3
times.11 The performance of this model is then evaluated
on the respective test set, and no data points from the
training set were included in the test set. This sequence
of steps is then repeated for 999 more data partitions. The
model is thus trained and tested on all data points avail-
able, and evaluation metrics are summarized with stan-
dard distributions of values. Bootstrapping has been found
to optimize both model bias and variance and improve
overall performance compared with internal validation
through splitting the data into a partition of training and
holdout sets.15 In addition, a gradient boosted ensemble
model of the 5 candidate models was constructed and
trained, similarly through 0.623 bootstrapping. The
advantages of ensemble modeling include decreasing var-
iance and bias as well as improving predictions, while

disadvantages include increased memory requirements
and reduced speed of implementation.1

Model Assessment

Model performance for each algorithm was assessed for (1)
discrimination by comparing area under the receiver oper-
ating characteristic curve, with >0.80 defined as excellent
concordance based on the works of Hosmer and Leme-
show3; (2) calibration by calibration curve plots, intercept,
and slope; (3) decision curve analysis; and (4) Brier score,
which is the mean square difference between predicted
probabilities of models and observed outcomes. The Brier
score for each algorithm was compared with the null Brier
score, which is calculated by assigning each patient a prob-
ability equivalent to the population prevalence of the pre-
dicted outcome.

Decision curve analysis was used to compare the bene-
fit of implementing the best-performing algorithm to the
logistic regression in practice.16 The curve plots net bene-
fit against the predicted probabilities of each outcome and
provides the cost-benefit ratio for every value of the pre-
dicted probability. These ratios provide useful guidance
for individualized decision making and account for vari-
ability in clinician and patient thresholds for what is con-
sidered high risk. Additionally, decision curves for the
default strategies of changing management for no patients
or all patients are plotted for comparison purposes. Equa-
tions for the calculation of the cost-benefit ratio and net
benefit are as follows:

Cost benefit ratio ¼ Risk threshold probability

1� Risk threshold probability

Net benefit ¼ True positives � Cost benefit ratioðfalse positivesÞ
Total number of patients

Both global and local model interpretability and expla-
nations were provided. The global model variable impor-
tance plot demonstrates variable importance normalized
to the input considered most contributory to the model pre-
dictive power. Local explanations for model behavior were
provided for transparency into each individual output
using local-interpretable model-agnostic explanations.2,12

The explanation algorithm generates optimized fits based
on an established distance measure for the predicted prob-
abilities of each outcome label based on the values of both
categorical and continuous input, which can be plotted for
visualization.2,12
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APPENDIX TABLE A1
Definition of Machine Learning Concepts and Methods Used

Term Definition

Multiple imputation A popular method for handling missing data, which are often a source of bias and error in model
output. In this approach, a missing value in the data set is replaced with an imputed value
based on a statistical estimation; this process is repeated randomly, resulting in multiple
“completed” data sets, each consisting of observed and imputed values. These are combined
utilizing a simple formula known as the Rubin rule to give final estimates of target variables.9

Recursive feature elimination (RFE) A feature selection algorithm that searches for an optimal subset of features by fitting a given
machine learning algorithm (random forest and naı̈ve Bayes in our case) to the predicted
outcome, ranking the features by importance, and removing the least important features; this
is done repeatedly, in a “recursive” manner, until a specified number of features remains or a
threshold value of a designated performance metric has been reached. The features can then be
entered as inputs into the candidate models for prediction of the desired outcome.7

0.632 bootstrapping The method for training an algorithm based on the input features selected from RFE. Briefly,
model evaluation consists of reiterative partitions of the complete data set into train and test
sets. For each combination of train and test set, the model is trained on the train set using 10-
fold cross-validation repeated 3 times. The performance of this model is then evaluated on the
respective test set, and no data points from the training set were included in the test set. This
sequence of steps is then repeated for 999 more data partitions.11 The model is thus trained
and tested on all data points available, and evaluation metrics are summarized with standard
distributions of values.11 Bootstrapping has been found to optimize both model bias and
variance and improve overall performance compared with internal validation through
splitting of the data into training and holdout sets.

Extreme gradient boosting Algorithm of choice among stochastic gradient boosting machines, a family in which multiple
weak classifiers (a classifier that predicts marginally better than random) are combined (in a
process known as boosting) to produce an ensemble classifier with a superior generalized
misclassification error rate.7

Random forest Algorithm of choice among tree-based algorithms, an ensemble of independent trees, each
generating predictions for a new sample chosen from the training data, and whose predictions
are averaged to give the forest’s prediction. The ensembling process is distinct in principle from
gradient boosting.7

Neural network A nonlinear regression technique based on 1 or more hidden layers consisting of linear
combinations of some or all predictor variables, through which the outcome is modeled; these
hidden layers are not estimated in a hierarchical fashion. The structure of the network mimics
neurons in a brain.7

Elastic net penalized logistic regression A penalized linear regression based on a function to minimize the square errors of the outputs;
belongs to the family of penalized linear models, including ridge regression and the lasso.7

Support vector machines A supervised learning algorithm that performs classification problems by representing each data
point as a point in abstract space and defining a plane known as a hyperplane that separates
the points into distinct binary classes, with maximal margin. Hyperplanes can be linear or
nonlinear, as we have implemented in the presented analysis, using a circular kernel.7

Area under the receiver operating
characteristic curve (AUC)

A common metric to model performance, utilizing the receiver operating characteristic curve,
which plots calculated sensitivity and specificity given the class probability of an event
occurring (instead of using a 50:50 probability). The AUC classically ranges from 0.5 to 1, with
0.5 being a model that is no better than random and 1 being a model that is completely accurate
in assigning class labels.7

Calibration The ability of a model to output probability estimates that reflect the true event rate in repeat
sampling from the population. An ideal model is a straight line with an intercept of 0 and slope
of 1 (ie, perfect concordance of model predictions to observed frequencies within the data). A
model can correctly assign a label, as reflected by the AUC, yet it can output class probabilities
of a binary outcome that is dramatically different from its true event rate in the population;
such a model is not well calibrated.7

Brier score The mean square difference between predicted probabilities of models and observed outcomes in
the testing data. The Brier score can generally range from 0 for a perfect model to 0.25 for a
noninformative model.7

Decision curve analysis A measure of clinical utility whereby a clinical net benefit for 1 or more prediction models or
diagnostic tests is calculated in comparison with default strategies of treating all or no
patients. This value is calculated based on a set threshold, defined as the minimum probability
of disease at which further intervention would be warranted. The decision curve is constructed
by plotting the ranges of threshold values against the net benefit yielded by the model at each
value; as such, a model curve that is farther from the bottom left corner yields more net benefit
than one that is closer.16
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APPENDIX TABLE A2
Inputs Considered for Feature Selection

Variables

Recent groin injury
Recent ankle injury
Recent concussion
Recent hamstring injury
Recent back injury

Age
Recent quad injury
Previous injury count
Position
Games played
Games started
Minutes per game
Field goals made per game
Field goal attempts per game
Field goal percentage
3-point shots made per game
3-point shots attempted per game
3-point percentage
2-point shots made per game
2-point shots attempted per game
2-point percentage
Effective field goal percentage
Free throws made per game
Free throws attempted per game
Free throw percentage
Offensive rebounds per game
Defensive rebounds per game
Total rebounds per game
Assists per game
Steals per game
Blocks per game
Turnovers per game
Personal fouls per game
Points per game
Player efficiency rating
True shooting percentage
3-point attempt rate
Free throw attempt rate
Offensive rebound percentage
Defensive rebound percentage
Total rebound percentage
Assist percentage
Steals percentage
Blocks percentage
Turnover percentage
Usage percentage
Offensive win share
Defensive win share
Win shares
Win shares per 48 min
Offensive box ±
Defensive box ±
Box ±
Value over replacement player
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